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Abstract: CCN3, otherwise known as the nephroblastoma overexpressed (NOV) protein, is a
cysteine-rich protein that belongs to the CCN family and regulates several cellular functions.
Osteoblasts are major bone-forming cells that undergo proliferation, mineralization, renewal, and
repair during the bone formation process. We have previously reported that CCN3 increases bone
morphogenetic protein 4 (BMP-4) production and bone mineralization in osteoblasts, although the role
of CCN3 remains unclear with regard to osteogenic transcription factors (runt-related transcription
factor 2 (Runx2) and osterix). Here, we used alizarin red-S and alkaline phosphatase staining to
show that CCN3 enhances osteoblast differentiation. Stimulation of osteoblasts with CCN3 increases
expression of osteogenic factors such as BMPs, Runx2, and osterix. Moreover, we found that the
inhibition of miR-608 expression is involved in the effects of CCN3 and that incubation of osteoblasts
with CCN3 promotes focal adhesion kinase (FAK) and Akt phosphorylation. Our results indicate that
CCN3 promotes the expression of Runx2 and osterix in osteoblasts by inhibiting miR-608 expression
via the FAK and Akt signaling pathways.

Keywords: CCN3; osteoblasts; Runx2; osterix; miR-608

1. Introduction

Osteoblasts are major bone-forming cells that undergo proliferation, mineralization, renewal, and
repair during the bone formation process [1,2]. Accumulating evidence indicates that agents capable
of enhancing osteoblastic proliferation or increasing the differentiation of osteoblasts promote bone
formation [3,4], thus justifying the approval of the bone formation compound teriparatide 1–34 for
osteoporosis therapy [5].

Several osteogenic factors regulate the development and differentiation of osteoblasts, such as
bone morphogenetic proteins (BMPs), Runx2, and osterix [6]. BMPs belong to the transforming
growth factor-β superfamily and play a key role in osteoblastic formation [7], while Runx2 and
osterix are important osteogenic transcription factors that control bone mineralization and progression
in mesenchymal stem cells and osteoblasts [8,9]. Enhancing Runx2 and osterix transcriptional
activities apparently promotes osteoblastic differentiation and facilitates osteogenesis [5,9]. MicroRNAs
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(miRNAs) are small, endogenous non-coding RNAs (18–25 nucleotides in length) that have vital roles
as modulators of several physiological and pathological processes [10,11]. miRNAs control gene
expression at the post-transcriptional level by binding to the three prime untranslated region (3′-UTR)
of mRNAs via complementary base pairing, leading to mRNA degradation or translation inhibition [12].
Several miRNAs have been found to modulate osteogenic functions of osteoblasts, including their
development, proliferation, survival, and mineralization [12,13]. For instance, miR-6797-5p controls
osteoblast differentiation by targeting Runx2 expression [14], while miR-96 regulates bone metabolism
by modulating osterix expression [15]. These reports suggest that regulating miRNA expression is a
critical tool for controlling osteoblastic function.

CCN3, otherwise known as the nephroblastoma overexpressed (NOV) protein, is a cysteine-rich
protein that belongs to the CCN family and regulates several cellular functions such as cell proliferation,
adhesion, and migration through its interactions with the extracellular matrix (ECM) [16]. CCN3
interacts with many integrin receptors, including integrins αvβ3, αvβ5, α2β1 and α5β1 [16]. The focal
adhesion kinase (FAK), MAPK, PI3K, and Akt intracellular signaling pathways are commonly induced
by CCN3 [17–19]. There is a lot of evidence that indicates that CCN3 regulates osteogenic factor
expression and bone cell differentiation [20,21]. We have previously reported that CCN3 also increases
BMP-4 production and bone mineralization in osteoblasts [17]. However, up until now, the role of
CCN3 in regard to osteogenic transcription factors (Runx2 and osterix) has remained unclear. Here,
we report that CCN3 enhances osteoblast differentiation and also promotes the expression of Runx2
and osterix in osteoblasts by inhibiting miR-608 expression via the FAK and Akt signaling pathways.

