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Abstract

Exposure- and risk-based assessments for chemicals used indoors or applied to humans (i.e., in 

near-field environments) necessitate an aggregate exposure pathway framework that aligns 

chemical exposure information from use sources to internal dose and eventually to their potential 

for health effects. Such a source-to-effect continuum is advocated to balance the complexity of 

human exposure and the insufficiency of relevant data for thousands of existing and emerging 

chemicals. Here, we introduce the Risk Assessment, IDentification And Ranking-Indoor and 

Consumer Exposure (RAIDAR-ICE) model, which establishes an integrated framework to 

evaluate human exposure due to indoor use and direct application of chemicals to humans. As a 

model evaluation, RAIDAR-ICE faithfully reproduces exposure estimates inferred from 

biomonitoring data for 37 chemicals with direct and indirect near-field sources. RAIDAR-ICE 

generates different rankings for 131 chemicals based on different exposure- and risk-based 

assessment metrics, demonstrating its versatility for diverse chemical screening goals. When 

coupled with a far-field RAIDAR model, the near-field RAIDAR-ICE model enables assessment 

of aggregate human exposure. Overall, RAIDAR-ICE is a powerful tool for high-throughput 

screening and prioritization of human exposure to neutral organic chemicals used indoors.

Graphical Abstract

*Corresponding author: Arnot, J. A., 36 Sproat Avenue, Toronto, Ontario, M4M 1W4, Tel: +1 (647) 225-3771; 
jon@arnotresearch.com. 

EPA Public Access
Author manuscript
Environ Sci Technol. Author manuscript; available in PMC 2019 December 18.

About author manuscripts | Submit a manuscript
Published in final edited form as:

Environ Sci Technol. 2018 December 18; 52(24): 14235–14244. doi:10.1021/acs.est.8b04059.E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Introduction

Approximately 30 000 of the estimated 100 000 chemicals in global commerce are 

manufactured and marketed in volumes greater than 1 t per year.(1) Mandated chemical 

evaluations for ecological and human health occur in different decision-making contexts, 

including prioritization, screening-level, and more comprehensive assessments for chemicals 

of high concern.(2,3) A considerable fraction of chemicals undergoing evaluations is present 

in consumer products, articles, or building materials that are used indoors or proximate to 

consumers, constituting “near-field” human exposure pathways. For some chemicals, 

exposure occurs through “direct” application to the body, such as the use of pharmaceuticals, 

personal care products (PCPs) and cosmetics.(4) Meanwhile, “indirect”, environmentally 

mediated, human exposure to chemicals used indoors occurs through processes such as 

vaporization of plasticizers and flame-retardants from articles and building materials,(5) or 

spraying of air fresheners to indoor air, among numerous others. In addition, humans are 

also exposed to chemicals via “far-field” pathways which involve food, drinking water, and 

outdoor air that are contaminated by chemicals released either directly to outdoor 

environments or initially to the indoors with subsequent transfer to the outdoors.(6−9)

The large number of chemicals requiring evaluation compared to the dearth of exposure data 

challenges traditional single-chemical evaluation practice and thus warrants high-throughput 

(HT) screening and prioritization approaches.(2,10,11) Fate and exposure models such as 

ACC-HUMAN,(12) CoZMoMAN,(13) USETox,(14) and RAIDAR(15,16) include far-field 

human exposure pathways and have been used for several years and in some cases for 

thousands of organic chemicals.(16–18) By comparison, HT near-field human exposure 

models are few;(17,18) however, recent advances have created the potential for rapid 

quantification of human indoor and consumer exposures.(19–22) For example, provided 

with emission rates and properties of chemicals, the process-based Indoor Chemical 

Exposure Classification/Ranking Model (ICECRM)(19) can rapidly estimate indirect human 

exposure to thousands of chemicals in the indoor environment. The human activity-based 

Stochastic Human Exposure and Dose Simulation–High-Throughput (SHEDS–HT) 

model(20) generates probabilistic population distributions of direct and indirect human 

exposures to thousands of consumer product ingredients and pesticides based on usage 

pattern and product composition information. Other models such as ConsExpo(23) and the 

