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1. Introduction
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Xiaoxuming decoction (XXMD), a classic traditional Chinese medicine (TCM) prescription, has been used as a therapeutic in the
treatment of stroke in clinical practice for over 1200 years. However, the pharmacological mechanisms of XXMD have not yet been
elucidated. The purpose of this study was to develop neuroprotective models for identifying neuroprotective compounds in XXMD
against hypoxia-induced and H, O,-induced brain cell damage. In this study, a phenotype-based classification method was designed
by machine learning to identify neuroprotective compounds and to clarify the compatibility of XXMD components. Four different
single classifiers (AB, kNN, CT, and RF) and molecular fingerprint descriptors were used to construct stacked naive Bayesian
models. Among them, the RF algorithm had a better performance with an average MCC value of 0.725+0.014 and 0.774+0.042 from
5-fold cross-validation and test set, respectively. The probability values calculated by four models were then integrated into a stacked
Bayesian model. In total, two optimal models, s-NB-1-LPFP6 and s-NB-2-LPFP6, were obtained. The two validated optimal models
revealed Matthews correlation coefficients (MCC) of 0.968 and 0.993 for 5-fold cross-validation and of 0.874 and 0.959 for the test
set, respectively. Furthermore, the two models were used for virtual screening experiments to identify neuroprotective compounds
in XXMD. Ten representative compounds with potential therapeutic effects against the two phenotypes were selected for further
cell-based assays. Among the selected compounds, two compounds significantly inhibited H,O,-induced and Na,S,0,-induced
neurotoxicity simultaneously. Together, our findings suggested that machine learning algorithms such as combination Bayesian
models were feasible to predict neuroprotective compounds and to preliminarily demonstrate the pharmacological mechanisms of
TCM.

Emergencies) in Tang Dynasty [3]. XXMD consists of twelve
herbs, which are presented in Table 1. In previous studies, it

Traditional Chinese medicine (TCM) prescriptions, as a
representative of drug combinations, are generally used in
combination with multiple medicinal herbs in a certain
dose to exert therapeutic effects [1, 2]. In clinical practice,
the TCM prescription Xiaoxuming decoction (XXMD) has
been an effective prescription for the treatment of stroke
for over 1200 years and has been recorded in Beiji Qianjin
Yaofang (Essential Prescriptions Worth a Thousand Gold for

has been shown that prophylactic administration of XXMD
for 5 days prior to surgery protected rats against ischemia-
reperfusion-induced brain injury [4]. However, due to the
complex composition in TCM prescriptions, it is difficult to
conduct in-depth studies on the underlying pharmacological
mechanisms of XXMD. Therefore, it is essential to clarify
the compatibility of various herbs in TCM prescriptions with
sufficient approaches. To further explore the therapeutic roles
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TaBLE 1: The total amount of each Chinese medicine compound obtained from the database.
No. Chinese name English name Latin name Number of compounds
1 Bai Shao White Peony Root Paeoniae Radix Alba 41
2 Chuanxiong Sichuan lovage rhizome Chuanxiong Rhizoma 242
3 Fangfeng Divaricate Saposhnikovia Root Saposhnikovia Radix 107
4 Fang Ji Fourstamen Stephania Root Stephaniae Tetrandrae Radix 85
5 Fuzi Prepared Common Monkshood Daughter Root  Aconiti Lateralis Radix Praeparata 99
6 Gan Cao Liquorice root Glycyrrhizae Radix et Rhizoma 393
7 Guizhi Cassia twig Cinnamomi Ramulus 130
8 Huang Qin Baikal Skullcap Root Scutellariae Radix 128
9 Kuxingren Bitter Apricot Seed Armeniacae Semen Amarum 119
10 Ma Huang Chinese Ephedra Herb Ephedrae Herba 74
1 Renshen Ginseng Ginseng Radix et Rhizoma 272
12 Shengjiang Fresh ginger Zingiberis Rhizoma Recens 168
Total 1858
Remove duplicates 1484

of XXMD, phenotypic-based drug discovery technology was
employed in this study.

Regardless of the molecular mechanism of action dur-
ing the initial stages of drug discovery, phenotypic-based
screening, as opposed to target-based screening, has pro-
vided new impetus to improve the probability of success
in drug discovery [5, 6]. Thus, identifying the components
in XXMD by phenotypic-based screening will contribute to
elucidating the mechanism of therapeutic effects of XXMD.
There is no doubt that traditional analytic techniques, such as
experimental screening methods, take up time and resources.
To solve these issues, and to enhance screening efficiency,
virtual screening (VS) methods, thereby taking machine
learning as an example, have been widely adopted [7-9].
However, studies that focus on classification predictions
towards phenotypic screening to evaluate and identify classic
TCM prescriptions and discovering neuroprotective agents
against ischemic stroke are limited.