2. Results

2.1. CCN3 Promotes Osteoblast Differentiation

In this study, we examined the role of CCN3 in osteoblast differentiation. After culturing osteoblasts
in an osteoblastic differentiation medium (containing vitamin C 50 µg/mL and β-glycerophosphate
10 mM) for two weeks, alizarin red-S staining demonstrated that CCN3 promoted bone nodule
synthesis (Figure 1A). We also found that CCN3 enhanced ALP expression (a marker for osteoblast
differentiation) in a concentration-dependent manner, as according to ALP staining (BMP-2-enhanced
ALP staining was used as a positive control) (Figure 1B). These results indicate that CCN3 enhances
osteoblast differentiation.
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Figure 1. CCN3 enhances osteoblast differentiation. Osteoblasts were plated in 24-well plates and
cultured in a medium containing vitamin C (50 µg/mL) and β-glycerophosphate (10 mM) for 2 weeks
(A) or 2 days (B). The cells were also treated with CCN3. At the end of the experiment, the cultures
were fixed and assessed by alizarin red-S (A) and alkaline phosphatase (ALP) staining (B).
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2.2. CCN3 Enhances Runx2 and Osterix Expression in Osteoblasts

Treatment of osteoblasts with CCN3 increased mRNA and protein expression of BMP-2, BMP-4,
and BMP-7, in a concentration-dependent manner (Figure 2A,C). CCN3 also augmented Runx2 and
osterix expression in osteoblasts (Figure 2B,C). These results suggest that CCN3 promotes the expression
of osteogenic factors in osteoblasts.
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Figure 2. CCN3 enhances osteogenic factor expression in osteoblasts. (A,B) Osteoblasts were treated
with CCN3 (10–100 ng/mL) for 24 h; mRNA and protein expression were examined by qPCR (A,B) and
Western blot assay (C), respectively. Results are expressed as the mean ± S.E. * p < 0.05 as compared
with the control group.

2.3. CCN3 Increases Runx2 and Osterix Expression via the Suppression of miR-608

The online miRWalk, miRanda, and TargetScan databases revealed that the 3′-UTRs of Runx2 and
osterix mRNAs harbor potential binding sites for only miR-608 (Figure 3A). We found that stimulation
of CCN3 with osteoblasts concentration-dependently inhibited miR-608 expression (Figure 3B). To
examine the role of miR-608 in Runx2 and osterix expression, the miR-608 mimic was used. Transfection
with miR-608 mimic antagonized CCN3-increased Runx2 and osterix expression (Figure 3C,D). To
examine whether miR-608 regulates the 3′-UTRs of Runx2 and osterix, we constructed luciferase reporter
vectors harboring either the 3′-UTR of Runx2 mRNA or the 3′-UTR of osterix mRNA (Figure 4A,B)
and transfected them into osteoblasts. CCN3 increased luciferase activity in the Runx2 and osterix
plasmids (Figure 4C,D). Transfection with miR-608 mimic reduced CCN3-promoted Runx2 and osterix
luciferase activity (Figure 4C,D), suggesting that CCN3 induces Runx2 and osterix activation via the
inhibition of miR-608 expression.
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Figure 3. CCN3-induced suppression of miR-608 enhances Runx2 and osterix expression.
(A) Open-source software (miRWalk, miRanda, and Targetscan) was utilized to identify microRNAs
(miRNAs) that could possibly interfere with Runx2 and osterix transcription. (B) Osteoblasts were
incubated with CCN3 for 24 h and miR-608 expression levels were examined by qPCR assay. Osteoblasts
were transfected with miR-608 mimic and subsequently stimulated with CCN3. mRNA and protein
expression of Runx2 and osterix were examined by qPCR (C) and Western blot assay (D), respectively.
Results are expressed as the mean ± S.E. * p < 0.05 as compared with the control group; # p < 0.05 as
compared with the CCN3-treated group.
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Figure 4. The binding of miR-608 to Runx2 and osterix three prime untranslated region (3′-UTRs)
mitigated CCN3-induced increases in Runx2 and osterix expression. (A,B) Diagram of the miR-608
binding sites in the Runx2 and osterix 3′-UTRs. (C,D) Osteoblasts were transfected with the Runx2
or osterix 3′-UTR plasmids, with or without miR-608 mimic, then stimulated with CCN3. Luciferase
promoter activity was expressed as relative luciferase activity. Results are expressed as the mean ± S.E.
* p < 0.05 as compared with the control group; # p < 0.05 as compared with the CCN3-treated group.