Consumer Exposure Model(24) can also aid in chemical-by-chemical consumer exposure 

assessments. Except for ICECRM, the aforementioned exposure models do not account for 
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key toxicokinetic processes such as metabolism (biotransformation) and excretion in the 

human body. Therefore, they can neither derive an internal dose (e.g., concentrations in 

blood), nor address the potential for adverse effects associated with the exposure using 

internal dose information directly. Physiologically based toxicokinetic (PBTK) models 

support the calculation of internal doses from external exposure estimates; however, these 

models are less frequently applied because of their extensive data requirements, in particular 

external exposure source data. Frameworks such as the Aggregate Exposure Pathway 

concept(25) outline the need for models to quantify the “source-to-dose” continuum for a 

direct comparison of exposures with toxicological data. The 2017 National Academy of 

Sciences, Engineering and Medicine report “Using 21st Century Science to Improve Risk-

Related Evaluations”(26) further advocates for the development and evaluation of aggregate 

exposure models with chemical use information and (bio)monitoring data for exposure-

based evaluations and to compare exposure values with toxicity (or bioactivity) values for 

risk-based evaluations.

In this paper, we introduce the Risk Assessment, IDentification And Ranking-Indoor and 

Consumer Exposure (RAIDAR-ICE) model as a versatile, efficient tool for screening and 

prioritization of neutral organic chemicals based primarily on near-field direct and indirect 

exposure pathways and associated potential human health concerns. The model development 

aims to balance the complexity of processes related to assessing human exposure and 

potential risk with data availability at a screening-level for thousands of chemicals. We 

describe and evaluate RAIDAR-ICE and then present case study assessment applications. 

The first case study demonstrates the capacity of RAIDAR-ICE to quantify direct and 

indirect human exposure from near-field sources in a single consistent framework. The 

second case study ranks chemicals based on different exposure- and risk-based metrics, 

linking near-field chemical use scenarios and subsequent exposure with estimates of 

bioactivity derived from HT in vitro bioassays. The third case study demonstrates the 

feasibility of a comprehensive aggregate exposure assessment by combining RAIDAR-ICE 

with the RAIDAR model to include far-field human exposure pathways. We conclude with 

recommendations for improving the modeling framework.

The RAIDAR-Indoor and Consumer Exposure (RAIDAR-ICE) Model

Model description

RAIDAR-ICE builds onto the ICECRM mass balance framework.(19) Both models contain 

an indoor chemical fate module, which describes a generic, evaluative indoor environment 

consisting of seven indoor compartments (indoor air, polyurethane foam, carpet, vinyl floor, 

and organic films on vertical, up-facing, and down-facing surfaces). In addition, the models 

include a PBTK model (Supporting Information (SI) Text S1) composed of compartments 

for (i) hand skin surface, (ii) skin surface on the body excluding hand skin, and (iii) the 

human body excluding skin surface (Figure 1). This toxicokinetic model describes the 

adsorption, metabolism (biotransformation) and elimination (exhalation, renal excretion, 

fecal egestion, skin desquamation) processes of chemicals and is parametrized here for a 

representative adult male. Whereas ICECRM considers only human exposure to chemicals 

released into physical compartments of the simulated indoor environment and subsequent 
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indirect exposures, RAIDAR-ICE additionally includes the capacity for direct chemical 

applications to the body within the mass balance equations.

The new RAIDAR-ICE model also inherits concepts from the RAIDAR model.(15,16) 

RAIDAR describes chemical fate and transport in the outdoor environment of an evaluative 

region, as well as chemical bioaccumulation and biomagnification in aquatic, terrestrial and 

agricultural food webs. It calculates human exposure through consumption of drinking water 

and contaminated food, as well as inhalation of outdoor air. Most notably, the calculated 

human exposure is combined with user-defined toxicity (hazard) data to derive risk-based 

assessment metrics (see below for further details).

RAIDAR-ICE is a steady-state model formulated in fugacity notation.(27) Chemical 

concentration in a compartment (C, in mol m–3) is expressed as the product of a fugacity (f, 

in Pa) and a fugacity capacity (Z, in mol m–3 Pa–1) that quantifies the ability of a 

compartment to store a chemical. For each chemical, fugacity capacities of compartments 

are functions of its equilibrium partition coefficients between air, water and octanol (KOW, 

KAW, and KOA). Fluxes representing chemical transport and loss in the indoor environment 

and in a human are expressed as the product of an f and a D-value (in mol Pa–1 h–1) that is 

essentially a contaminant transport or transformation rate parameter. Z-values and D-values 

in the RAIDAR-ICE fate module are identical to those in ICECRM, whereas those in the 

human toxicokinetic module are detailed in SI Tables S1 and S2. The model is coded in 

Visual Basic for Applications (VBA) with a graphic user interface in Excel.

