Skip to main content
. 2019 Jun 30;19(13):2905. doi: 10.3390/s19132905

Table 3.

Quantitative evaluation of the deep-learning-based reconstructions using Fu’s, Arad’s and our MSFA (see Figure 7) on synthetic datasets.

MSFA Dataset
CAVE Harvard ICVL
RMSE PSNR RMSE PSNR RMSE PSNR
Noisy
(SNR = ∞)
Ours 0.148 24.46 0.091 29.96 0.054 31.12
Nie’s 0.166 23.76 0.114 27.07 0.068 29.87
Arad 0.161 23.54 0.119 26.49 0.069 29.89
Noisy
(SNR = 30 db)
Ours 0.163 23.08 0.097 27.23 0.059 30.02
Nie’s 0.172 22.59 0.118 25.72 0.072 27.93
Arad 0.186 22.47 0.122 25.06 0.072 28.28