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Key Points

•Genome-wide
CRISPR/Cas9 screens
identify novel mediators
of resistance to
lenalidomide, pomalido-
mide, and CC-122 in
PEL cells.

• SENP8 and UBE2G1
are modulators of
CRL4CRBN, and their
inactivation drives
resistance to CMs in
PEL-derived cell lines.

Genome-wide CRISPR/Cas9 screens represent a powerful approach to studying

mechanisms of drug action and resistance. Cereblon modulating agents (CMs) have

recently emerged as candidates for therapeutic intervention in primary effusion

lymphoma (PEL), a highly aggressive cancer caused by Kaposi’s sarcoma-associated

herpesvirus. CMs bind to cereblon (CRBN), the substrate receptor of the cullin-RING type

E3 ubiquitin ligase CRL4CRBN, and thereby trigger the acquisition and proteasomal

degradation of neosubstrates. Downstream mechanisms of CM toxicity are incompletely

understood, however. To identify novel CM effectors and mechanisms of CM resistance,

we performed positive selection CRISPR screens using 3 CMs with increasing toxicity in

PEL: lenalidomide (LEN), pomalidomide (POM), and CC-122. Results identified several novel

modulators of the activity of CRL4CRBN. The number of genes whose inactivation confers

resistance decreases with increasing CM efficacy. Only inactivation of CRBN conferred

complete resistance to CC-122. Inactivation of the E2 ubiquitin conjugating enzyme

UBE2G1 also conferred robust resistance against LEN and POM. Inactivation of additional

genes, including the Nedd8-specific protease SENP8, conferred resistance to only LEN.

SENP8 inactivation indirectly increased levels of unneddylated CUL4A/B, which limits

CRL4CRBN activity in a dominant negative manner. Accordingly, sensitivity of SENP8-

inactivated cells to LEN is restored by overexpression of CRBN. In sum, our screens identify

several novel players in CRL4CRBN function and define pathways to CM resistance in PEL.

These results provide rationale for increasing CM efficacy on patient relapse from

a less-efficient CM. Identified genes could finally be developed as biomarkers to

predict CM efficacy in PEL and other cancers.

Introduction

Primary effusion lymphoma (PEL) is a non-Hodgkin B cell lymphoma caused by Kaposi’s Sarcoma-
associated Herpesvirus.1,2 PEL most commonly arises in HIV-infected individuals, where it
comprises ;4% of HIV-related non-Hodgkin B cell lymphomas.3 PEL carries a poor prognosis,
despite chemotherapy and antiretrovirals.4,5 Recent work by us and others suggests that cereblon
modulators (CMs), including the immunomodulatory drugs lenalidomide (LEN) and pomalidomide
(POM), may present a promising treatment strategy in PEL.6,7 LEN and POM are used in multiple
myeloma (MM), as frontline therapy or on relapse from LEN, respectively. Despite substantial
efficacy of immunomodulatory drugs in MM, patients commonly relapse. LEN is also effective in
myelodysplastic syndrome with deletion of chromosome 5q [del(5q) MDS]. CC-122 is a fourth-
generation CM currently under preclinical investigation in diffuse large B cell-lymphoma (DLBCL).8
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The molecular target of CMs is cereblon (encoded by CRBN),
a substrate receptor of the cullin-RING type E3 ubiquitin (Ub)
ligase CRL4CRBN.9

The covalent conjugation of Ub to target proteins is mediated
by an enzymatic cascade that involves an E1 Ub activating
enzyme, E2 Ub conjugating enzyme, and E3 Ub ligase, which
attaches Ub to lysine (K) residues of protein substrates or Ub
itself.10 K48-linked Ub chains of 4 or more moieties canonically
target substrates for degradation by the 26S proteasome. The
modular cullin-RING E3 Ub ligases (CRLs) are composed of 1
of 7 cullin family scaffold proteins (CUL1, 2, 3, 4A, 4B, 5, or 7),
which recruits a RING family protein with E3 Ub ligase function
and a substrate recognition module.11,12 The CRL4 complex
specifically consists of cullin4A (CUL4A) or cullin4B (CUL4B), the
RING protein RBX1, the adaptor protein DDB1 (damaged DNA
binding 1), and 1 of several substrate receptors, including CRBN
(Figure 1A).9,13,14 CRLs are regulated by dynamic modification
of the cullin subunit with the Ub-like modifier Nedd8.11,12,15,16

