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Abstract

When pleiotropy is present, genetic correlations may constrain the evolution of ecologically 

important traits. We used a quantitative genetics approach to investigate constraints on the 

evolution of secondary metabolites in a wild mustard, Boechera stricta. Much of the genetic 

variation in chemical composition of glucosinolates in B. stricta is controlled by a single locus, 

BCMA1/3. In a large-scale common garden experiment under natural conditions, we quantified 

fitness and glucosinolate profile in two leaf types and in fruits. We estimated genetic variances and 

covariances (the G-matrix) and selection on chemical profile in each tissue. Chemical composition 

of defenses was strongly genetically correlated between tissues. We found antagonistic selection 

between defense composition in leaves and fruits: compounds that were favored in leaves were 

disadvantageous in fruits. The positive genetic correlations and antagonistic selection led to strong 

constraints on the evolution of defenses in leaves and fruits. In a hypothetical population with no 

genetic variation at BCMA1/3, we found no evidence for genetic constraints, indicating that 

pleiotropy affecting chemical profile in multiple tissues drives constraints on the evolution of 

secondary metabolites.
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Introduction

The accelerating ability to map genetic loci has revealed the prevalence of pleiotropy 

affecting many traits of interest, including evolutionarily important traits in natural 

populations, crop disease resistance and yield, and human diseases (Conner 2002; Shi et al. 

2009; Sivakumaran et al. 2011; Wisser et al. 2011; Lovell et al. 2013; Pickrell et al. 2016). 
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Genetic correlations caused by pleiotropy can constrain the evolutionary responses of 

populations to the selective pressures they experience (Lande 1979; Lande and Arnold 

1983). Combining traditional quantitative genetics approaches to testing for constraints with 

an understanding of causal loci has the potential to give new insight (Kelly 2009). Here, we 

investigate the role of genetic correlations and pleiotropy in constraining the evolution of 

secondary metabolites in leaves and fruits.

Many species interactions involve multiple traits; this is even more true in the case of diffuse 

interactions involving a number of species. In antagonistic interactions, such as parasitism, 

herbivory, or disease, organisms may be under strong selection to evolve resistance; 

however, effective defenses against all enemies may not be possible. In some cases, such as 

between herbivores and pathogens, defense responses can be antagonistic (Glazebrook 2005; 

Thaler et al. 2012). Herbivore species also vary in their reactions to defenses; altering the 

composition of the insect community can drastically change selection on host defenses 

(Lankau 2007). Sometimes, chemicals that defend effectively against generalist insect 

herbivores are the very cues that specialists use to find their hosts (Renwick et al. 1992; 

Roessingh et al. 1992; Sun et al. 2009). Thus, selective pressures on the chemical 

composition of defenses may be complex, and vary depending on specific community 

contexts.

Herbivore and pathogen communities may vary not just between populations, but also 

among the tissues of a single individual. Some herbivores feed on many parts of the plant, 

while others specialize on a specific tissue. Both the herbivore community and the presence 

of certain plant tissues may change seasonally as well (Evans and Murdoch 1968; Janzen 

1973; Wolda 1988), so that some combinations may not co-occur. Thus, different tissues on 

a single plant often interact with partially overlapping communities of herbivores (e.g. Wise 

and Rausher 2013). As the herbivore community affects the selective regime on chemical 

defenses, different chemical profiles may be favored in different tissues.

Like many other traits, defenses, both chemical and physical, are not homogeneous within a 

plant (Nitao and Zangerl 1987; Zangerl and Rutledge 1996; Ohnmeiss and Baldwin 2000). 

For glucosinolates, the primary defensive compounds found in the Brassicaceae, 

concentration and composition have been shown to vary among tissue types (Brown et al. 

2003; Strauss et al. 2004; Bellostas et al. 2007; Velasco et al. 2008; Keith and Mitchell-Olds 

2017). Glucosinolates are not manufactured independently in each tissue; long-distance 

transport of glucosinolates and precursors has been documented in Arabidopsis thaliana 
(reviewed in Halkier and Gershenzon 2006; Jørgensen et al. 2015; Burow and Halkier 2017). 

Thus, glucosinolate concentration and composition is potentially determined by precursor 

availability in source tissues, selection of compounds for transport, and the later 

modifications in the sink tissue (Halkier and Gershenzon 2006; Jørgensen et al. 2015). Given 

this complex interaction of factors, it is likely that glucosinolate profiles in different tissues 

are not independent, and genetic controls are overlapping among tissues.

When traits share genetic controls, genetic correlations are likely. If genetic covariances are 

present, selection on one trait may exert indirect selection on another (Lande 1979; Lande 

and Arnold 1983). Depending on the direction of the genetic covariance and the selection 
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acting on each trait, covariances may speed up (facilitate), slow down (constrain) or have no 

effect on a population’s approach to the evolutionary optimum (Agrawal and Stinchcombe 

2009; Conner 2012). The structure of the genetic variances and covariances is summarized 

in the G-matrix (Lande 1979; Lande and Arnold 1983). The effects of the G-matrix on the 

evolution of a population can be studied using the multivariate breeder’s equation, which 

states that G * β = Δz; that is, the vector of the responses to selection (Δz) is equal to the G-

matrix multiplied by the vector of selection gradients (β). Thus, in order to understand the 

effects of the G-matrix on the evolution of a population, we must measure the genetic 

variances and covariances and the selection gradients acting on the traits (Smith and Rausher 

2008; Agrawal and Stinchcombe 2009; Wise and Rausher 2013).

The G-matrix itself evolves in response to selection, and constraints will not prevent a 

population from reaching the evolutionary optimum unless there is a complete absence of 

genetic variation in the direction of selection (Conner 2012). Rather, constraints are expected 

to slow the response to selection, which may be important when evolutionary optima change 

frequently (Jones et al. 2012). Plant-herbivore interactions may result in just such rapid 

shifting of selective regime; changes in the composition of the insect community may 

change selective pressures on defenses (Lankau 2007), sometimes as rapidly as one year to 

the next (Strauss and Irwin 2004). G has been shown to diverge between populations or 

closely related species, sometimes within the span of a few generations (Shaw et al. 1995; 

Beldade et al. 2002; Frankino et al. 2007; Doroszuk et al. 2008; Conner et al. 2011; Delph et 

al. 2011; Björklund et al. 2013; Paccard et al. 2016; Uesugi et al. 2017), although this is not 

always the case (Puentes et al. 2016; Delahaie et al. 2017). Contrasting herbivore regimes 

produced divergence in the G-matrix for secondary metabolites in Solidago after only 12 

years (Uesugi et al. 2017). The durability of a constraint under selection is dependent 

partially on the genetic architecture of the traits. Although linked genes may cause 

correlations, such linkage disequilibrium (LD) declines with every generation, so these 

effects will be transient (Falconer 1996). Very tight linkage or pleiotropy are necessary to 

maintain correlations over longer periods of time (Clark 1987; Falconer 1996), although 

even in the case of pleiotropy constraints may not persist against selection (Conner et al. 