Ischemic stroke, which is the result of an insufficient
blood supply leading to dysfunction of the brain tissues [10],
is mainly due to the occurrence of atherosclerosis and throm-
bosis in the arteries supplying blood to the brain [11]. Tissue
plasminogen activator (tPA) is the only thrombolytic agent
that is approved by the US Food and Drug Administration
(FDA) [12]. However, when a thrombus is destroyed, blood
containing a large amount of reactive oxygen species (ROS)
will perfuse into the ischemic site, thereby causing cerebral
ischemia-reperfusion (I/R) injury. As the most essential
ingredient of ROS, H, 0, is produced in the body’s oxidative
metabolism and is considered a messenger of intracellular
signaling cascades [13]. Large-scale production of H,O, will
damage the structure and function of biological membranes
and organelles (such as mitochondria) in neuronal cells [14,
15]. Moreover, the excessive level of oxidative stress caused by
I/R injury results in a vicious cycle of mitochondrial dysfunc-
tion, calcium overload, excitatory glutamate excess release,
and lipid peroxidation following cerebral I/R injury [16].
This will lead to an imbalance of neuronal cell homeostasis,
which subsequently aggravates I/R injury. Thus, to facilitate

cerebral tissue repair, identifying novel therapies is of utmost
importance.

In this study, a workflow for the classification models,
model validations, and their application to virtual screening
of neuroprotective agents is presented in Figurel. Two
data sets containing 263 and 116 neuroprotectants were
constructed, respectively, and categorized into a training set
and test set. The data set containing 263 compounds was
used to construct hypoxia-induced neuronal injury models
(NIN models), while the data set containing 116 compounds
was used to construct H,O,-induced neuronal injury models
(NHN models). Next, data of four single classification models
(AB, kNN, CT, and RF) and molecular fingerprint descriptors
were integrated to construct stacked naive Bayesian (s-NB)
models. The predictive power of the models was evaluated by
five times cross-validation of the training set and validation
of the test set. The final two optimal stacked NB classifica-
tion models, s-NB-1-LPFP4 and s-NB-2-LCFP6, were used
for classification of the phenotypic-based active ingredi-
ent combinations and screen potential neuroprotectants in
XXMD. Furthermore, to verify the results of the two optimal
Bayesian classification models, sodium dithionite (Na,S,0,)
and hydrogen peroxide (H,O,) were used to induce chemical
hypoxia and oxidative damage, which mimicked the hypoxic
phenotype and reperfused phenotype in SH-SY5Y cells [17,
18].

2. Materials and Methods

2.1. Data Collection and Preparation

2.1.1. Data Collection from XXMD Compounds. Compounds
from twelve herbs present in XXMD were collected from the
Chinese natural product chemical composition database (Na-
tional Center for Pharmaceutical Screening, Chinese Acad-
emy of Medical Sciences, http://pharmdata.ncmi.cn/cnpc/),
TCM-Database@Taiwan Database (http://tcm.cmu.edu.tw),
the Traditional Chinese Medicine Systems Pharmacology
(TCMSP) Database (http://Isp.nwsuaf.edu.cn/tcmsp.php),
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F1GUre 1: Workflow for classification model building, validation, and virtual screening (VS) as applied to neuroprotective agents.

and PubChem Compound Database (https://www.ncbi.nlm
.nih.gov/pccompound/). A total of 1858 compounds were
collected. After removal of duplicate compounds, which
were found in more than one herb, 1484 compounds were
selected for further studies. Information of XXMD and the
twelve herbs obtained from database sources is presented in
Table 1.