Similar to Ub, Nedd8 requires the sequential action of Nedd8-
specific E1, E2, and E3 enzymes. Nedd8-modification of cullins is
required for E3 ligase activity by exposing RBX1 and thereby
positioning the associated E2 enzyme in proximity of substrates.16

Conversely, deneddylation of cullins is required for the exchange
of the substrate receptor module.17,18 Cullin deneddylation is
mediated by the multisubunit COP9 signalosome (CSN).19,20

Thus, cullin Nedd8-modification is highly dynamic, with neddyla-
tion required for E3 ligase activity and deneddylation required for
substrate receptor exchange.

CMs bind to CRBN within the substrate recognition surface, and
thereby enable acquisition of neosubstrates, resulting in their
polyubiquitination and proteasomal degradation.21-26 In MM, CM-
induced degradation of neosubstrates IKZF1 and IKZF3 and the
subsequent downregulation of their transcriptional target IRF4
is thought be a major trigger of CM toxicity.21,22 Degradation of
the neosubstrate CK1a, which is preferentially targeted by LEN,
is thought to explain the efficacy of LEN in del(5q) MDS.27

Recently, CMs have been shown to induce efficient cell death
in PEL cell lines,6,7 and LEN is currently part of a clinical trial in
PEL (clinicaltrials.gov identifier: NCT02911142). As in MM,28 the
transcription factor IRF4 is a highly essential survival gene in PEL
cells, and its expression is reduced on treatment with CMs.6,7,29

Surprisingly, however, in this setting, downregulation of IRF4
and CM toxicity were independent of IKZF1 and/or IKZF3.7 In PEL
cell lines, CK1a is furthermore commonly essential, and its
degradation represents an IRF4-independent arm of CM toxicity.7

In contrast to the reported lack of CK1a degradation in POM-
treated del(5q) MDS cells,27 we consistently observe degradation
of CK1a on treatment of PEL cells with POM, at only slightly lower
efficiency than with LEN.7 Degradation of CK1a in POM-treated
cells is in agreement with recently reported in vitro data.25 The
individual or combined reexpression of CK1a and IRF4 signifi-
cantly, but incompletely, rescued PEL cell lines from CM-induced
cell death,7 suggesting that additional mechanisms of CM action
exist in PEL. Thus, further mechanistic investigation of CM toxicity
in this and other cell types is warranted.

Genome-wide CRISPR screens represent a powerful tool to probe
for genes whose inactivation confers drug resistance.30,31 To
identify CM effectors, we applied this unbiased screening approach

to identify genes whose inactivation confers resistance to LEN,
POM, or CC-122 in PEL cells. Our results suggest that decreased
CRL4CRBN activity is the dominant pathway to resistance and
identify several novel regulators of CRL4CRBN. We validate the E2
enzyme UBE2G1 and the Nedd8-specific protease SENP8 as
genes whose inactivation can confer resistance to LEN and/or
POM. Inactivation of SENP8 indirectly increased the levels of
unneddylated CUL4A/B, which interferes with LEN toxicity in
a dominant-negative manner.

Methods

Cell lines, reagents, and CRISPR screens

Cell lines were maintained and CRISPR knockout cell pools
were generated as described recently and further detailed in the
supplemental Methods.29 Lenalidomide was from Cayman Chem-
icals (Ann Arbor, MI), and pomalidomide and CC-122 were from
Selleck Chemicals (Houston, TX). All compounds were dissolved in
DMSO (Sigma-Aldrich, St. Louis, MO). The Brunello sgRNA library
was obtained from Addgene (Cambridge, MA).32 CRISPR screens
were performed in clonal BC-3/Cas9 cells, as described and
detailed in the supplemental Methods.29 Raw sgRNA read counts
are in supplemental Table 1. sgRNA read counts after exclusion of
those in the bottom 5% are in supplemental Table 2. Raw data are
available under GEO accession number GSE122040.