2011).

The number and effect size of pleiotropic genes are also predicted to affect the evolution of 

correlations (Agrawal et al. 2001; Kelly 2009). Most of the work on genetic correlations and 

constraints has assumed a model of many loci, each of small effect (Lande 1979; Lande and 

Arnold 1983). When traits are instead controlled by loci of large effect, behavior of genetic 

correlations may differ. With large-effect loci, rapid and transient changes in genetic 

correlations are likely (Carrière and Roff 1995; Agrawal et al. 2001). When pleiotropic 

genes have large effects, they are also more likely to produce maladaptive trait combinations 

(Carriere et al. 1994; Agrawal et al. 2001). Theoretical predictions and mounting evidence, 

however, have demonstrated a number of cases in which quantitative traits are partially 

controlled by one locus of large or moderate effect, with additional loci of smaller effect 

contributing further variation (Stinchcombe et al. 2004; Stinchcombe et al. 2009; Lee et al. 

2014; Zoledziewska et al. 2015). Given that such genetic architecture seems to be common, 

it is important to understand how traits influenced by large-effect genes may evolve.
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Here, we investigate whether the evolution of defenses in different plant tissues is 

constrained by genetic covariances in defense profile. We tested this in Boechera stricta, a 

wild relative of Arabidopsis. Like many species in the Brassicaceae, B. stricta manufactures 

glucosinolates, which influence plant-herbivore interactions in many species (Hopkins et al. 

2009), including B. stricta (Prasad et al. 2012). Both glucosinolate concentration and 

chemical composition (“glucosinolate profile”) vary genetically among individuals as well 

as within plants (Prasad et al. 2012; Keith and Mitchell-Olds 2017). B. stricta has four major 

types of aliphatic glucosinolates. Unlike other relatives of Arabidopsis, Boechera 
manufactures glucosinolates that are derived from branched-chain amino acids (BC-GS), as 

well as Met-GS derived from methionine (Windsor et al. 2005). The proportion of BC 

glucosinolates (BC-ratio) affects herbivore damage and fitness under natural conditions, 

making it an evolutionarily important trait (Prasad et al. 2012). A single locus on 

chromosome 7, BCMA1/3, consists of a tandem duplication encoding two P450 enzymes 

controlling Branch Chain vs. Methionine Allocation (Prasad et al. 2012). Identified in two 

crosses, this locus causes bimodal variation in leaf BC-ratio; homozygous BC genotypes 

make variable amounts of BC-GS, while homozygous Met genotypes make predominantly 

Met-GS (Prasad et al. 2012). Among the BC genotypes, additional heritable variation 

produces a continuous distribution of BC-ratio. The genetic architecture of BC-ratio follows 

a pattern also seen in flowering time in Arabidopsis, where one allele at a gene of major 

effect masks quantitative background variation (Stinchcombe et al. 2004). Two previous 

crosses have shown that the BCMA1/3 locus controls BC-ratio (Prasad et al. 2012). A 

Genome Wide Association Study (GWAS) shows that BCMA1/3 controls BC-ratio in both 

leaves and fruits across the species range in the Western USA (Mojica et al., in prep.). B. 
stricta displays low levels of LD, decaying to background levels in < 50 kb (Song et al. 

2009), so effects of the BCMA1/3 region are likely due to pleiotropy rather than LD with 

flanking sequence.

We investigated two questions: is the evolution of chemical defenses constrained across 

multiple plant tissues, and, if so, how does genetic correlation constrain the response to 

selection? We quantified glucosinolate profile in rosette leaves, cauline leaves, and fruits of 

98 genotypes (self-pollinated maternal families) from a single valley, and used a large 

common-garden experiment to estimate selection on glucosinolate traits in each tissue. We 

found conflicting patterns of selection on BC-ratio in leaves vs. fruits, resulting in 

evolutionary constraints and predicted maladaptive change in leaves. These constraints are 

likely driven by BCMA1/3, suggesting that a pleiotropic gene of large effect can constrain 

the evolution of defenses throughout the plant.

Methods

Experimental protocol

Study system—Boechera stricta, a relative of Arabidopsis, is a model system for 

evolutionary genetics (Rushworth et al. 2011; Lee et al. 2017). B. stricta occurs in the 

western United States, in environments ranging from sagebrush prairie to alpine meadows 

(Rushworth et al. 2011). B. stricta is predominantly self-pollinating, and endogenous plants 

are naturally inbred (Rushworth et al. 2011). A short-lived perennial, B. stricta overwinters 

Keith and Mitchell-Olds Page 4

Evolution. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as a rosette. In a growing season, a plant may enter a reproductive phase, growing a bolting 

stalk that bears the cauline leaves, flowers, and fruits. A diverse range of herbivores feed on 

many tissues of the plant (personal observation).

One of the key defenses in B. stricta is glucosinolate compounds. In the population in which 

this work was completed B. stricta manufactures four types of aliphatic glucosinolates; an 

individual produces one to four compounds. BCMA1/3 controls much of the variation in 

allocation between Met-GS and BC-GS (Prasad et al. 2012). Glucosinolates vary among 

tissues both in total concentration and BC-ratio (Keith and Mitchell-Olds 2017).

Site—Experimental plants were grown in a common garden in central Idaho, USA (44° 10’ 

55.28” N, 113° 44’ 20.49” W). This area has been relatively undisturbed for approximately 

3,000 years (Brunelle et al. 2005). The garden was located at 2,530 meters elevation, in a 

sagebrush meadow. The site was used under permit from the Salmon-Challis National Forest 

Service.