2.1.2. Collection and Preparation of Training Set and Test
Set. Compounds that were defined as active in the two
phenotypes were collected from the ChEMBL database [19,
20], using IC5, <10pM in nerve cells as the selection criterion.
After eliminating duplicate structures, active datasets were
constituted with corresponding neuroprotective compounds.
It is noteworthy that compounds collected from the ChEMBL
database did not overlap with compounds in the XXMD
dataset. Corresponding decoys (defined as inactive) were
automatically generated by the DUD-E online database with
a ratio of 4:1 to active compounds [21]. Morgan fingerprints
(4096 bits, radius = 2) were generated using the RDKit
package in Python and were then fed into a t-distributed
stochastic neighbor embedding (t-SNE) algorithm and prin-
cipal component analysis (PCA) to obtain 2-dimensional
representations [22-24]. As shown in the t-SNE plot (Figures
2(a) and 2(b)), remarkable colocalization of several active
compound clusters was shown, which was well separated
from inactive compounds. It should be noted that different

active compound clusters may represent different chemo-
types, which would require further investigation in the future.
Results from PCA plots are presented in Figures 2(c) and 2(d).
Considering the sparseness nature of Morgan fingerprints,
it is reasonable that the explained variance ratios of PCl
and PC2 are not high. However, when using the top two
PCs, some active compounds can still be distinguished from
inactive compounds.

Both the active and inactive data sets were randomly
distributed into a training set and test set with a ratio of 3:1 as
shown in Table 2. In all data sets, neuroprotective compounds
and decoys were, respectively, marked as “1” and “0.” Prior
to the calculation of molecular descriptors, all compounds
required the addition of hydrogen atoms, deprotonation of
strong acids, protonation of strong bases, generation of a
valid 3D conformation, and energy minimization. Detailed
information on the training sets and test sets is presented in
Tables S1-54.

2.2. Molecular Descriptors. Molecular descriptors are the
basis for the combination of machine learning [25]. There-
fore, we used Discovery Studio 2016 (DS 2016) [26] and
MOE 2014.9 software [27] to calculate three sets of two-
dimensional (2D) descriptors to describe each compound.
A total of 256 descriptors calculated by DS 2016 were
constituted as the first descriptor set. In addition, the second
descriptor set was composed of 185 descriptors calculated


https://www.ncbi.nlm.nih.gov/pccompound/
https://www.ncbi.nlm.nih.gov/pccompound/

t-SNE plot analysis

t—SNE2

Label

e Active compounds
e Inactive compounds

(@)
PCA plot analysis

PCA2 (2.26%)

PCALI (2.76%)

Label

® Active compounds
¢ Inactive compounds

(c)

BioMed Research International

t-SNE plot analysis

Label

Active compounds
Inactive compounds

()
PCA plot analysis

PCALI (4.25%)

Label

* Active compounds
¢ Inactive compounds

(d)

FIGURE 2: Visual representation of the chemical space of active compounds (red) and inactive compounds (light green) against hypoxia-
induced (a and ¢) and H,0,-induced (b and d) neurotoxicity. The visualizations of (a) and (b) were generated using t-distributed stochastic
neighbor embedding (t-SNE) based on Morgan fingerprints (4096 bits). The visualizations of (c) and (d) were generated using principal

component analysis (PCA) based on Morgan fingerprints (4096 bits).
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TABLE 2: Detailed statistical description of the entire data set.
Model Training set Test set
Active Inactive Total Active Inactive Total
Hypoxia-induced 197 792 989 66 264 330
H,0,-induced 87 348 435 29 116 145

by MOE 2014.9. Together, the two molecular descriptor
sets constituted the third molecular descriptor set for vir-
tual screening, which contained 441 (256+185) descriptors.
Furthermore, in this study, molecular fingerprints involved
the SciTegic extended-connectivity fingerprints (FCFP and
ECFP) and Daylight-style path-based fingerprints (FPFP and
EPFP) were also calculated with DS 2016 [6].

2.3. Molecular Descriptors Selection. In this study, Pearson
correlation analysis was performed to identify descriptors
that were highly correlated with activity [28]. Firstly, descrip-
tors in which values appeared in high frequency of more than
50% were eliminated. Secondly, descriptors in which correla-
tion coefficients had an activity of less than 0.1 were excluded
[29]. If the absolute value of the correlation coefficients
between two descriptors was higher than 0.9, the descriptor
possessing a lower correlation coefficient with activity was
deleted. Finally, the remaining descriptors were used for
building models. Detailed information on the descriptors is
presented in Table S5.

2.4. Methods for Model Building. We followed the methods
of Fang et al. (2016) [6]. In this study, five different machine
learning methods, Adaboost (AB), k nearest neighbors
(KNN), classification tree (CT), random forest (RF), and naive
Bayesian (NB), were used for computational processes. The
construction of models was performed using Orange Canvas
3.4.1 [30] (AB, kNN, CT, and RF) and DS 2016 (NB). In
addition, four models (AB, kNN, CT, and RF) exported two
probabilities (positive and negative probability) as well as
estimated target values (1 or 0).