Cloning

Lentiviral sgRNA vectors were based on pLenti-guide puro30,33

(Addgene #52963; see supplemental Table 5 for sgRNA
sequences and primers). For lentiviral protein expression, cDNA
sequences were placed into pLC/P2Ahygro (CRBN, UBE2G1,
SENP8) or pLC/P2Apuro (CUL4A WT/K705R). Detailed clon-
ing procedures are described in the supplemental Methods.
Primer sequences are listed in supplemental Table 6, and cDNA
nucleotide sequences are listed in supplemental Table 7.
Vectors are available through Addgene.

Cell counting, western blotting, and CM

dose-response assays

Growth curve and CM dose-response and growth curve assays
were performed essentially as described,7 with minor modifica-
tions (supplemental Methods). Quantitative western blot analysis
(LI-COR) was performed as reported,7,29 and primary antibodies
are listed in supplemental Table 8. The CK1a antibody detects
a nonspecific band of a molecular weight that was only sometimes
present on the imaged piece of membrane, depending on how the
membrane was cut for various Western analyses.

Results

Genome-wide CRISPR/Cas9-based positive selection

screens against CMs in PEL

We conducted genome-wide CRISPR/Cas9 resistance screens
against LEN, POM, and CC-122 in the commonly used PEL cell
line BC-3 (Figure 1B) to identify effectors of CMs in an unbiased
approach. Half maximal inhibitory concentrations (IC50) of these
drugs in BC-3 are ;2 mM for LEN, 213 nM for POM, and 117 nM
for CC-122 (supplemental Figure 1). Cas9-expressing BC-3
cells were transduced with the Brunello genome-wide sgRNA
library and cultured for 2 weeks after antibiotic selection to allow
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Figure 1. CRISPR-Cas9 inactivation-based CM resistance screens in the PEL cell line BC-3. (A) Schematic of the CM-bound CRL4CRBN E3 Ub ligase complex. (B)

Experimental outline of CM resistance screens. (C) Cumulative live cell counts of BC-3/Cas9 during the duration of the screens. Cell numbers were normalized to those from

dimethyl sulfoxide (DMSO)–treated control cells. Arrows indicate early and late points at which a subset of cells were taken from the pool for analysis of sgRNA distribution.

(D) Absolute live cell counts of LEN, POM, or CC-122–treated BC-3/Cas9 cells at late times in the screen shows emergence of proliferating cell pools under continued drug

treatment.
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for depletion of cells with sgRNAs targeting essential genes.29

The resulting cell pool was divided and treated with DMSO or
lethal concentrations of CMs (ie, 5 mM LEN, 1 mM POM, or 1 mM
CC-122). High concentrations were chosen to assay for
robust CM resistance under stringent conditions. A first sample
was collected when a minimum of live cells remained: on day 14
for LEN, or day 9 for POM or CC-122 (Figure 1C). A second
sample was harvested after a proliferating cell pool emerged
under drug treatment (Figure 1D). The later point was intended
to assay for complete resistance, whereas the early point was
included to detect more subtle delays in CM toxicity. sgRNA
composition over 2 replicate screens per drug was assessed by
next-generation sequencing and analyzed with the MAGeCK-
VISPR algorithm.34,35

For each drug, sgRNAs targeting fewer genes were significantly
enriched in the live cell population at late points vs at early points
(Figure 2A-F). The number of hits furthermore decreased with
increasing toxicity of the CM, such that only inactivation of
CRBN appeared to confer complete resistance to CC-122
(Figure 2F). An enrichment for guides against CRBN was
expected, because its inactivation has previously been shown
to confer CM resistance in PEL6,7 and MM cell lines.21,22 Other
genes with strong sgRNA enrichments in at least a subset
of settings include: the CRL4 cullin subunit CUL4B; GLMN,
a previously identified binding partner of RBX136; and the E2 Ub
conjugating enzyme UBE2G1, which has very recently been
implicated as the preferred E2 enzyme for Ub chain elongation by
CRL4.37,38 sgRNAs targeting 4 other genes (ILF2, ILF3, YPEL5,
SENP8) were highly and specifically enriched in LEN-resistant
cells (supplemental Table 4; Figure 2G), and therefore repre-
sent novel candidates for modulators of LEN toxicity. Of these,
ILF2 and ILF3 have previously been identified as candidate
interacting partners of several CRL complexes,39 but have not
been functionally investigated as potential regulators of CRL
activity. YPEL5 has been identified as a candidate binding
partner of the COP9 signalosome subunit COPS5,40 but also
participates in an unrelated E3 Ub ligase complex,41 among
other roles. SENP8 (also known as DEN1 or NEDP1) encodes
a Nedd8-specific cysteine protease that has recently been
shown to remove Nedd8 modifications from proteins other than
cullins, and specifically the Nedd8 conjugation machinery, in-
cluding Nedd8-specific E1 and E2 enzymes.42 Although SENP8
inactivation has recently been shown to cause decreased
neddylation of CUL1 and CUL5,42 SENP8 has not previously
been implicated in the regulation of CRL4 activity or CM
toxicity.