Model parameterization and application

Chemical-specific inputs to RAIDAR-ICE include molar mass, equilibrium partition 

coefficients (KOW, and either KAW or KOA, are required), degradation half-lives in air 

(HLAir) and surface compartments, and the biotransformation half-life in human. These 

inputs can be obtained from databases and in silico calculations for chemical properties 

(e.g., the Estimation Programs Interface (EPI) Suite(28)) and for biotransformation half-lives 

(e.g., refs (29 and 30)). If biotransformation half-lives are not entered, a value corresponding 

to negligible biotransformation is used.

Figure 1 demonstrates two exposure scenarios. The first is an “indirect” scenario, in which a 

chemical is actively or passively emitted indoors and then absorbed by a human. Three 

exposure routes are included: (i) inhalation of gaseous and particle-bound chemicals in 

indoor air, (ii) nondietary ingestion of indoor dust and through object-hand-mouth contact, 

and/or (iii) dermal absorption directly from indoor air. This scenario requires inputs of 

steady-state chemical emission rates (ER, e.g., ng h–1) to individual environmental 

compartments. The second is a “direct” scenario, in which a chemical is intentionally 

applied to the skin of hands or the rest of the body, and then absorbed via (i) inhalation, (ii) 

ingestion, and (iii) dermal permeation. This scenario requires a chemical application rate 
(AR, e.g., ng h–1), which is calculated from a user-defined frequency of applications (in 

day–1), the amount of a product per application (in g or mL), and the concentration of a 

chemical in the product (in ng g–1 or ng mL–1). That is, AR is dependent on the chemical-

product combination. Direct chemical inhalation and ingestion rates can also be considered 
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as model input. The user can model human exposure to chemicals occurring via either or 

both of the two general scenarios depending on chemical-specific use.

In some cases, not all of the chemical applied to the skin surface remains there long enough 

to completely penetrate through the stratum corneum.(31) To avoid potential overestimation 

of exposures, RAIDAR-ICE includes the user option to estimate a unitless scaling factor 

(SFlag; 0 < SFlag ≤ 1), defined as the fraction of the emitted or applied amount expected to 

enter the skin compartments (SI Text S2 and Figure S1). SFlag is calculated based on a user-

defined chemical leave-on duration (in min) and a model-derived lag time(31) describing the 

minimum duration required for a chemical to reach full steady-state absorption (in min) (SI 

Text S2). Only the completely absorbed fraction participates in subsequent calculations; the 

remaining fraction (i.e., 1 – SFlag) is assumed to be removed from the system through wash-

off.

Exposure metrics

Three exposure metrics of typical interest are calculated. The first is an individual intake rate 
(iR; mgchem kg–1

BW d–1) that we define as the rate of chemical crossing an absorption (e.g., 

epithelial) barrier and entering the body.(16) It can be calculated based on inputs of either a 

realistic or an arbitrary unit (e.g., 1 ng h–1) ER and/or AR. The total iR is the sum of all 

pathway-specific iRs for the same chemical. The second metric is an individual intake 
fraction (iF; unitless) that normalizes the intake rate by ER and/or AR from all sources.(32) 

This iF is associated with the amount of chemical absorbed into the human body, which 

differs slightly from iF definitions in other models.(19,21) The third metric is a steady-state 

whole-body concentration (CH, e.g., mmolchem kg–1
BW or ngchem kg–1

BW) accounting for 

other toxicokinetic processes. RAIDAR-ICE also estimates (i) a steady-state blood 

concentration (CB) from CH using a user-defined or model-calculated volume of distribution 

(VD, LBlood kgBW
–1), and (ii) parent chemical concentrations in urine (mgchem L–1) 

eliminated via renal excretion. RAIDAR-ICE calculates expected concentrations if estimates 

for realistic ERs and/or ARs are provided; otherwise, RAIDAR-ICE outputs “unit emission 

rate-based” concentrations (CU) by assuming a consistent unit ER and/or AR (1 ng h–1) for 

all chemicals to compare chemicals for exposure potential.