2.4.1. Single Classifier Model

(1) Adaboost. Adaboost (AB) is an iterative algorithm that
was designed to get the weighted sum of classifiers by using
the lifting method [31, 32]. It tends to tweak the subsequent
weak learners in favor of reducing misclassification caused by
previous classifiers [33]. Weight coeflicients of the N samples
in the algorithm were distributed to the same value initialized
to 1/N. Next, this subsection was used to train the classifier
and calculate the weights of the misclassified samples as the
weighted error rate.

(2) k Nearest Neighbors. The k nearest neighbors (kNN) algo-
rithm is a nonparametric learning method for classification
and is regression-based on the closest training sample in the
feature space [34, 35]. The feature selection, the number of
nearest neighbors K, and the shape of the distance weighting
function determine the performance of the K-NN model. In

this method, each molecule is removed from the training set,
and the activity value is predicted to have no inverse distance
weighted average activity of the most similar molecules. In
this study, K was optimized (K=1-10).

(3) Classification Tree. Classification tree (CT), a method
commonly used in data mining, is designed to illustrate the
structure of any particular field [36]. The C4.5 tree in Orange
is designed to build classification trees from a set of training
data by splitting criterion called normalized information
gain [37, 38]. The attribute with the highest normalized
information gain is selected to make the decision [6]. The
parameters in Orange were adopted using the default settings.

(4) Random Forest. Random forest (RF) is an ensemble learn-
ing method that stacks multiple decision trees to produce
consensus predictions for each tree [39, 40]. RF randomly
divides the data in the training set to build individual trees.
The arbitrary node of the trees is drawn from the best subset
of total descriptors and is selected. Random decision forests
correct for the habit of decision trees of overfitting their
training set.

2.4.2. Stacked Naive Bayesian Classification Model. To
improve the prediction reliability of a single model,
consistent scoring and data fusion are beneficial. In general,
stacked models reduce unreliable predicted noise hidden
by single classification model [6, 41]. In this study, the
probability values calculated by four models were quoted as
new descriptors, and the prediction results were integrated
with NB models. Stacked-NB classification (s-NB) models
were constructed and validated by DS 2016 [29]. The
learning process generated a large set of Boolean features
from the input descriptors. The weights calculated for each
feature using a Laplacian-adjusted probability estimate were
summed to provide a probability estimate, which was a
relative predictor for the possibility of that sample being
from the good subset [42, 43].

2.5. Performance Parameters Applied for Model Evaluation.
We followed the methods of Fang et al. (2016) [6]. In
this study, the quality of the models was assessed by 5-
fold cross-validation and test set validation. Measurement
parameters included true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). Subsequently,
sensitivity (SE), specificity (SP), positive predictive value
(PPV), and Matthews correlation coefficient (MCC) were cal-
culated by (1)-(4). TP indicated number of active compounds
predicted to be active; TN indicated the number of inactive
compounds predicted to be inactive; FP represented the
number of inactive compounds predicted to be active; and FN



represented the number of active compounds predicted to be
inactive. Similarly, SE represented the accuracy of prediction
for active compounds and SP represented the accuracy
of prediction for inactive compounds. PPV indicated the
overall prediction accuracy for all compounds in the dataset.
MCQC signified the most important indicator for the quality
of binary classification and was calculated to evaluate the
predictive power of the model with values ranging from -1
to L

TP + FN
po_IN )
TN + FP
PPV = P (3)
TP + FP
MCC
TP x TN — FN x FP (4)

" /(TP + EN) (TP + FP) (TN + EN) (TN + EP)

Furthermore, s-NB models measure the accuracy of pre-
diction by calculating the receiver operating characteristic
(ROC) and area under the curve (AUC) of the training
set and the test set. The ROC curve is a comprehensive
indicator that reflects the model sensitivity and specific
continuous variables [44 ]. The ROC curve is based on the true
positive rate as the ordinate and the false positive rate as the
abscissa.