Both the experimental settings for our screens and cutoffs
for data analyses presented in Figure 2 were selected for high
stringency. Lowering statistical cutoffs identifies additional
genes as candidates for modulators of CM toxicity, among
known components or regulators of CRL4, such as RBX1 and
CSN subunits (supplemental Tables 3 and 4). We note that
DDB1, RBX1, and several CSN subunits are potentially essential
in PEL based on our reported essentiality screens29 (supple-
mental Figure 2), which would prevent enrichments of sgRNAs
targeting these genes in the CM-resistant cell population. On the
basis of the prominent enrichments for CUL4B, UBE2G1, ILF2/
3, YPEL5, and SENP8-specific sgRNAs, these genes were
selected for further validation.

Inactivation of CUL4A or CUL4B confers resistance to

lenalidomide and delays toxicity of pomalidomide

Our detection of enrichments for CUL4B sgRNAs is interesting,
because it suggests that overall CUL4A and CUL4B expression
levels in BC-3 cells is limiting for the efficacy of even high
concentrations of CMs. To confirm this result, we transduced
Cas9-expressing BC-3 cells with lentiviruses carrying 2 indepen-
dent sgRNAs, each targeting CUL4B or CUL4A, or an established
negative control guide targeting the noncoding locus AAVS1. A
previously reported CRBN knockout BC-3 clone served as
a positive control for CM resistance.7 Indeed, individual CRISPR/
Cas9-mediated inactivation of CUL4B substantially delayed the
toxicity of POM and conferred robust resistance to LEN (supple-
mental Figure 3A-C). Inactivation of CUL4A similarly conferred
significant resistance to LEN, although CUL4A-specific sgRNAs
were not enriched in our screens (supplemental Figure 3D-E).
Inactivation of CUL4A had a smaller effect on the response to POM
in BC-3 cells (supplemental Figure 3F). Overall, these data confirm
that CUL4B and CUL4A are both expressed in PEL and contribute
to CRL4CRBN-dependent CM toxicity in BC-3. The failure for
CUL4A sgRNAs to meet our statistical cutoff (Figure 2) may reflect
a relative inefficiency of these guides in the pooled approach and/
or, possibly, the high stringency of the experimental setup and
cutoffs. Similar results were obtained in the PEL cell lines BCBL-1
and BC-1, which are EBV-negative and EBV-positive, respectively
(supplemental Figure 3G-R). Together, these data suggest that low
CUL4A/B expression levels may indeed limit CM toxicity in PEL
cell lines.

Inactivation of UBE2G1 confers resistance to

lenalidomide and pomalidomide

Remarkably, UBE2G1 was the only E2 Ub conjugating enzyme
out of 40 human E2 enzymes with enriched sgRNAs at early
(LEN, POM, CC-122) and late (LEN, POM) times (Figure 2;
supplemental Figure 4). To test the hypothesis that inactivation
of UBE2G1 confers CM resistance, we infected Cas9-expressing
BC-3 cells with lentiviruses carrying 2 independent sgRNAs
targeting UBE2G1 or the sgAAVS1-negative control guide.
Inactivation of UBE2G1 was confirmed by western blot analysis
(Figure 3A). Inactivation of UBE2G1 indeed conferred outright
resistance against either LEN or POM (Figure 3B-C). Although live
cell numbers of UBE2G1 knockout cells under CM treatment were
lower than those of CBRN-KO cells, these cells continued
to proliferate under drug treatment. Reexpression of an sgRNA-
resistant UBE2G1 cDNA in the context of UBE2G1 inactiva-
tion restored sensitivity to CMs, confirming the specificity of
sgUBE2G1-mediated CM resistance (Figure 3D-E). Western blot
analyses of UBE2G1-inactivated cells demonstrate substantial
impairment of CM-induced neosubstrate degradation in LEN or
POM-treated UBE2G1-inactivated cell pools for IKZF1, IKZF3,
and CK1a (Figure 3F-G), which were analyzed as indicators of
overall CRL4CRBN activity. The LEN/POM-induced indirect
downregulation of IRF4 was similarly rescued in UBE2G1-
inactivated cells compared with the negative control cells. The
rescue of LEN- and POM-induced phenotypes strongly suggest
that UBE2G1 acts at the level of the CM-bound CRL4CRBN