2.4. CCN3 Stimulates Runx2 and Osterix Expression by Inhibiting miR-608 through the FAK and Akt
Signaling Pathways

Stimulation of osteoblasts with CCN3 led to a time-dependent increase in phosphorylation of
FAK and Akt, as shown by the Western blot assay (Figure 5A). To validate the role of FAK and Akt in
CCN3-enhanced Runx2 and osterix expression, osteoblasts were pretreated with FAK and Akt inhibitors
or transfected with FAK and Akt mutants. A luciferase activity assay confirmed significant inhibition of
CCN3-enhanced Runx2 and osterix luciferase activities, as shown in Figure 5B,C. In addition, FAK and
Akt inhibitors or mutants reversed CCN3-inhibited miR-608 expression (Figure 5D). These data suggest
that miR-608 directly suppresses Runx2 and osterix gene transcription via binding to the 3′-UTR region
of the human Runx2 and osterix gene promoter, and that miR-608 expression is negatively regulated
by FAK and Akt phosphorylation induced by upstream CCN3 signaling.
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research group also found that CCN3 inhibits osteoblast differentiation through the inhibition of 
BMP-2 expression in osteoblast precursor cells [20], while a higher dosage of CCN3 (600 ng/mL) 
inhibits the differentiation of primary bone marrow cells [24]. However, we have previously reported 
that CCN3 enhances BMP-4-dependent bone mineralization [17]. The results of this current study 
support our previous finding that CCN3 enhances osteoblast differentiation. In addition, we found 
that CCN3 stimulation upregulated levels of osteogenic factors, including BMP-2, BMP-4, BMP-7, 
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Figure 5. CCN3 suppressed miR-608 expression through the FAK and Akt signaling pathways.
(A) Osteoblasts were treated with CCN3 (30 ng/mL) for the indicated time intervals; FAK and Akt
phosphorylation were examined by Western blot assay. Osteoblasts were pretreated with FAK and Akt
inhibitors or transfected with FAK and Akt mutants and subsequently stimulated with CCN3. Runx2
and osterix luciferase activity and miR-608 expression were examined by luciferase assay (B,C) and
qPCR (D), respectively. Results are expressed as the mean ± S.E. * p < 0.05 as compared with the control
group; # p < 0.05 as compared with the CCN3-treated group.

3. Discussion

The proliferation and differentiation of osteoblasts is regulated by different endogenous factors [22].
CCN3 promotes BMP-4-dependent bone mineralization in osteoblasts [17], although the effects of CCN3
upon two important osteogenic transcription factors, Runx2 and osterix, are largely unknown. In the
current study, we found that CCN3 promotes BMP expression and the differentiation of osteoblasts and
that CCN3 stimulation increases Runx2 and osterix expression by inhibiting miR-608 expression via
the FAK and Akt signaling pathways. We also found that CCN3 increases levels of BMP, Runx2, and
osterix expression in osteoblasts. Conversely, BMP has been implicated in the enhancement of Runx2
and osterix activity [23]. Whether CCN3 promotes Runx2 and osterix activation via a BMP-dependent
effect needs further examination.