Experimental design—Seeds were collected from naturally inbred endogenous plants 

growing in the valley near the common garden. The collection area covered approximately 

12 square kilometers and sites ranged from 2300 meters to 2880 meters elevation. To avoid 

collecting clonal replicates, collections were spaced a minimum of 3 meters apart. The 

habitats of the collections included sagebrush meadows, riparian areas, and alpine forests 

and meadows. Genotypes were grown for a generation in the greenhouse to minimize 

maternal effects. 100 accessions were randomly chosen from the collections for inclusion in 

this experiment.

Plants were germinated and transplanted into the common garden the summer before data 

collection, as overwintering in the natural environment increases synchronization with 

endogenous plants. For germination, seeds were placed in petri dishes and kept in the dark 

for 3 days before being transferred to a growth chamber with 14 hours of light at 20 degrees 

for 7 days. We transplanted the seedlings into 2.5 cm × 12 cm plastic “conetainers” (Stuewe 

and Sons, Inc.), and grew them in the Duke University greenhouse for ten weeks. In June of 

2014 and 2015 (referred to as the 2015 and 2016 cohorts, respectively), plants were 

transported to Idaho, USA via overnight shipping. We planted them in the common garden 

in randomized blocks of 100 plants, divided into sub-blocks of 50 for easier access. Each 

block had one individual of each genotype. Individuals were planted directly into the 

surrounding vegetation, 10 cm apart. We watered plants immediately after transplanting and 

continued watering every 7–10 days through early August, in order to help establishment. 

After August, plants were dependent on natural moisture. The 2015 cohort was 3,000 plants, 

and the 2016 cohort was 2,000. We collected data in June-August of the year following 

transplanting.

Herbivory and fitness censuses—During summer we censused plants during the 

growing season, scoring height, density of surrounding vegetation, disease severity, 

herbivore damage, fruit number, and plant stage. Due to mortality, data were analyzed for 98 

of the 100 genotypes. Height was measured as distance from the ground to the tallest living 

part of the plant. Plant stage was defined as dead, rosette, bolting, flowers only, flowers and 
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siliques, or siliques only. Vegetation density (Veg) was scored as percentage of ground cover 

for a ten-centimeter square around the focal plant. “Top-chewed-off” (TCO) was scored as a 

binary, 1 if the entire top of the plant had been removed, 0 if it had not. Disease severity was 

scored using the Schreiner Scale (Schreiner 1959). We scored disease severity on the most 

heavily infected leaves as light (score = 1), medium (score = 5), or heavy (score = 25). 

Leaves were categorized as light if they had only a small amount of visible pathogen; 

medium if they had higher amounts of pathogen present but still appeared functional; and 

high if the leaves were covered with the pathogen and shriveled. Then we estimated the 

percentage of leaves that were infected and assigned them to bins, which were <25% (score 

= 1), 26–50% (score = 2), 51–75% (score = 3), or >75% (score = 4). The two scores were 

multiplied to produce the final Schreiner score, which ranges from zero (no disease) to one 

hundred (heavy disease on >75% of the plant).

Herbivore damage was estimated separately for rosette leaves, cauline leaves and fruits. 

Damage was estimated as the total percentage of each tissue that was removed. We counted 

the total number of leaves/fruits, the number that were damaged, and the average percentage 

of tissue removed on the damaged leaves/fruits. The total percent damaged was calculated as 

(number damaged*percent removed)/total leaf number. Leaf herbivory was censused in late 

June in 2015 and mid-July in 2016, at approximately peak herbivory. Herbivore damage is 

visible after it occurs, but the leaves senesce mid-way through the growing season; we timed 

our census to capture maximum possible damage while most of the leaves were still alive. 

Fruit damage and fitness were censused in late July, when fruits were mostly mature. Fitness 

was estimated using fruit number, adjusted for the percentage of fruits removed by 

herbivores; greenhouse studies in B. stricta indicate that fruit number is a good proxy for 

seed numer (Anderson et al. 2012). When fruits had been removed partially or entirely by 

herbivores, the remaining part of the fruit or the stalk made it evident; thus, we estimated the 

percentage of the fruits removed, multiplied it by the number of fruits, and subtracted the 

missing amount from the total fruit number observed to account for herbivory. Although B. 
stricta does experience seed predation by larvae within the fruit, these insects are rare at this 

experimental site (Keith, unpublished data), suggesting that loss of entire fruit tissue was the 

main source of seed loss.

HPLC—Samples for glucosinolate analysis were collected from experimental plants in the 

common garden. We collected rosette leaf, cauline leaf, and fruit samples from three 

flowering or fruiting individuals of each genotype in each cohort, survival permitting. We 

collected from plants that were reproducing, and preferentially chose plants that had low 

levels of disease (Schreiner Score ≤ 15); within those constraints, plants were chosen 

randomly. Plants with low levels of disease were preferred, as heavily diseased plants often 

had dry or shriveled leaves, which were not suitable for extracting glucosinolates. If there 

were not three appropriate plants of a given genotype, we collected from as many as were 

available. Healthy leaves were collected immediately following herbivory censuses, in late 

June in 2015 and mid-July of 2016. Fruit samples were collected in late July from immature 

fruits. In 2015, we collected a total of 275 rosette leaves, 269 cauline leaves, and 256 fruits; 

in 2016, 247 rosette leaves, 276 cauline leaves, and 233 fruits. In 2015, there were 167 

individuals from which we collected all three tissues; in 2016, 159 individuals.
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Glucosinolates were quantified using high pressure liquid chromatography, following Prasad 

et al. (2012). Briefly, glucosinolates were extracted into methanol via leaching for 4 weeks. 

Glucosinolates were then isolated by washing samples through a DEAE ion exchange 

column (Sigma-Aldrich, St. Louis, USA), incubation with sulfatase, and elution with water. 

Purified sinigrin was used as an internal standard. High pressure liquid chromatography was 

then used to quantify individual glucosinolate compounds in each sample (as in Schranz et 

al. 2009; Prasad et al. 2012). Samples with irregular peaks were re-run, and excluded if the 

second run performed poorly (e.g., no peaks, no peak for the standard, or irregular peaks 

indicating contamination; a total of 45 samples were excluded). Glucosinolate compound 

concentration was calculated using relative response factors (RRF) (Brown et al. 2003), 

which were 1.0 for all compounds except 2OH1ME, which has an RRF of 1.32. We 

calculated the total quantity of each glucosinolate compound using the formula [(0.05 

micromole sinigrin) * (area of peak for compound x)]/[(area of sinigrin peak) * (RRF)]. 