complex, most likely as the preferred E2 Ub conjugation enzyme
participating in the polyubiquitination of CM neosubstrates in PEL.
Validation experiments furthermore confirmed that inactivation of
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UBE2G1 modestly delays toxicity of the more potent CC-122
but does not confer resistance against this drug (Figure 3H-I).
Thus, other E2 enzymes must be able to compensate for loss
of UBE2G1, albeit at lower efficiency. These results parallel 2

recent reports,37,43 which similarly identified UBE2G1 as hits in
genome-wide CRISPR/Cas9 screens for LEN or POM resistance
in MM. UBE2G1 was also identified as the preferred E2 in CM-
induced CRL4CRBN activity in an E2 enzyme-focused CRISPR
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inactivation of UBE2G1 in BC-3/Cas9 cells by 2 independent UBE2G1-specific sgRNAs (sg1, sg2). sgAAVS1 is a negative control guide. GAPDH served as loading control.

(B-C) Growth curve analyses of UBE2G1 inactivated BC-3/Cas9 cells after treatment with 5 mM LEN (B) or 1 mM POM (C). BC-3/Cas9 cells transduced with sgAAVS1 were

included as a CM-sensitive negative control, whereas previously described clonal CRBN-inactivated BC-3 cells (CRBN KO) served as a positive control for complete CM

resistance. Absolute live cell numbers were normalized to corresponding DMSO vehicle-treated cells at each passage (represented by the dotted line). These experiments

were performed in parallel with SENP8-inactivated cells shown in Figure 4B-C, and thus share common negative and positive controls for several or all replicates. (n 5 3; error

bars represent standard error of the mean [SEM]). (D) Representative western blot analysis (anti-Flag) confirms lentiviral expression of sg2-resistant, Flag-tagged UBE2G1 in
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SEM). (F-G) Representative time course western blot analyses of CM neosubstrates IKZF1, IKZF3, and CK1a, and IRF4 in WT or UBE2G1-inactivated BC-3/Cas9 cells upon
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asterisk marks a nonspecific band in panel F. (H) Growth curve analyses of UBE2G1-inactivated BC-3/Cas9 cells treated with 1 mM CC-122. sgAAVS1 and CRBN KO cells
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screen in MM.38 Sievers et al37 and Lu et al38 confirmed a role
for UBE2G1 in CM-induced toxicity in MM and proposed
a “prime-extend” mechanism, whereby the E2 enzyme UBE2D3

mediates substrate mono-ubiquitination, whereas UBE2G1
extends the Ub chain via addition of further K48-linked Ub
moieties. Inactivation of UBE2D3 alone, which did not score in

Figure 3. (continued) were included as negative and positive controls, respectively. Live cell counts were normalized to corresponding DMSO vehicle-treated cells,

represented by the dotted line (n 5 3; error bars represent SEM). (I) Representative western blot analysis of IKZF1, IKZF3, CK1a, and IRF4 at indicated points confirms

a delay in neosubstrate degradation and IRF4 downregulation in UBE2G1-inactivated BC-3/Cas9 cells compared with control pools as in panel H. GAPDH served as loading

control. Statistical analyses throughout this figure were performed by unpaired Student t tests comparing specified conditions to corresponding sgAAVS1 or ZsGreen controls.