2.6. Cell-Based Neuroprotective Assay

2.6.1. Cell Culture and Treatment. SH-SY5Y cells (human
neuroblastoma cell line, Institute of Materia Medica, Chi-
nese Academy of Medical Science, Beijing, China) were
cultured in high glucose Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% (v/v) fetal bovine serum
(FBS, Gibco, USA). Cells were divided into three groups:
(1) control group: no treatment, (2) model group: cells were
treated with 8 mM Na,S,0, (Sigma, St. Louis, MO, USA) or
200 uM H,O,, and (3) treatment group: cells were pretreated
with test compounds for 2 h; then 8 mM Na,S,0, or 200
uM H, O, was added, respectively (the oxygen glucose depri-
vation (OGD) condition was produced by using Na,S,0,,
which scavenges O, molecules in solution and reduces the
oxygen tension to zero). Test compounds were diluted to four
concentrations (0.3uM, 1uM, 3uM, and 10uM).

2.6.2. MTT Assay. We followed the methods of Fang et al.
(2016) [6]. The MTT assay was used to assess cell survival.
SH-SY5Y cells (5 x 10° cells/well) were seeded in 96-well
plates in 100 yL of medium per well and were cultured for
20 hours. When the cell density was roughly 80%, cells were
treated with medium containing different concentrations of
test compounds for 2 hours; then 200 uM H,0, or 8 mM
Na,S,0, was separately added and cells were incubated for
22 hours. MTT reagent (final concentration 1.0 mg/ml) was
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added 2 hours before the end of the incubation. After 3
hours of incubation, the medium was replaced with 100
pL of dimethyl sulfoxide (DMSO) and the absorption of
the solubilized formazan was measured at 570 nm using
a microplate reader (Spectra Max M5, Molecular Devices,
USA). Cell survival was normalized to the control group, for
which the cell survival was set to 100%.

2.7, Statistical Methods. Data are presented as the mean +
standard deviation. Statistical analysis was performed using
the SPSS statistical package (Version 16.0; SPSS, Chicago,
IL, USA) program, and the significance of each group
was verified with one-way analysis of variance (ANOVA),
followed by a Tukey’s multiple comparison post hoc test. P
< 0.05 was considered significant.

3. Results

3.1. Performance of Classification Models. In this study, all
single classification models were constructed based on AB,
K-NN, CT, and RF algorithms and three descriptor sets. Sub-
sequently, 5-fold cross-validation and test set validation were
used to further evaluate the predictive power, as shown in
Table 3. Among 12 NIN models, the RF algorithm had a better
performance with an average MCC value of 0.725+0.014
and 0.774+0.042 from 5-fold cross validation and test set,
respectively. The best single classifier was RF-cl, which was
developed by random forest using DS_MOE_2D descriptors.
Regarding the 12 NHN models, the best performance was also
achieved by the RF algorithm, with an average MCC value
of 0.857+0.026 and 0.715+0.043 from 5-fold cross-validation
and test set, respectively. The best single classifier was RF-
c2, which was developed by RF stacked with a DS_.MOE_2D
descriptor set.

The RF algorithm was more applicable than other algo-
rithms for the classification of compounds and the prediction
of neuroprotective compounds against hypoxic injury and
oxidative damage. The average MCC values of each algorithm
were calculated with three descriptor combinations (detailed
information is presented in Figure S1). The results showed
that improving the diversity of descriptors increased the
predictability of the models. Therefore, classification models
constructed by the DS_MOE_2D descriptor combination
were selected for further studies.

Based on the results presented above, probability values
calculated by four models were integrated into a stacked
Bayesian model. Molecular fingerprint descriptors were also
integrated into s-NB classification models as replenishment
descriptors (detailed information is presented in Table S6).
To further compare the predictive performance of the single
classification models and the s-NB classification models, the
MCC values and AUC values were calculated via a ROC
plot. As shown in Figure 3, AUC values of the stacked
Bayesian model s-NB-1 were 0.932 and 0.913 for the training
set and the test set, respectively, and were higher than the
corresponding AUC value calculated before replenishing
fingerprint descriptors. For the NHN model, the verification
obtained the same result.
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TABLE 3: Performance of single classification models for the training set (5-fold cross-validation result) and the test set (validation result using
external test set) using different combinations of molecular properties.