Total concentration in micromole/mg (ConGS) was calculated by dividing the total quantity 

of glucosinolates by the dry weight of the sample. Glucosinolate traits are reported by tissue; 

ConGS-R, ConGS-C, and ConGS-F and BC-ratio-R, BC-ratio-C, and BC-ratio-F 

(concentration and BC-ratio in rosette leaves, cauline leaves and fruits, respectively).

Statistical analyses—Twenty-nine individuals were removed from the dataset due to 

conflicting stage data indicating an error in censusing. All traits except fitness were 

standardized to a mean of zero and standard deviation of one. Relative fitness was calculated 

by dividing fruit number (corrected for damage) by the mean of the population. Standardized 

traits and relative fitness were used for all subsequent analyses.

Selection—Selection on glucosinolate traits was calculated using a standardized 

phenotypic-selection analysis (Lande and Arnold 1983). For this analysis we were interested 

in the fecundity component of fitness in plants that did not suffer major destruction, and so 

excluded plants that were TCO. Using the lme4 package in R (Bates et al. 2015), we 

performed multiple linear regression of fruit number on glucosinolate traits and covariates. 

The complete model was Relative fitness = ConGS-R + BC-ratio-R + ConGS-C + BC-ratio-

C + ConGS-F + BC-ratio-F + Cohort + Veg + Stage + Schreiner + Block[Cohort] + 

Genotype. Block and Genotype were random effects. The regression coefficients from this 

model provide selection gradients for each trait. The final sample size was 326 individuals, 

and included 98 families. The variance inflation factors (VIFs) for each effect in the 

regression were calculated in JMP 13. To investigate potential effects of multicollinearity, 

we repeated the regression analyses with each glucosinolate trait eliminated in turn.

The difference between the selection gradients of two traits, BC-ratio-C and BC-ratio-F, was 

of additional interest. Using a custom R script, we performed a permutation test of whether 

the estimate for BC-ratio-F was significantly different than that for BC-ratio-C. For each of 

2,000 permutations, we randomized the BC-ratio values between tissues for each individual. 

Using the randomized values, we recalculated the selection gradients for each trait, and the 

difference between them in each permuted dataset. The P-value for this two-tailed test was 

calculated as the proportion of the permutation results that were less than the observed 

difference, with two-tailed significance thresholds of P = 0.025.
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As glucosinolate samples for leaves and fruits could only be obtained from plants that 

survived and reproduced, our selection gradients did not account for a potential “invisible 

fraction” effect, which may mislead fitness estimates (Bennington and McGraw 1995; 

Nakagawa and Freckleton 2008; Mojica and Kelly 2010). To investigate whether GS traits 

affected survival, bolting or TCO occurring before sampling, we tested whether the genotype 

least square means for glucosinolate traits in the sampled plants predicted the percentage of 

survivors or reproductive plants among the complete cohort. Genotype LS means for each 

glucosinolate trait were calculated in JMP12 using REML. The model that we used was GS 

trait = Genotype + Cohort + Block + Schreiner Score + Stage + Height + Veg (N = 317). We 

used a custom script in R (R Core Team 2016) to calculate the percentage of individuals that 

survived (N2015 = 2,972, N2016 = 2,000), the percentage of survivors that bolted (N2015 = 
2050, N2016 = 1047), and the percentage of those that bolted that had their tops chewed off 

(TCO) for each genotype in each cohort (N2015 = 779, N2016 = 1047). We then asked 

whether each glucosinolate trait predicted rates of survival, bolting, or TCO in each cohort. 

With Bonferroni correction for six independent tests (three traits in two cohorts), our 

significance threshold was P < 0.00833.

We used early-season stage data from the 2015 cohort to investigate whether phenology 

affected glucosinolate profile. Stage was first recorded in June, when reproductive plants 

were bolting (pre-flowering), flowering, or fruiting. Using JMP, we tested whether early-

season stage affected each glucosinolate trait at the time of tissue collection. The model was 

GS trait = Genotype + Block + Schreiner score + Early Stage + Veg, with genotype and 

block as random effects.

Glucosinolates and interactions—To better understand the selective forces acting on 

glucosinolates, we tested whether ConGS and BC-ratio in each tissue affected herbivory on 

these tissues. We did not limit the test to only the glucosinolate profile of the tissue in 

question, as glucosinolate concentration in one tissue may potentially affect herbivory on 

another. Thus, every model included ConGS and BC-ratio in each tissue. We calculated 

genotype least square means for herbivore damage using the same model as above for the 

glucosinolate means. We then tested whether genotype means for glucosinolate traits 

predicted mean damage on each tissue (N = 98 families). As we ran three separate models 

for damage on each tissue, we used Bonferroni correction with significance threshold of P < 
0.0167.

We also investigated whether glucosinolate profile affected disease severity. We collected 

samples only from individuals with low disease severity, and so could not effectively look at 

the effects of glucosinolates on disease using individual data. Instead, we calculated the 

genotype LS means for disease severity, using block, cohort, stage and veg as covariates (N 
= 2148); we did not use height as a covariate since disease may decrease overall growth. We 

used the genotype LS means for glucosinolates and disease severity to ask whether any of 

the six glucosinolate traits predicted disease severity (N = 98 families).

Geographical patterns—We tested whether there was spatial structure for glucosinolate 

profile across the valley where genotypes were originally collected. We quantified the 

position of the parental plant based on distance in meters north and west from an origin 
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point. We used genotype least square means from BC-ratio-C as the response for a REML 

model in JMP, with the distance north (equivalent to scaled latitude), the distance west 

(equivalent to scaled longitude) and elevation as the effects (N = 98 families).

Estimating the G-matrix and the response to selection—We constructed a G-

matrix that included ConGS and BC-ratio in rosette leaves, cauline leaves, and fruits. Two 

G-matrices were compared; one was composed of variance and covariance components, 

while the other was variances and covariances of line means. Use of covariance components 

eliminates effects of shared environmental variance, which can inflate estimates of genetic 

covariances from line means; however, covariance components are much more 

computationally intensive to calculate.