*P ,. 05; **P , .01; ***P , .001; ****P , .0001. n.s., not significant.
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our screens, did not confer significant CM resistance in PEL,
suggesting the existence of redundant E2 enzymes that can fulfill
this function in our system (supplemental Figure 5). Overall, our
data suggest a preference for CRL4CRBN for UBE2G1, similar to
that seen in MM.37,38,43

Inactivation of SENP8 specifically confers resistance

to lenalidomide

SENP8, ILF2, ILF3, and YPEL5 scored specifically for LEN,
but not POM or CC-122. To test effects of their inactiva-
tion on CM toxicity, we initially targeted each gene in BC-3 cells
using 2 sgRNAs. Consequences of ILF2 inactivation could
not be tested because of inefficient inactivation (supplemen-
tal Figure 6A). Western blot analyses confirmed robust tar-
get inactivation for ILF3, YPEL5, and SENP8 (supplemental
Figure 6B,D; Figure 4A). Inactivation of ILF3 and YPEL5
only modestly delayed LEN toxicity in BC-3 cells (supplemen-
tal Figure 6C,E). For YPEL5, similarly modest effects were
also seen in BCBL-1 cells (supplemental Figure 6D,F). Al-
though these results suggest that ILF3 and YPEL5 may
indeed modulate CM toxicity, their effect was minor, and was
therefore not studied further. In contrast, inactivation of SENP8
in BC-3 conferred pronounced resistance to LEN (Figure 4B).
Because SENP8 has not been implicated in CRL4 function
or CM resistance to date, we decided to further investigate the
role of SENP8. As predicted by the screens, inactivation of
SENP8 delayed and attenuated toxicity of POM in BC-3 cells,
but did not confer resistance at later points into drug treatment
(Figure 4C). Observed effects were specific to SENP8 in-
activation, as reexpression of sgRNA-resistant SENP8 restored
LEN sensitivity (supplemental Figure 7A-B). Western blot
analyses of SENP8-inactivated BC-3 cells demonstrate rescue

of IRF4 and the neosubstrates IKZF1, IKZF3, and CK1a on
treatment with LEN, but not with POM (Figure 4D-E). Similar
results were obtained in the PEL cell line BCBL-1 (supplemental
Figure 7C-E). SENP8 and the positive control CRBN were
additionally targeted for inactivation in the PEL cell line BC-1 and
in the MM cell lines KMS12-BM and MM.1S (supplemental
Figure 7F-I). The inclusion of MM cell lines is of interest,
as SENP8 did not score in reported CRISPR CM resistance
screens in MM.37,43 Dose-response analyses for LEN and POM
in each cell line confirmed that inactivation of SENP8 conferred
significant resistance to LEN in each PEL cell line and in MM.1S
(Figure 4F). Inactivation of SENP8 did not confer resistance
to LEN in KMS12-BM. None of the cell lines exhibited strongly
altered dose response to POM (supplemental Figure 7J). The
range of concentrations tested includes physiologically achiev-
able drug concentrations.44,45 Overall, these results show that
inactivation of SENP8 confers significant resistance to LEN in
PEL cell lines and at least the MM cell line MM.1S, but does not
strongly affect the response to POM.

SENP8 inactivation results in accumulation of

unneddylated CUL4A/B

A recent report showed that SENP8 cleaves Nedd8 from
noncullin neddylation substrates, including the Nedd8-specific
E2 enzyme UBE2M and other components of the neddylation
machinery.42 Accumulation of aberrant neddylated forms of
these proteins appears to render neddylation of cullins in SENP8
inactivated cells inefficient, as shown for CUL1 and CUL5 in
HeLa and HEK293T cells.42 The same study reported no effect
on the neddylation status of CUL4, however. To begin to address
the role of SENP8 in PEL, we probed wild-type (WT) and SENP8-
inactivated BC-3 cells for Nedd8 (Figure 5A). As reported
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for 293T,42 SENP8-inactivated BC-3 showed a depletion of
unconjugated Nedd8 and an accumulation of several Nedd8-
modified proteins, presumably substrates for Nedd8 deconjuga-
tion by SENP8. In both BC-3 and BCBL-1 cells, there was an
increase in the levels of unneddylated CUL4A and CUL4B (Figure
5B-C). Importantly, the expression of CRBN was unchanged in
SENP8-inactivated cell pools (Figure 5B). A similar increase in
unneddylated CUL4A and CUL4B was observed in SENP8-
inactivated MM.1S cells, where SENP8 inactivation conferred
LEN resistance, but not in SENP8-inactivated KMS12-BM cells,
where SENP8 inactivation was inconsequential (supplemental
Figure 8A). We note that KMS12-BM expresses moderately
higher levels of CUL4A than the other cell lines (supplemental
Figure 8B). Overall, our data suggest that the effect of SENP8