5-fold cross-validation result Validation result using external test set

No. Model Descriptors

SE SP PPV MCC SE SP PPV MCC
1 RF-al 32 0.682 0.970 0.912 0.750 0.675 0.975 0.915 0.718
2 RF-bl 53 0.621 0.973 0.903 0.750 0.650 0.981 0.915 0.716
3 RF-cl 79 0.667 0.992 0.927 0.823 0.690 0.980 0.922 0.742
4 K-NN-al 32 0.682 0.905 0.861 0.710 0.695 0.926 0.880 0.622
5 K-NN-bl 53 0.621 0.936 0.873 0.710 0.599 0.931 0.865 0.557
6 K-NN-cl 79 0.636 0.936 0.876 0.760 0.609 0.931 0.867 0.565
7 Tree-al 32 0.621 0.943 0.879 0.680 0.635 0.942 0.881 0.609
8 Tree-bl 53 0.667 0.939 0.885 0.566 0.624 0.914 0.856 0.545
9 Tree-cl 79 0.682 0.947 0.894 0.780 0.711 0.943 0.897 0.670
10 AB-al 32 0.682 0.920 0.873 0.659 0.731 0.900 0.867 0.603
1 AB-bl 53 0.667 0.936 0.882 0.741 0.695 0.902 0.860 0.578
12 AB-cl 79 0.621 0.928 0.867 0.824 0.741 0.941 0.901 0.687
13 NB-al 32 0.766 0.795 0.790 0.483 0.758 0.746 0.748 0.421
14 NB-bl 53 0.777 0.904 0.879 0.644 0.682 0.894 0.852 0.555
15 NB-cl 79 0.761 0.908 0.879 0.640 0.712 0.905 0.867 0.598
16 RF-a2 26 0.805 0.994 0.956 0.860 0.655 0.991 0.924 0.710
17 RF-b2 50 0.839 0.994 0.963 0.882 0.690 0.983 0.924 0.675
18 RF-c2 65 0.747 0.997 0.947 0.830 0.724 1.000 0.945 0.761
19 K-NN-a2 26 0.793 0.960 0.926 0.766 0.724 0.957 0.910 0.574
20 K-NN-b2 50 0.747 0.945 0.906 0.702 0.724 0.957 0.910 0.585
21 K-NN-c2 65 0.782 0.951 0.917 0.739 0.793 0.957 0.924 0.597
22 Tree-a2 26 0.759 0.971 0.929 0.769 0.655 0.966 0.903 0.601
23 Tree-b2 50 0.805 0.937 0.910 0.726 0.448 0.983 0.876 0.629
24 Tree-c2 65 0.782 0.963 0.926 0.765 0.793 0.966 0.931 0.656
25 AB-a2 26 0.805 0.937 0.910 0.726 0.655 0.957 0.897 0.602
26 AB-b2 50 0.828 0.931 0.910 0.732 0.793 0.948 0.917 0.621
27 AB-c2 65 0.851 0.951 0.931 0.788 0.828 0.974 0.945 0.570
28 NB-a2 26 0.839 0.951 0.929 0.780 0.724 0.871 0.841 0.551
29 NB-b2 50 0.816 0.966 0.936 0.796 0.621 0.914 0.855 0.542
30 NB-c2 65 0.885 0.943 0.931 0.795 0.712 0.905 0.867 0.598

1-15: neuroprotective models against hypoxia-induced neurotoxicity (NIN models).
16-30: neuroprotective models against H,O,-induced neurotoxicity (NHN models).
a: models built by DS_2D descriptors.

b: models built by MOE_2D descriptors.

c: models built by DS_MOE 2D descriptors.

As shown in Figure 4, s-NB-1-LPFP6 (MCC = 0.993)
revealed superior predictive performance for the training set
when compared with four single models (MCC ranged from
0.737 to 0.830); the same results were obtained by verification
of the test set. Similarly, the MCC values of the s-NB-2-
LPFP6 model were 0.968 and 0874 for the training set and
the test set, respectively, and were higher than the values of
the corresponding single model MCC.

3.2. Virtual Screening of Neuroprotective Agents from XXMD.
In this study, we aimed to preliminarily clarify the functional