Genetic variance components were estimated in JMP12 from the variance component for 

genotype in the model Trait = Cohort + Block + Genotype + Stage + Schreiner Score, with 

Block and Genotype as random effects and cohort, stage, and Schreiner score as fixed 

effects. The significance was determined by significance of Genotype in the model. A 

Bonferroni correction for six tests gave a significance threshold of P < 0.0083. Genetic 

covariance components were estimated using a SAS script, which calculated the covariance 

parameters for each pair of glucosinolate traits. Significance of these covariances was 

calculated by constraining the covariance to zero and using a likelihood ratio test (N = 328).

Genetic variances and covariances were calculated using line means for each glucosinolate 

trait and the covariates, using a custom R script (N = 98 families). We compared the 

matrices from each method and found that covariance estimates were highly similar between 

the two methods (Supplementary Table 1). Given this similarity, we concluded that shared 

environmental variance had minimal effects on the genetic covariances calculated from line 

means; as calculating the covariance components was computationally intensive and 

infeasible for the bootstrapping analyses, further analyses and the results reported here used 

(co)variances of line means.

The vector of predicted responses to selection, Δz, was calculated by multiplying the 

estimated G-matrix with the selection gradients, β (Lande 1979). In order to test for the 

effects of genetic covariances on the evolution of GS traits, we manually constrained the 

genetic covariances to 0 to generate Gnc. Gnc was multiplied by β to generate Δznc, the 

predicted response to selection in the absence of genetic covariances. We calculated the 

Euclidean lengths of vectors Δz and Δznc to obtain the magnitude of the responses to 

selection with or without genetic covariances, R and Rnc, respectively. These represent the 

amount of change in the next generation; if R < Rnc, this indicates a smaller amount of 

change when genetic covariances are present, suggesting that the covariances constrain 

evolution (Smith and Rausher 2008; Agrawal and Stinchcombe 2009; Conner 2012; Wise 

and Rausher 2013). Conversely, if R > Rnc, this suggests that the genetic covariances are 

facilitating the response to selection, that the population evolves more rapidly because of 

them. This measurement does not consider the direction of the response, only the total 

amount of change.
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We used bootstrapping to test whether the difference between Δz and Δznc was statistically 

significant. For each of 2,000 iterations, we re-sampled, with replacement, the families and 

then the individuals within each sampled family. We then estimated β, G, and Gnc for each 

bootstrap sample. We then calculated Δz and Δznc for each bootstrap sample and used them 

to calculate bootstrap values of R and Rnc.

To determine whether the original values of Δz and Δznc were significantly different, we 

used a discriminant function analysis (DFA) approach in R, using the package MASS 

(Ripley 2002). The Δz and Δznc vectors from each bootstrapped result represent a pair of 

points in 6-dimensional space. The results of the bootstrapped datasets give a set of 2,000 

pairs of points for Δz and Δznc. To test whether these sets of points differed significantly, we 

first used DFA to calculate a trait axis from the center of the cloud of points of Δz to the 

center of the cloud of points of Δznc. Next, for each pair of points from a bootstrap sample, 

we used the eigenvector for the first DFA axis and projected the paired points Δz and Δznc
onto the trait axis, and took the directional difference between these projected values. To 

infer statistical significance, we then asked whether the 95% confidence interval of the 

distribution of the differences included zero. If it did not, we concluded that Δz and Δznc
were significantly different in at least one dimension. Following that multivariate 

comparison, subsequent univariate analyses were conducted, testing whether the 95% 

confidence interval of the distribution of the difference Δzi and Δzinc included zero (Scheiner 

and Gurevitch 2001).

We tested whether covariances affect the magnitude of the response to selection by 

calculating the absolute difference between R and Rnc for each bootstrap sample; that is, 

whether covariances affected the total amount of predicted change. In addition to the total 

length of R and Rnc, we made two comparisons for the responses for each trait individually. 

First, for each bootstrap sample we calculated the univariate difference between Δzi and 

Δznci for the trait to test whether the covariances altered responses to selection. Second, we 

calculated the absolute difference (i.e., the Euclidian distance) between Δzi and Δznci

vectors, to test whether the total magnitude of change for the trait was affected by the 

covariances. For significance of both the total magnitude and trait-specific tests, we used a 

two-tailed test of whether the 95% bootstrap confidence interval of the distribution of 

differences included zero. If more than 97.5% of the results for |R|-|Rnc| were < 0, we 

concluded that genetic covariances constrained the response to selection; if more than 97.5% 

were > 0, we concluded that genetic covariances facilitated evolution. We also performed a 

similar analysis for each trait individually, asking whether the distribution of Δzi − Δznci

for a given trait included zero.

Testing between-tissue covariances—The above analysis tested the effects of the 

complete set of covariances; we also wanted to distinguish the effects of just the covariances 

between BC-ratio in each tissue. To do this, we repeated the above analyses, except that the 
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only covariances that were constrained to zero while calculating Δznc were those between 

BC-ratio-R, BC-ratio-C, and BC-ratio-F. Otherwise, the analysis was the same.

BC subpopulation—To consider a hypothetical population of only genotypes that 

produced BC-GS compounds, we excluded genotypes that had, on average, BC-ratio < 0.15. 

During the HPLC process small peaks may be erroneously called as minimal amounts of 

glucosinolates, preventing a complete absence of BC-GS; however, there was a clear 

discontinuity between BC-ratio ≤ 0.15 and BC-ratio ≥ 0.30. Using this restricted BC 

population, we repeated the analyses that had been performed on the whole population.

Results

Field

Of the 3,000 individuals in the 2015 cohort, 2,050 survived until data collection; of the 2,000 

individuals in the 2016 cohort, 1,047 survived. The primary cause of mortality appeared to 

be drought, likely in the preceeding fall and winter; some blocks were also affected by 

burrowing mammals that buried plants. In 2015, 909 plants bolted; in 2016, it was 319. 

Rosette leaves experience an average of 9.0% herbivore damage; cauline leaves were on 

average damaged by 13.7%, and fruits by 4.4%. The primary type of herbivore damage that 

we observed was tissue removal by chewing herbivores. Unexpectedly, both cohorts 

experienced high frequencies of visible microbial infection, which had not previously been 

observed in that garden. Similar disease on neighboring endogenous plants was identified as 

powdery mildew and downy mildew (Posy Busby, personal communication).