RAIDAR-ICE provides two tiers for exposure estimates. Tier 0 recognizes uncertainty in 

chemical absorption data and conservatively assumes 100% chemical absorption for all 

exposure pathways. This approach provides consideration for chemicals that come in contact 

with the body and may have effects associated at the outer boundary. Tier 1 considers 

chemical- and route-specific differences in absorption by using (i) an absorption efficiency 

of EA = 70% for inhalation of gaseous chemicals, (ii) particle-size-specific deposition 

fractions for inhalation of particle-bound chemicals (the deposited fractions can be 

completely absorbed),(19) (iii) a dietary absorption efficiency of ED = (1.05 + 2 × 10–9 × 

KOW)−1 for gastrointestinal ingestion,(33) and (iv) dermal absorption efficiency either 

calculated from KOW and molar mass(34) or entered by the user.
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Risk-based metrics

Traditional toxicity data or in vitro bioactivity data(35) can be input into RAIDAR-ICE as 

hazard “thresholds” if risk-based chemical assessment objectives are desired. These 

threshold data can be in the form of either an ingestion rate (iRT; mgchem kg–1
BW d–1), such 

as no observed adverse effect level (NOAEL), threshold of toxicological concern (TTC), oral 

equivalent dose (OED), or a steady-state blood concentration (CT; mmolchem L–1
Blood). In 

accordance with RAIDAR,(14,32)RAIDAR-ICE calculates a critical emission or application 
rate (ERC or ARC) denoting the ER or AR that yields human exposure corresponding to the 

toxicity or bioactivity thresholds. RAIDAR-ICE then calculates the ratio of actual ER or AR 

to the critical ERC or ARC, expressed as a unitless risk assessment factor (RAF).(15) The 

RAF is conceptually similar to a “risk quotient” used in environmental risk assessment; a 

higher RAF suggests a higher concern of a chemical. If a bioactivity threshold is used 

instead of a toxicity threshold, the ratio can be referred to as a “bioactivity quotient”. When 

ranking and comparing chemicals based on risk, potential bioactivity, or critical emission/

application rates, it is best to use a consistent health assessment end point for all chemicals.

Model Evaluation and Case Study Applications

We evaluate RAIDAR-ICE model performance and demonstrate the application of the tool 

to screen and prioritize chemicals used indoors in a series of case studies based on some 

possible exposure and health assessment objectives. We also illustrate combining RAIDAR-

ICE and RAIDAR models for aggregate human exposure assessment.

Case 1: Indirect and direct near-field exposures to chemicals used indoors

We calculate Tier 1 iRs for 37 chemicals (SI Table S3), including seven chemicals in PCPs 

(i.e., a direct scenario), 20 pesticides/antimicrobials that can be in contact with human skin 

(i.e., a direct scenario), and 10 plasticizers that can be absorbed into human bodies after 

vaporization into indoor air (i.e., an indirect scenario). Records in the Chemical/Product 

Categories Database (CPCat)(36) indicate that these chemicals are predominantly used and 

released indoors. These chemicals are selected because their exposure rates have previously 

been inferred from biomonitoring data in the U.S. National Health and Nutrition 

Examination Survey (NHANES),(17)with which we can evaluate the performance of 

RAIDAR-ICE. Whereas some of them can also be found in a few products/articles used 

outdoors, we ignore the contribution of infiltration from outdoor sources in this case study.

We first estimate ARs (for chemicals in PCPs and pesticides/antimicrobials) and ERs (for 

the plasticizers) as model inputs. The ARs are calculated in accordance with Isaacs et al.(20) 

and are product-chemical-combination-specific. Briefly, each chemical is mapped to one of 

254 “product categories” defined in Isaacs et al.(20) and assigned category-specific product 

usage information, including use frequency, prevalence of its use in the general population, 

amount of product used per application, and the fraction contacting human skin. For 

simplification, we make two conservative assumptions: (i) when a chemical matches 

multiple product categories with different product application rates (i.e., a product of the 

frequency of application and the amount of a product per application), it is assigned to the 

category with the largest product application rate, and (ii) when a chemical is assigned to a 
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product category, it is present at the same concentration in all products in this category. After 

the assignment of product categories, we gather chemical-specific weight fraction (i.e., 

concentration in product) from the Consumer Product Chemical Profiles database (CPCPdb)

(37) available on the USEPA’s CompTox Chemistry Dashboard. For a few chemicals, 

CPCPdb records ranges of the chemical weight fraction observed in multiple products. The 

maximum and minimum of these ranges, as well as their average, are used for our 

calculations. With the information above, we calculate an “apparent” AR for each chemical 

(SI Table S3). The apparent ARs are then converted to the absorbed ARs by considering the 

duration of application (SI Table S3).