Controversy surrounds the contention that CCN3 modulates bone cell function. Rydziel et
al. indicated that CCN3 inhibits osteoblastogenesis and causes osteopenia in vivo [21] and another
research group also found that CCN3 inhibits osteoblast differentiation through the inhibition of BMP-2
expression in osteoblast precursor cells [20], while a higher dosage of CCN3 (600 ng/mL) inhibits the
differentiation of primary bone marrow cells [24]. However, we have previously reported that CCN3
enhances BMP-4-dependent bone mineralization [17]. The results of this current study support our
previous finding that CCN3 enhances osteoblast differentiation. In addition, we found that CCN3
stimulation upregulated levels of osteogenic factors, including BMP-2, BMP-4, BMP-7, Runx2, and
osterix. The opposite effect may therefore depend on the working concentration of CCN3, as we found
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that a lower dosage of CCN3 (30 ng/mL) increases osteoblast differentiation, whereas a higher CCN3
dosage (600 ng/mL) reportedly inhibits this phenomenon. Otherwise, most inhibitory effects have
been found through the overexpression of CCN3. However, this effect may depend on the route of
treatment, as in this study, we applied exogenous recombinant CCN3 to osteoblasts. Several different
cells have been used in bone function assays, including primary bone marrow cells, stromal cells, and
osteoblastic cells. Thus, the opposite effect may depend on the concentration, timing of the stimulation,
route of treatment, and type of cell.

miRNAs are small, non-coding RNA fragments that suppress the translation or induce the
degradation of target mRNAs [25]. A multitude of miRNAs are known to be involved in bone-related
disorders [26–28]. We utilized open-source software (miRWalk, miRanda, and TargetScan) to evaluate
candidate miRNAs that may interfere with the transcription of Runx2 and osterix. Among the selected
miRNAs, only miR-608 regulated both Runx2 and osterix transcriptional activity. We have shown
that transfecting osteoblasts with miR-608 mimic mitigates CCN3-stimulated Runx2 and osterix
expression. These findings underscore the importance of miR-608 in CCN3-stimulated Runx2 and
osterix expression. BMP family proteins play a critical role in bone formation and differentiation [29].
However, we have not found any reports in the literature regarding miR-608-induced regulation of
BMPs. Whether BMPs also modulate miR-608-dependent bone formation needs further examination.
miR-608 activity has been mentioned in several cancers; for example, miR-608 regulates apoptosis
in lung adenocarcinoma [30] and the miR-608 rs4919510 C>G polymorphism is associated with a
significantly lower risk of breast cancer [31]. However, the effects of miR-608 in bone cells are not yet
quantified. Whether miR-608 also controls other bone cell functions needs further investigation.

Activation of the FAK pathway regulates osteoblast adhesion and differentiation [32,33]. Akt
activation is also implicated in osteoblastic functions [34,35]. In this investigation, CCN3 augmented
the phosphorylation of FAK and Akt. In addition, FAK, Akt inhibitors, and their associated mutants
all abolished CCN3-induced elevations in Runx2 and osterix expression, indicating that FAK and
Akt signaling mediates the effects of CCN3. These inhibitors and their mutants also reversed
CCN3-inhibited expression of miR-608, suggesting that the FAK/Akt pathway acts as an upstream
molecule of miR-608. These findings provide evidence showing that CCN3 enhances the expression
of transcription factors Runx2 and osterix by inhibiting miR-608 expression via the FAK and Akt
signaling cascades. We previously reported that CCN3 regulates BMP-4 production through the MAPK
pathway [17]. Treatment of osteoblasts with ERK, p38, and JNK inhibitors reversed CCN3-inhibted
miR-608 expression (data not shown), suggesting that the MAPK pathway is also involved in
CCN3-induced miR-608 suppression.

4. Materials and Methods

4.1. Materials

We obtained recombinant human CCN3 and BMP-2 from PeproTech (Rocky Hill, NJ, USA) and
purchased BMP-2, BMP-4, Runx2, and osterix antibody from Abnova (Taipei, Taiwan). Antibodies
against p-FAK, FAK, p-Akt, Akt, and β-actin were purchased from Santa Cruz (Santa Cruz, CA, USA)
and cell culture supplements from Invitrogen (Carlsbad, CA, USA). The Dual-Luciferase® Reporter
Assay System was purchased from Promega (Madison, WI, USA). Quantitative polymerase chain
reaction (qPCR) primers and probes, as well as the Taqman® one-step PCR Master Mix, were supplied
by Applied Biosystems (Foster City, CA, USA). All other chemicals not mentioned above were supplied
by Sigma-Aldrich (St Louis, MO, USA). The FAK dominant-negative (DN) mutant was a gift from
Dr. J. A. Girault (Institut du Fer á Moulin, Paris, France). The Akt DN mutant was gifted by Dr. W. M. Fu
(National Taiwan University, Taipei, Taiwan).
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4.2. Cell Culture

The osteoblastic cell line MC3T3-E1 was purchased from American Type Culture Collection
(Manassas, VA, USA). Cells were cultured in culture media containing alpha-minimal essential medium
(α-MEM) supplemented with streptomycin (100 µg/mL), penicillin (100 U/mL), HEPES (20 mM),
glutamine (2 mM), and 10% fetal bovine serum (FBS), then maintained at 37 ◦C in an atmosphere of
humidified air with 5% CO2.