BC-ratio in each tissue differed significantly across the valley, although no spatial pattern 

was apparent for glucosinolate concentration (Supplementary Table 2). Most of the 

genotypes from near the common garden had low BC-ratio values; genotypes in the rest of 

the valley tended to have moderate to high BC-ratio, as represented by BC-ratio-C (Figure 

1).

Selection analyses

Significant selection gradients for the fecundity component of fitness in reproducing 

individuals were found for 3 traits: ConGS-R, BC-ratio-C, and BC-ratio-F (Table 1), 

showing strong selection against high ConGS-R. BC-ratio experienced opposing directions 

of selection in cauline leaves and fruits; a higher BC-ratio was favored in leaves, but was 

disadvantageous in fruits (Figure 2). VIF values were moderate (Supplementary Table 3). 

When either BC-ratio-C or BC-ratio-F was eliminated from the regression, the sign of the 

selection gradient for the other did not change. The permutation test showed a highly 

significant difference between the selection gradients for BC-ratio-C and BC-ratio-F (P < 

0.0001).

Selection gradients in the BC subpopulation differed from the full population. Selection on 

BC-ratio-C was not significant, while selection to decrease BC-ratio-F was significant, and 

slightly stronger than for the full population.

Keith and Mitchell-Olds Page 11

Evolution. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We found no significant evidence for selection on the “invisible fraction.” None of the 

glucosinolate traits were significant predictors of survival, bolting, or TCO in either cohort 

(Supplementary Table 4). Thus, we have no evidence that glucosinolate traits are involved in 

early selection events that would render our selection gradients inaccurate. The only 

glucosinolate trait that was affected by early-season stage was ConGS-R, which was higher 

in later-flowering plants (Supplementary Table 5).

Glucosinolates and interactions

Herbivore damage was not predicted by glucosinolate profile in any tissue (Supplementary 

Table 6). Similarly, no glucosinolate traits were significant predictors of disease severity 

(Supplementary Table 7).

Estimating the G-matrix

Significant genetic variance components were found for all traits except ConGS-R and 

ConGS-F (Table 2; Supplementary Table 8). Six of the fifteen genetic covariance 

components were significant, using a Bonferroni correction for fifteen tests (Supplementary 

Table 9). All of the observed covariances were positive. The estimates of genetic covariance 

components and covariances among line means were very similar (Supplementary Table 1), 

indicating that shared environmental covariances were minimal in their effects on these 

traits. Thus, the use of line-mean covariances in the following analyses does not 

overestimate the genetic covariances.

The response to selection and the effects of covariances

The direction of difference between Δz and Δznc was consistent in 1,994 of the 2,000 

bootstrap iterations, indicating that genetic covariances have a highly significant influence 

on response to selection (Table 3). Of the six individual traits, Δzi and Δznci differed 

significantly for ConGS and BC-ratio in both cauline leaves and fruits (Figures 2 and 3; 

Table 3). For ConGS-C and BC-ratio-C, removal of covariances resulted in a change of sign, 

from a negative trait change Δzi to a positive change Δznci. Using the observed pattern of 

antagonistic selection on BC-ratio between cauline leaves and fruits, the total magnitude of 

Δz and Δznc did not differ significantly, indicating that genetic covariances influence the 

direction but not the magnitude of evolutionary change (Supplementary Table 10).

Even when only the between-tissue BC-ratio covariances were constrained to zero, they still 

had a significant effect on the response to selection (Supplementary Table 11). Eliminating 

those covariances had no effect on the change in ConGS in any tissue, but did show a 

significant difference between Δzi and Δznci for BC-ratio-C and BC-ratio-F. The effects on 

those two traits were similar to that of removing all the covariances; a change in sign for the 

response in BC-ratio-C, and a significant difference for BC-ratio-F. Unlike the analysis of 

the full set of covariances, the between-tissue covariances cause an overall effect on the 

magnitude of the response to selection, as well as altering the amount of change in BC-ratio-

F. For these significant responses, the difference was negative, indicating constraint.
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Restricted BC subpopulation

The selection gradients, G-matrix, and extent of constraint all differed between the full 

population and the restricted BC population. The BC population had significant genetic 

variation for BC-ratio in fruits, but not in other tissues (Supplementary Table 8). Within the 

BC population, significant selection gradients acted on ConGS-R and BC-ratio-F, in the 

same direction as in the full population; however, in the BC population we did not observe 

significant selection on BC-ratio-C. In the BC population, there were no significant 

covariances in BC-ratio among any of the three tissues. There were positive covariances 

between ConGS-C and ConGS-F, and ConGS-F and BC-ratio-F, and negative covariances 

between ConGS-R and BC-ratio-R, and ConGS-C and BC-ratio-C.

These low correlations among traits in the BC population affected the response to selection 

(Table 4); the response of BC-ratio in any tissue did not change, indicating that within the 

BC population genetic covariances do not constrain the evolution of BC-ratio.

Discussion

Genetic constraints

Traits in different tissues may evolve independently if they have independent genetic 

controls. In the case of pleiotropy or tight linkage, however, selection on one tissue may 

drive correlated change in another, potentially causing genetic constraints (Lande 1979; 

Lande and Arnold 1983). We found evidence of such constraints on the evolution of BC-

ratio in cauline leaves and fruits. This effect was driven largely by antagonistic selection and 

positive genetic covariances in BC-ratio between cauline leaves and fruits, consistent with 

pleiotropy at BCMA1/3. Because natural selection was antagonistic to genetic correlations, 

predicted evolutionary responses to selection were small (Figure 2). Thus, if there is 

temporal or spatial variation in selection, evolutionary changes could be very slow, and 

variation in BC-ratio might persist for many generations.

Selection on ConGS and BC-ratio varied among tissues. Most strikingly, we observed 

significant antagonistic selection for BC-ratio in cauline leaves vs. fruits; high BC-ratio was 

favored in leaves, but disadvantageous in fruits. The causes of this antagonistic selection are 

not apparent from our data, as glucosinolate traits did not predict either herbivory or disease 

severity. This is unexpected, given previous work that has demonstrated effects of BC-ratio 

on leaf damage; however, the presence of such effects depends on year and location, and 

requires large sample sizes to detect (Prasad et al. 2012). We also acknowledge that under 

field conditions, both infection and herbivory may induce glucosinolate production, despite 

our attempts to collect tissue before peak damage. The high heritability of BC-ratio in the 

field indicates that most of the variance is genetic, rather than environmental, suggesting that 

induction likely had minimal effects on BC-ratio.