Emission of plasticizers from an article surface is treated as a diffusive process. For each 

chemical, the ER is calculated based on an air-side mass transfer coefficient, the mass 

concentration of total suspended particles in indoor air, a typical article surface area, and the 

fugacity in the air immediately adjacent to the article surface (f0) (see notes below SI Table 

S3). The f0 is assumed to be equal to the fugacity in the article, which is in turn calculated 

from a chemical weight fraction (collected from the CPCPdb) and a fugacity capacity (Z-

value) of the article material calculated from a material-air partition coefficient. Note that the 

calculated fugacity is limited by a chemical’s vapor pressure, i.e., a theoretical maximum 

fugacity which applies when the chemical weight fraction is too large and thus a 

thermodynamically separated pure phase exists.(38,39) The calculated ERs are listed in SI 

Table S3.

Figure 2 compares the RAIDAR-ICE iRs against inferred NHANES iRs.(17) Averages of 

our modeled iRs are significantly correlated with the inferred medians (r2 = 0.52, p < 0.01, 

regression coefficient = 0.88 log unit). The Spearman’s rank correlation coefficient between 

modeled iRs and inferred medians is 0.68 (p < 0.01), indicating that rankings based on 

model predictions and observations are quite similar for the 37 chemicals. Of the 37 

chemicals, the modeled and inferred iRs agree with each other within 1 order of magnitude 

for 16 chemicals, and 2 orders of magnitude for 31 chemicals. When attempting to 

reproduce inferred NHANES exposure, these RAIDAR-ICE calculations are in slightly 

better agreement than exposure estimates derived from SHEDS-HT (r2= 0.39, p < 0.01, 

regression coefficient = 2.5 log unit),(20) although we emphasize that the two studies share 

only 27 chemicals because we focused on chemicals used indoors. In Figure 2, most markers 

are situated above the diagonal line (representing ideal agreement), indicating that the model 

often overpredicts the inferred NHANES exposure. The overprediction is not surprising 

because the model inputs of ERs and ARs are associated with conservative assumptions. It 

should further be noted that the inferred exposure rates are also highly uncertain.

Dots representing chemical exposure under both direct (chemicals in PCPs and pesticides/

antimicrobials) and indirect (plasticizers) scenarios are evenly distributed on either side of 

the diagonal (Figure 2), indicating that the model’s performance does not differ between the 

two exposure scenarios. However, a closer inspection of Figure 2 shows that dots 

representing chemicals in PCPs depart farther from the diagonal than those representing 

pesticides/antimicrobials and plasticizers. The chemicals in PCPs investigated here possess a 

log KOW between 2 and 4; dermal permeation overwhelmingly dominates human exposure 

to these chemicals. To understand such a deviation, we analyze the extent to which the 
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modeled iRs for chemicals in PCPs are sensitive to individual inputs (SI Table S4). The 

sensitivity analysis indicates that our modeled iRs are proportional to the provided ARs (i.e., 

S = 1), moderately sensitive to KOW (|S|<1) and almost insensitive to KOA and degradation 

half-life in air (|S| < 0.02 for most PCPs). That is, uncertainty can be proportionally 

propagated from the input ARs to the modeled iRs; this is because direct application of 

PCPs onto the human skin is the starting point of model calculation. In addition, the 

calculated sensitivities are negative with respect to KOW (SI Table S4), indicating that an 

increase in hydrophobicity decreases aggregate iRs, and in particular dermal permeation iRs. 

This is because increasing KOW not only decreases maximum chemical flux through the skin 

(i.e, the rate of transdermal absorption),(34) it also increases the relative “elimination” rates 

of chemicals from skin via bathing and cell loss. As such, the sensitivity analysis points to 

two reasons likely responsible for the more noticeable departure from observations for 

chemicals in PCPs. First, the ARs used here are calculated based on category-specific usage 

patterns rather than detailed product-specific information, which can be a source of 

uncertainty. Second, the model description of processes that are governed by partitioning (in 

particular KOW), for example, absorption and loss of chemicals on the human skin, can be 

uncertain.

Case 2: Screening and prioritizing chemicals based on exposure and risk-based metrics

In this case, we compare the rankings of 131 chemicals included in the U.S. EPA ToxCast 

Program based on four RAIDAR-ICE metrics: Tier 1 iF, whole-body concentration based on 

a consistent unit emission rate, critical emission rate, and bioactivity quotient (Figure 3). The 

131 chemicals (SI Table S5) were identified to belong to use categories “indoor emissions” 

or “passive indoor emissions” according to Shin et al.(40) thus have confirmed indoor uses. 