on CM efficacy is most likely at the level of reduced CUL4A/B
neddylation. CUL4A/B neddylation and LEN sensitivity in the
context of SENP8 inactivation could not be restored by over-
expression of either active or precursor Nedd8 (supplemental
Figure 8C-E). These data suggest that the accumulation of
unneddylated CUL4A/B in SENP8 inactivated cells is not a conse-
quence of limiting pools of unconjugated Nedd8.

CRBN overexpression restores sensitivity to

lenalidomide in the context of SENP8 inactivation

Because expression of Nedd8-modified CUL4A/B was not strongly
reduced in the context of SENP8 inactivation, we reasoned that
unneddylated CUL4A/B might dominant negatively interfere
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with CM toxicity. Interference could be through sequestration of
CRBN on unneddylated complexes. Alternatively, increased
substrate receptor exchange facilitated by CUL4 deneddylation
could cause competition with alternative substrate adaptors.
In either case, overexpression of CRBN would be expected
to drive increased association of CRBN/DDB1 with active
CRL4 complexes under conditions in which activation of
CUL4 by neddylation is limiting because of the loss of SENP8.
Indeed, lentiviral overexpression of Flag-tagged CRBN re-
stored full sensitivity of BC-3 cells to LEN in the context of
SENP8 inactivation (Figure 6A). Western blot analysis confirmed
restoration of LEN-induced neosubstrate degradation and IRF4
downregulation in CRBN overexpressing cells (Figure 6B). We
finally directly tested whether overexpression of a nonneddylat-
able CUL4A K705R mutant dominant negatively interferes
with CM toxicity (Figure 6C). Although overexpression of WT
CUL4A did not affect the toxicity of LEN or POM, K705R-
mutant CUL4A expressing BC-3 were completely resistant
to high concentrations of either LEN or POM, which for-
mally shows that unneddylated CUL4 can drive resistance to
CMs in a dominant-negative manner (Figure 6D-E; supplemental
Figure 9).

Discussion

Here we report genome-wide CRISPR KO screens for genes
whose inactivation confers resistance to 3 generations of CMs

(ie, LEN, POM, and CC-122) in the PEL cell line BC-3. Our study
confirms that CRBN is strictly required for CM toxicity. In addition,
screens and validation experiments show that the E2 Ub
conjugating enzyme UBE2G1 and the deneddylase SENP8
are required for optimal CM toxicity in PEL. While our work
was in progress, similar screens against LEN37 or POM43 were
reported in MM. These screens and an additional E2-targeted
CRISPR screen38 similarly identified loss of UBE2G1 as
a mechanism of LEN and POM resistance in MM. Our screens
additionally identified SENP8 and other novel candidates as
modulators of CM toxicity in PEL. Our validation experiments
show that SENP8 expression is required for toxicity of LEN in at
least a subset of MM cell lines. It is unclear why SENP8 did not
score in the reported CRISPR-based LEN resistance screen in
MM.1S cells.37

Our results suggest that genes that confer robust CM resistance
are mostly, or possibly exclusively, modulators of CRL4CBRN activity.
This can be explained by our previous finding that mechanisms
of CM action in PEL are multifactorial.7 Interestingly, the number
of genes whose inactivation confers resistance decreases with
increased efficacy of the drug. Even relatively subtle impairments
in CRL4CRBN activity (eg, after loss of SENP8) appear to limit LEN
toxicity. In contrast, POM and especially CC-122 remain effective
under conditions of suboptimal CRL4CRBN activity, such as reduced
expression of overall CUL4 or loss of SENP8. Strikingly, the drug
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target CRBN was the only gene whose inactivation conferred
complete resistance to CC-122 in our system.