Glucosinolates also are involved in plant growth (Tantikanjana et al. 2004), flowering 

(Mohammadin et al. 2017), drought-related traits (Martínez-Ballesta et al. 2015), and 

interactions with a large number of species, including pathogens (Halkier and Gershenzon 

2006), which may also drive selection. Microbial pathogen(s) were present on a number of 

plants in our experiment; if glucosinolates in different tissues mediate this biotic interaction, 
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that could also explain the variation in selection. Thus, the potential selective factors acting 

on glucosinolates are complex, and our field data do not elucidate the functional basis of 

these selective pressures. Leaves and fruits are present at different times during the growing 

season, and the herbivore community changes seasonally as well (Keith, personal 

observation); thus, it seems probable that different communities feed on the two tissues. We 

observe chewing larvae that move down the stalk of the plant, eating fruits and leaves as they 

go. These include a Plutellid moth that oviposits in or near the flowers (Mitchell-Olds, 

personal observation). Defensive compounds attract specialist enemies of plants (Renwick et 

al. 1992; Roessingh et al. 1992; Sun et al. 2009); one potential explanation of the 

antagonistic pattern that we observed is that ovipositing insects may be attracted to chemical 

profiles in the flowers and fruits, increasing the herbivory load on the plant even if other 

herbivores are deterred.

The combination of antagonistic selection and positive genetic covariances caused 

evolutionary constraints on BC-ratio in leaves and fruits. The most striking example of 

constraint was change in the direction of response for BC-ratio-C: although higher BC-ratio-

C was favored by selection, the trait was predicted to decrease. This change in sign was 

driven by antagonistic selection on BC-ratio acting contrary to between-tissue genetic 

covariances.

The predicted evolutionary trajectories of BC-ratio are consistent with the local geographical 

distribution of glucosinolate profiles. At the common garden and other sites under similar 

selective regimes, we would expect primarily Met-GS genotypes; that pattern is what we 

observed across the valley. This spatial pattern suggests that the selection we observed is 

representative of the common conditions at the garden, and that our predicted trajectories are 

accurate. The existing variation across the valley may be explained by spatial variation in 

selection on glucosinolates, particularly as the north-facing and south-facing slopes vary in 

light conditions, as well as dominant vegetation and likely herbivore communities.

Previous studies of the importance of evolutionary constraints have been inconsistent. A 

meta-analysis by Agrawal and Stinchcombe (2009) that focused on the effects of genetic 

covariances did not find a clear trend towards constraints; in many cases covariances had 

little effect, and the remainder included both constraint and augmentation. Other studies, 

however, have identified examples of constraint (Etterson and Shaw 2001; Smith and 

Rausher 2008), including in the evolution of defenses against herbivores (Wise and Rausher 

2013). Wise and Rausher (2013) found strong constraint in the evolution of resistance to 

multiple herbivores in Solanum. In that case, however, they observed primarily synergistic 

selection for increased resistance to herbivores. In that study, constraints resulted from 

negative genetic covariances. In contrast, our analysis of tissue-specific chemical traits also 

found constraint, but for different reasons: the traits covary positively, but constraints are 

driven by antagonistic selection.

Genetic constraints and trait polymorphisms

Most of the variation in BC-ratio in rosette leaves is controlled by the BCMA1/3 locus, 

which produces BC-GS (Prasad et al. 2012). To investigate the role of BCMA1/3 in the 

evolutionary constraints, we considered a hypothetical population without Met-GS 
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genotypes, focusing on the subpopulation that produces variable quantities of BC-GS. This 

subpopulation retains the remaining quantitative background variation in BC-ratio.

In this hypothetical BC subpopulation we find no evidence for antagonistic selection. We 

observed significant selection for lower BC-ratio-F, but no significant selection on BC-ratio-

C, suggesting that when BC-GS are present in any quantity, the exact amount is not under 

selection in cauline leaves. Covariances between BC-ratio in cauline leaves and fruits were 

driven by pleotropic effects of BCMA1/3 in these adjacent tissues (unpublished GWAS 

analysis, Mojica et al.). Because antagonistic selection and positive covariances between 

BC-ratio in leaves and fruits drove evolutionary constraints in the full population, it is not 

surprising that these constraints were lacking in the BC population, which lacked this 

genetic covariation. Thus, the evolutionary constraints that we observed were likely driven 

by pleiotropic effects of BCMA1/3.

This example of constraint differs from the classical quantitative genetics model in which 

traits are controlled by many loci of small effect (Lande 1980; Agrawal et al. 2001). Theory 

predicts that the genetic architecture of covarying traits will affect the evolution of G, 

particularly when variation is due to genes of major effect, rather than polygenic effects 

(Agrawal et al. 2001). Under these circumstances, change in the allele frequency at a single 

locus has the potential to rapidly change the genetic variances and covariances of the 

population, producing rapid changes to G (Agrawal et al. 2001; Kelly 2009). Thus, we 

expect that allele frequency changes at BCMA1/3 would alter the G-matrix and evolutionary 

constraints on glucosinolates.

When BCMA1/3 is polymorphic (as in the full experimental population), we observe 

positive genetic covariances between BC-ratio-C and BC-ratio-F, strong constraints causing 

maladaptive change in BC-ratio-C, and little overall genetic change. However, in a 

hypothetical subpopulation without Met-GS genotypes, there are no significant covariances 

constraining tissue-specific evolution. Furthermore, new mutations that increase MET-GS 

concentration (such as loss of function of BCMA1/3) would be favored, leading once again 

to standing polymorphism for BC-ratio. Thus, the existing population may retain BC-ratio 

polymorphism for generations, while a population without Met-GS would favor loss of 

function mutations in BCMA1/3 when they arise. Both scenarios are compatible with 

persistence of BC-ratio polymorphism for many generations.