mechanisms of XXMD and to identify potential neuropro-
tective agents against I/R injury; therefore, virtual screening
of the compositions in the XXMD database was performed
based on the two optimal classification models (s-NB-1-
LPFP6 and s-NB-2-LPFP6). In total, 658 compounds were
predicted to be active against ischemia/hypoxia-induced
neurotoxicity. Similarly, 615 compounds were predicted to
be active against H,O,-induced neurotoxicity by s-NB-2-
LPFP6. A total of 398 compounds were ranked by Bayesian
scoring EstPGood (0 < EstPGood < 1) (detailed information
is presented in Table S7).
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Figure 5 shows that each Chinese medicinal herb in
XXMD contained antihypoxia and anti-H,O, damage com-
pounds. Most were predicted to exert antihypoxia and anti-
H,0, effects. It could be critical for XXMD to play a thera-
peutic role in I/R-induced brain injury. Flavonoid glycosides
received a higher score in the antihypoxia phenotype, such as
narcissoside, rutin, Isoquercitrin, hirsutrin, quercetin deriva-
tives, and kaempferol derivatives. It has been suggested that
flavonoid glycoside compounds were the major components
in XXMD which acted against hypoxic phenotype in I/R-
induced brain injury. Similarly, for the NHN model, alkaloids
and sterol compounds in baikal skullcap root and ginseng dis-
played predictive activity in the anti-H, O, phenotypes, such
as pancratistatin, menisarine, fangchinoline, normenisarine,
and other sterols.

In addition, 398 compounds were clustered into 5 groups
by FCFP_6 fingerprint with the cluster ligands module in DS
2016. Clustering is based on the root-mean-square (RMS) dif-
ference of the Tanimoto distance for fingerprinting. For each
cluster, scaffold novelty as well as probability output was con-
sidered. Finally, 10 compounds (Table 4) were identified from
the XXMD database for cell-based neuroprotective assays.

In addition, to estimate the model’s ability to extrap-
olate, the Dice similarity between 10 compounds and two
predefined sets of compounds against hypoxia-induced and
H,0,-induced injury were calculated by generating Morgan
fingerprint using RDKit package in Python. As shown in
Table 4, most of the 10 compounds are structurally similar to
the representative compounds of the two predefined sets. The
results also verify the prediction reliability of the two optimal
classification models

3.3. Cell-Based Neuroprotective Assay Results. Cell-based
neuroprotective assay results are presented in Table S8. Most
of compounds showed a good dose-response relationship
at different concentrations. Figure 6 displays the neuropro-
tective effects of representative compounds (baicalein and
prim-O-glucosylcimifugin) on H,0,-induced and Na,S,0,-
induced SH-SY5Y cells. When compared with the control
group, cell survival significantly decreased in the model
group using 8 mM Na,S,0, or 200 uM H, O, (P < 0.01). After
treatment with baicalein (0.3 uM, 1 yuM 3 uM, and 10 uM) or
prim-O-glucosylcimifugin (0.3 4M, 1 uM 3 uM, and 10 uM),
cell survival was significantly increased.
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4. Discussion

In this study, compounds in XXMD were analyzed by
stacked naive Bayesian models. The results demonstrated
that the existence of the 12 TCMs contained in XXMD was
valuable. The synergistic effects in TCM prescriptions could
be considered as the material basis for the therapeutic efficacy.
Preliminary assay results suggested that a machine learning
algorithm, such as combination of Bayesian models, may
be feasible to predict neuroprotective compounds and pre-
liminarily demonstrated the pharmacological mechanisms of
TCM. The results suggest broadening the selection of stroke
treatment methods and further demonstrated the feasibility
of applying computer-assisted drug discovery to the analysis
of TCM prescriptions.

Through in silico prediction studies, in this study, bai-
calein was identified as a potent neuroprotective agent,
with effects on hypoxic and oxidative damage pheno-
types. As a natural phenolic flavonoid compound, baicalein
has attracted increased attention for antioxidant and anti-
inflammatory efficacy [44]. However, studies on the effi-
cacy of baicalein against cerebral I/R injury are limited.
The validation of baicalein against two damage phenotypes
supports its potential usage in ischemic stroke therapy.
Moreover, prim-O-glucosylcimifugin (POG) has the highest
content of chromone of Saposhnikovia divaricate (Turcz)
Schischk (Fangfeng). However, no reports are available on
the antioxidation effect of POG or its therapeutic effect on
I/R-induced brain injury. In our study, we first identified
the potential activity of POG against oxidant damage and
hypoxia injury. These findings were subsequently verified by
cell-based neuroprotective assays, which indicated that the
established virtual screening pipeline could identify novel
neuroprotective agents in TCM.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Additional Points

Machine learning models were used to demonstrate the
pharmacological mechanisms of classic traditional Chinese
medicine prescriptions. Single classifiers and molecular fin-
gerprint descriptors were integrated to improve the predictive
power of naive Bayesian models. The stacked naive Bayesian
models were applied to predict neuroprotective compounds
for ischemic stroke. Two compounds gained using above
protocols were confirmed by cell-based assays.
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