Most (>80%) of these chemicals have a log KOA between 4 and 10, a log KOW lower than 5, 

and degradation half-lives in indoor air ranging from 2.6 to 300 h (SI Table S5). The list also 

includes a few highly recalcitrant and hydrophobic organochlorine pesticides identified as 

persistent organic pollutants, e.g., mirex (log KOA = 11.6, log KOW = 7.4, and HLAir = 

10 000 h) and dichlorodiphenyltrichloroethane (DDT; log KOA = 10.3, log KOW = 6.8, and 

HLAir = 510 h) (SI Table S5). Note that we calculate here only exposure based on near-field 

sources although we recognize that substantial exposure to some of these chemicals also 

occurs via the far-field pathways. Instead of considering realistic modes of emission or 

direct application, we assume all chemicals are emitted 100% to indoor air for simplification 

in this demonstration.

As shown in Figure 3a, the iFs span over 3 orders of magnitude, from 4.2 × 10–4 [di(2-

ethylhexyl)adipate] to 0.13 (benzidine). These iFs have been previously evaluated by Shin et 

al.,(40) in which maxima of estimates derived from three models(19,21,22) were 

demonstrated to correlate well with exposure levels inferred from biomonitoring data. Our 

calculated iFs correlate significantly with those by Shin et al.(40) (r2 = 0.54, p < 0.01; data 

not shown). SI Figure S2 shows the relative contribution of individual near-field exposure 

routes to the calculated iFs. Chemicals with high iFs are associated with higher dermal 

permeation, while chemicals with low iFs tend to be primarily inhaled. The inhalation iF is 

quite similar for all chemicals, irrespective of partition coefficients and degradation half-

lives, because the fate of these chemicals in indoor air is largely governed by physical 
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processes(6) (e.g., ventilation(22) and dust removal(19)), which are similar for all 

compounds investigated here. By contrast, dermal permeation is more variable, spanning 

over 2 orders of magnitude, and is more sensitive to the chemical’s properties. Nondietary 

ingestion contributes little to human exposure for these chemicals and this assumed use 

scenario.

As shown in Figure 3b, RAIDAR-ICE ranks the 131 chemicals based on a “unit emission 

rate-based whole-body concentration (CU)”, which accounts for toxicokinetic differences 

between chemicals. For the chemicals considered, CU ranges from 6.0 × 10–6 to 1.7 ngchem 

kgBW
–1. Persistent and lipophilic chemicals tend to have higher CU values because they are 

slowly biotransformed and eliminated. For example, despite their low iFs persistent 

organochlorine pesticides, e.g., mirex (ranking 1), p,p’-DDT (ranking 2), endrin (ranking 3), 

and dieldrin (ranking 4), exhibited the highest biological concentrations. Notably, mirex now 

ranks first with respect to CU (Figure 3b), although it ranked 127 in terms of iF (Figure 3a). 

Rankings based on CU and iFs are poorly correlated (Spearman’s rank correlation coefficient 

= 0.17).

For the third ranking exercise, the 131 chemicals are compared using the critical emission 

rate (ERC), which additionally considers toxicity or bioactivity threshold data (Figure 3c). 

Here, ERC is calculated using OEDs derived from the U.S. EPA ToxCast in vitro bioactivity 

data (SI Table S5);(40) a lower ERC corresponds to “higher concern”. The OEDs are 

extrapolated from concentrations leading to biological responses in in vitro assays with cells 

or isolated proteins, instead of individual-level adverse end points (e.g., neurotoxicity) or 

specific mechanisms of action (e.g., mutagenicity). Therefore, bioactivity is not necessarily 

indicative of the potential for an adverse effect.(35) Figure 3c shows that ERC spans 

approximately 10 orders of magnitude for these 131 chemicals, from 3.9 μg d–1 (imazalil, 

chemical #32) to 660 kg d–1 (methyl laurate, chemical #107). The Spearman’s rank 

correlation coefficient between ERC and CU is 0.52 (p < 0.01), indicating that chemicals 

with higher biological concentrations are more likely to reach the threshold of biological 

activity in the human body.