The constraints we observed in the full population, in which BC-ratio-C was predicted to 

evolve in a maladapted direction, were more extreme than most observed incidences of 

evolutionary constraints, in which evolution of traits is merely slowed (Etterson and Shaw 

2001; Smith and Rausher 2008; Agrawal and Stinchcombe 2009; Wise and Rausher 2013). 

This difference is likely explained by the genetic architecture; genes of major effect are 

predicted to cause such maladaptive changes, as long as the overall fitness of an individual is 

increased (Carriere et al. 1994; Orr 1998; Agrawal et al. 2001). Here, we add to the 

empirical examples of this phenomenon, and provide a contrast to other studies of 

constraints.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Spatial pattern of glucosinolate profile.
Family mean proportions of methionine-derived glucosinolate compounds (in purple) and 

branch-chain amino acid-derived compounds (in yellow) in cauline leaves. The white square 

indicates the location of the common garden. Charts generated by PhyloGeoViz (Tsai 2011). 

Terrain image copyright by Google Earth.
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Figure 2. Selection against the direction of the genetic covariance for standardized BC-ratio in 
cauline leaves and fruits in the observed population and the BC subpopulation.
Points represent genotype means, scaled to a mean of zero. Panel A shows the full dataset. 

The genetic covariance between the two traits was significant (P < 0.0001). Both traits had 

significant selection gradients (P < 0.05). Panel B shows the hypothetical BC population, the 

subset of the population that produced BC-GS. In the BC population, the genetic correlation 

between the two traits was not significant. The selection gradient was significant for BC-

ratio in the fruits, but not for the cauline leaves. In both panels, the red arrow indicates β, the 

vector of selection gradients. The blue arrow indicates Δzi, the response to selection with the 

covariances included. The black arrow indicates Δznci, the response to selection when the 

covariances are computationally set to zero. The length of each of the arrows has been 

increased by a factor of four for improved visibility.
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Figure 3. Selection gradients and predicted responses to selection with and without genetic 
covariances.
For each trait, we show the selection gradient (blue arrow), Δzi, the response to selection 

with covariances (black dotted line), and Δznci, the response to selection when covariances 

are eliminated (solid orange line). Traits in bold had a significant difference between Δzi and 

Δznci.
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Table 1.
Selection gradients for glucosinolate traits.

Covariates in the model included Cohort, Block, Veg, Stage, and Schreiner Score. The selection gradient is 

obtained from the estimate of the trait effect in the model.

Full Population BC Subpopulation

Selection gradient P-value Selection gradient P-value

ConGS-R −0.10916 0.0002 −0.11839 <0.0001

BC-ratio-R 0.03586 0.4534 −0.03713 0.4787

ConGS-C −0.01131 0.7261 −0.05047 0.1511

BC-ratio-C 0.16229 0.0070 0.07919 0.2691

ConGS-F −0.02971 0.3438 −0.03096 0.3093

BC-ratio-F −0.21807 0.0007 −0.30272 <0.0001
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Table 2.
The estimated G-matrix.

Genetic variances are on the diagonal, in italics; off-diagonal elements are the genetic covariances. Significant 

variances (P < 0.05) and covariances (P < 0.0033) are indicated in bold above the diagonal; see methods for 

computation of (co)variances and p-values. A) The G-matrix for the full experimental population. B) The G-

matrix for the restricted BC population.

A. Full population

ConGS-R BC-ratio-R ConGS-C BC-ratio-C ConGS-F BC-ratio-F

ConGS-R 0.32150 0.14905 0.04231 0.11227 0.02135 0.08760

BC-ratio-R 0.14905 0.84363 0.09965 0.75459 0.09837 0.77397

ConGS-C 0.04231 0.09965 0.55931 0.00483 0.19618 0.15040

BC-ratio-C 0.11227 0.75459 0.00483 0.89930 0.07559 0.80537

ConGS-F 0.02135 0.09837 0.19618 0.07559 0.37218 0.18689

BC-ratio-F 0.08760 0.77397 0.15040 0.80537 0.18689 0.91204

B. BC subpopulation

ConGS-R BC-ratio-R ConGS-C BC-ratio-C ConGS-F BC-ratio-F

ConGS-R 0.3513 −0.0666 0.0322 0.0426 0.0069 0.0128

BC-ratio-R −0.0666 0.1258 −0.0285 0.0003 −0.0426 0.0096

ConGS-C 0.0322 −0.0285 0.5802 −0.1417 0.1961 0.0214

BC-ratio-C 0.0426 0.0003 −0.1425 0.1526 −0.0631 0.0319

ConGS-F 0.0069 −0.0426 0.1961 −0.0631 0.3954 0.0647

BC-ratio-F 0.0128 0.0096 0.0214 0.0319 0.0647 0.1397
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Table 3.
Predicted response to selection with and without covariances.

For each of 2,000 bootstrap samples, we calculated whether the predicted response to selection (Δz) differed 

from the predicted response without genetic covariances (Δznc) for all six traits collectively, and for each trait 

individually. For individual traits, the mean Δzi and Δznci results for the bootstrap samples are reported.

P-value Mean Δzi Mean Δznci

All traits 0.0010

ConGS-R 0.3200 −0.0528 −0.0476

BC-ratio-R 0.1000 −0.0349 0.0535

ConGS-C 0.0070 −0.0508 0.0014

BC-ratio-C 0.0070 −0.0296 0.1656

ConGS-F 0.0215 −0.0560 −0.0135

BC-ratio-F 0.0225 −0.0891 −0.2642
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Table 4.
Responses to selection with and without covariances in the restricted BC subpopulation.

We restricted the population to just the genotypes that produce BC-derived glucosinolates. For each of 2,000 

bootstrap samples, we calculated whether the predicted response to selection (Δz) differed from the predicted 

response without genetic covariances (Δznc) for all six traits collectively, and for each trait individually. For 

individual traits, the mean Δzi and Δznci results for the bootstrap samples are reported.

P-value Mean Δzi Mean Δznci

All traits 0.0180

ConGS-R 0.5040 −0.0595 −0.0630

BC-ratio-R 0.3320 −0.0028 −0.0031

ConGS-C 0.0800 −0.0579 −0.0172

BC-ratio-C 0.2990 0.0163 0.0245

ConGS-F 0.0285 −0.0654 −0.0229

BC-ratio-F 0.5045 −0.0610 −0.0613
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