Among the CRL4CRBN regulators identified in our study was the E2
Ub conjugating enzyme UBE2G1. We confirmed that inactivation
of UBE2G1 in PEL cells confers resistance to LEN and to POM,
but not CC-122. LEN and POM resistance of UBE2G1-inactivated
cells was recently also reported in MM by Sievers et al37 and Lu
et al.38 These groups proposed a “prime-extend” mechanism, in
which the E2 conjugating enzyme UBE2D3 mediates neosubstrate
mono-ubiquitination, whereas UBE2G1 adds additional Ub moie-
ties for polyubiquitination. Our results extend this role of UBE2G1 to
PEL, where CM toxicity is independent of CM-induced IKZF1/3
degradation.7 Future CRISPR screens in the context of UBE2D3
and/or UBE2G1 inactivation could be used to identify E2
enzymes that can compensate for these enzymes, especially
during treatment with CC-122.

Inactivation of either CUL4A or CUL4B conferred significant
resistance to LEN in several PEL cell lines, suggesting that total
CUL4A/B levels are commonly limiting for CM toxicity. Limited
CUL4 expression could sensitize cells to alterations in CUL4
neddylation status, such as those seen in SENP8-inactivated cells.
It is conceivable that certain tumor types, including PEL, have low
CUL4A/B expression, or that cells with low CUL4A/B expression
exist within tumors for various cancers, which may affect the
response to CM treatment and increase the likelihood of relapse.

Our screens and validation experiments identified a role for the
Nedd8-specific protease SENP8 in the modulation of LEN toxicity
and CRL4 activity. Specifically, inactivation of SENP8 leads to
accumulation of deneddylated CUL4, perhaps a consequence of
aberrant neddylation and reduced activity of the Nedd8 conjuga-
tion machinery.42 Increased amounts of deneddylated CUL4A/B
may lead to the sequestration of DDB1/CRBN on inactive
CRL4 complexes, thus limiting CM toxicity in SENP8-inactivated
cells. Accordingly, overexpression of CRBN restored sensitivity
of SENP8 KO cells to LEN. Conversely, overexpression of
nonneddylatable CUL4A dominant negatively interfered with CM
toxicity, and thereby phenocopied SENP8 knockout.

Finally, our study identified and validated ILF3 and YPEL5 as
candidates for modulators of CM toxicity. ILF2 and ILF3 were
recently identified as candidate binding partners of CRL complexes
and their roles should be addressed in future studies.39 YPEL5 is
a component of the unrelated GID/CTLH E3 ligase complex.41 The
early point for LEN identified GID components WDR26 and MEMA,
as well as the cognate E2 enzyme of this complex (UBE2H) as

candidates for genes with delayed LEN toxicity, perhaps implicating
the GID E3 ligase as a regulator of CM toxicity. However, YPEL5
has also been identified as a candidate interacting partner of the
CSN subunit COPS540 and has unrelated functions.

In summary, we propose a model in which overall expression
levels of CRBN, CUL4A, CUL4B, UBE2G1, and SENP8 dictate
sensitivity of CMs in PEL (Figure 7). Future sequencing and gene
expression studies will be required to identify roles of the expres-
sion or mutation of these genes in the response to CMs and
the development of CM resistance in patients. The expression
and/or mutational status of the genes identified in this study may
be developed as biomarkers for whether treatment with a more
potent CM is indicated on relapse from LEN or POM. Moving
forward, it will be critical to identify the relevant neosubstrate(s) and
mechanisms of CM toxicity in PEL. An improved understanding of
the mechanisms of CM toxicity might also enable combination
therapy with other drugs.
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42. Coleman KE, Békés M, Chapman JR, et al. SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase
function. eLife. 2017;6:e24325.

43. Liu J, Song T, Zhou W, et al. A genome-scale CRISPR-Cas9 screening in myeloma cells identifies regulators of immunomodulatory drug sensitivity.
Leukemia. 2019;33(1):171-180.

44. Chen N, Lau H, Kong L, et al. Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis.
J Clin Pharmacol. 2007;47(12):1466-1475.

45. Kasserra C, Assaf M, Hoffmann M, et al. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug-drug interaction potential in vitro
and in healthy subjects. J Clin Pharmacol. 2015;55(2):168-178.

23 JULY 2019 x VOLUME 3, NUMBER 14 CEREBLON MODULATOR RESISTANCE SCREENS IN PEL 2117