Finally, the ERC can be compared with an estimate of the actual emission rate (ERA) to 

derive a unitless risk assessment factor (RAF), or in this case referred to as a bioactivity 

quotient (BQ; Figure 3d) because the OEDs used as effect thresholds reflect bioactivity.(40) 

The ERA estimates for 131 chemicals are obtained by dividing their assumed national 

emissions by the number of exposed U.S. households (both data from ref (40)). The BQs 

span approximately 10 orders of magnitude for these 131 chemicals with most chemicals 

having a BQ < 1. Six chemicals exhibit BQs > 1, suggesting prioritization for further 

scrutiny of the results and possibly more comprehensive assessment (Figure 3d). All six 

chemicals are also in a prioritized list by Shin et al.(40) using multiple exposure models; 

notably, both studies highlight the potential risk of triphenyl phosphate because of its large 

estimated ERA (linked to its production volume in the U.S.) and relatively low minimum 

OEDs. This indicates that RAIDAR-ICE is compatible with existing approaches using 

multiple exposure models.
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In summary, RAIDAR-ICE efficiently discriminates diverse chemicals based on exposure- 

and risk-based assessment metrics; however, chemical rankings can be very different if 

distinct metrics are selected. The metric selected is based on the assessment objectives and 

decision-making context. Exposure-based assessment metrics, that is, Tier 1 iF and the 

whole-body concentration, characterize an “emission-to-intake” relationship and thus are 

suitable for evaluating the likelihood of human contact with chemicals. Oftentimes, Tier 1 iF 

is employed to inform external human exposure (e.g., daily intake) and relative exposure 

potential, whereas a blood or body concentration evaluates chemicals whose toxicological 

effects are associated with internal cumulative exposure since it includes absorption, 

biotransformation and passive elimination processes.(41) Modeled blood concentrations can 

be directly compared with biomonitoring observations for model evaluation.(41) Calculated 

ERC provides theoretical emission guidance for setting putative use thresholds for chemicals 

prior to commercialization or for evaluating a proposed change to the use of a chemical 

already on the market.(16) Risk-based assessment metrics, that is, BQ or RAF, link 

estimated exposure with hazard, and thus gauge the potential for biological activity or 

adverse outcomes respectively resulting from human contact with chemicals.(42) They can 

be used for prioritizing chemicals for higher-tiered assessment, while providing insights for 

risk reduction measures.(43) For example, a chemical’s ranking based on the RAF (or BQ) 

will be lower if its actual use and emission are lowered, although such a restriction does not 

affect the rankings based on the other metrics in Figure 3.

Case 3: Coupled near- and far-field exposure modeling

The RAIDAR-ICE calculations in Case 2 (release of chemicals to indoor air only) indicate 

that 30–99% of indoor emissions can be ventilated out to the far-field environment (data not 

shown), where the chemicals then contaminate food chains, outdoor air and fresh water and 

are taken up by humans through diet, inhalation and drinking water. The exposure of single 

consumers from the far-field environment arises from not only their own use of these 

chemicals, but also the use by their neighbors, and even the entire regional population. 

Therefore, it is of interest to know the extent ventilated fractions contribute to human 

exposure from the far-field sources, and by extension, the relative exposures from near- and 

far-field sources. Here, we couple the RAIDAR-ICE and RAIDAR models to calculate and 

compare population Tier 1 iFs of the 131 chemicals in Case 2 from near- and far-field 

environments. We first assume a constant, unit emission rate to indoor air in RAIDAR-ICE 

and calculate ventilation fluxes (in ng h–1) for the 131 chemicals from a single house (SI 

Figure S3). These ventilation fluxes, multiplied with the assumed number of houses in the 

region (assumed to be 1/4 of the population in the RAIDAR region), then serve as input to 

the air compartment in RAIDAR (SI Figure S3). A simplifying assumption underlying this 

illustrative case is that air exchange is the single vehicle transporting contamination from 

indoor to outdoor environments, although we recognize that indoor-released chemicals can 

also reach the outdoor environment via other routes such as sewage. RAIDAR-ICE and 

RAIDAR generate respective near- and far-field iRs for the modeled individual, the 

combination of which across the modeled region yields population iRs. The population iRs 

are then normalized by the summed regional emission rate to derive population iFs (SI 

Figure S3).
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Figure 4 shows the relative contribution of inhalation of indoor air, dermal permeation, diet 

and other routes (nondietary ingestion, inhalation of outdoor air and drinking water) to the 

aggregate iFs. Overall, dietary exposure from the far-field environment contributes little to 

the aggregate iFs of most of the 131 chemicals. Nevertheless, ignoring dietary exposure 

would underestimate the total iFs by almost a factor of 10 for mirex (chemical no. 127), 