4.3. Measurement of Osteoblast Differentiation

Cells were cultured in a medium containing vitamin C (50 µg/mL), β-glycerophosphate (10 mM),
and CCN3 (10–30 ng/mL) for 2 weeks. Cells were fixed in ice-cold 75% (v/v) ethanol for 30 min and the
calcium deposition was determined using 40 mM alizarin red-S staining (pH 4.2) [36].

For alkaline phosphatase (ALP) staining, the cells were fixed with acetone for 30 s then stained
with ALP staining reagent (6 mg naphthol AS phosphate, 0.1 mL N,N-dimethylformamide, and 20 mg
Fast Blue BB salt in 20 mL of 0.5 M Tris buffer; pH 10.2). Images were photographed using a microscope
(Nikon, Kanagawa, Japan) [37].

4.4. Western Blot Analysis

Cell lysates were prepared by RIPA buffer containing a protease inhibitor cocktail (Sigma-Aldrich;
St Louis, MO, USA); extracted proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel
electrophoresis and transferred to Immobilon® polyvinylidene difluoride membranes. The blots were
treated with 4% bovine serum albumin (BSA) for 1 h and then with primary antibodies (1:3000) for 1 h.
The membranes were treated with peroxidase-conjugated secondary antibody (1:3000) for 1 h. Finally,
the bands were visualized using ImageQuant™ LAS 4000 (GE Healthcare, Little Chalfont, UK) [38,39].

4.5. Quantitative Real-Time PCR

Total cDNA (100 ng) was mixed with Taqman® primers and probes as well as
PCR Master Mix. The StepOnePlus™ system was used in the quantitative RT-PCR
assays. BMP-2 (F) GGGACCCGCTGTCTTCTAGT, BMP-2 (R) TCAACTCAAATTCGCTGAGGAC;
BMP-4 (F) TTCCTGGTAACCGAATGCTGA, BMP-4 (R) CCTGAATCTCGGCGACTTTTT; BMP-7
(F) ACGGACAGGGCTTCTCCTAC, BMP-7 (R) ATGGTGGTATCGAGGGTGGAA; Runx2
(F) CCAACCGAGTCATTTAAGGCT, Runx2 (R) GCTCACGTCGCTCATCTTG; osterix (F)
ATGGCGTCCTCTCTGCTTG, osterix (R) TGAAAGGTCAGCGTATGGCTT. For the detection of
miRNAs, reverse transcription was performed using Mir-X™miRNA First-Strand Synthesis and the
SYBR® RT-PCR kit. qPCR analysis was carried out according to an established protocol [40,41].

4.6. Plasmid Construct and Reporter Assay

We obtained Runx2 and osterix 3′-UTR DNA fragments from Invitrogen (Carlsbad, CA, USA) and
subcloned them into the pmirGLO-control luciferase reporter vector (Promega, Madison, WI, USA).
Luciferase activity was assayed using the method as described in our previous research [42,43].

4.7. Statistics

All values are presented as the mean ± the standard error (S.E.). All differences between
the experimental groups and controls were assessed for significance using the Student’s t-test.
Between-group differences were considered to be significant if the p value was <0.05.

5. Conclusions

In summary, our study shows that the binding of CCN3 in osteoblasts triggers the phosphorylation
of FAK and Akt, contributing to the decline in miR-608 synthesis. The decrease in miR-608 expression
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enhances the synthesis of osteogenic transcription factors Runx2 and osterix (Figure 6). These results
may improve understanding of the role played by CCN3 in osteoblast differentiation.
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