DDT (chemical nos. 122 and 123) and dieldrin and endrin (chemical nos. 124), even though 

all emissions are assumed indoors in these simulations. SI Figure S4 shows the dependence 

of the dietary contribution on the partition coefficients of chemicals. Dietary exposure 

matters for persistent (normalized biotransformation half-life >100 h) chemicals with a log 

KOA between 6 and 12 and a log KOW between 5 and 8 (SI Figure S4). These chemicals 

have a strong tendency to partition from air into organic phases in surface media and 

organisms, thus being most bioaccumulative among all investigated chemicals. Our 

identified range of partition coefficients agrees well with the range of chemicals of highest 

“environmental bioaccumulation potential” by Czub and McLachlan.(44) By contrast, most 

investigated chemicals are too water-soluble (log KOW < 5; SI Figure S4) to substantially 

bioaccumulate. Likewise, Ernstoff et al.(7) observed that 65 of 69 evaluated chemical 

ingredients in shampoo (all with −1 < log KOW < 6.5) have higher product intake fractions 

(PiF) during the use phase (via direct application and inhalation) than during the waste 

disposal phase (via inhalation of outdoor air and ingestion of water and food items); the 

difference can be up to a factor of 104. This illustrative case highlights that far-field exposure 

routes can still make a substantial contribution to aggregate human exposure even when the 

chemicals are released indoors. A modeling framework that integrates both near- and far-

field exposure routes is thus essential for a comprehensive understanding of aggregate 

human exposure.

Discussion

Merits of the RAIDAR-ICE model

Case 1 demonstrates that RAIDAR-ICE is capable of modeling both direct and indirect 

human exposure scenarios within a single coherent and compatible framework. Such a 

holistic framework is useful because it provides directly comparable results for chemicals in 

different application categories and use scenarios. Case 2 illustrates the application of the 

model for different assessment objectives (e.g., exposure- or risk-based), and how chemical 

rankings, and ostensibly priorities for more comprehensive assessment, change depending 

on assessment metrics selected. Unlike a number of existing exposure models, e.g., Shin et 

al.(21) and Wenger et al.,(22)which sort chemicals based on human external exposure alone, 

RAIDAR-ICE establishes a continuum from emissions to blood and urine concentrations. 

This facilitates comparisons of exposure predictions directly with toxicity or bioactivity 

data, thus informing chemical risk assessment and risk reduction measures. Case 3 

reconciles near- and far-field exposure models to achieve a systematic and harmonized 

evaluation of aggregate human exposure. Whereas a few previous efforts have integrated 

multiple exposure routes,(7,45,46) most of them largely rely on empirical transfer factors, 

that is, chemical mass fractions moving from one compartment to another. For many 

chemicals, these factors are missing or inadequate, which limits the application range and 

predictive capacity of these models. Instead, both RAIDAR-ICE and RAIDAR are 

Li et al. Page 11

Environ Sci Technol. Author manuscript; available in PMC 2019 December 18.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



mechanistic (process-based) models and link fate, human exposure and toxicokinetics with 

properties of chemicals and the associated products/articles. This facilitates the use of the 

RAIDAR models for HT applications to a wide range of emerging chemicals while the 

internal exposure metrics (i.e., blood or urine concentrations) enable model evaluation with 

measured biomonitoring data. The internal exposure calculations also serve as a proxy for 

the concentration at sites of possible toxicological action, providing a quantitative exposure 

bridge with molecular initiating events of the adverse outcome pathway (AOP)(47) and 

related toxicological frameworks.(25)

Limitations and recommendations

Earlier work has demonstrated that chemical emission rates are the greatest contributors to 

the overall uncertainty in far-field human exposure modeling.(16) We expect estimates of 

actual ER and AR to also be a primary source of uncertainty in model input for the near-

field RAIDAR-ICE model calculations pertaining to actual exposure- and risk-based 

estimates. Accurate emission and application information is often not readily available for 

most chemicals. For example, it is difficult to determine whether the calculated iRs based on 

algorithmically simplistic calculations of ARs and ERs overestimate or underestimate the 

actual exposure to chemicals. Using category-based usage patterns aims to have the 

calculated ARs and ERs represent reasonable maxima. However, even chemicals explicitly 

made for indoor use can be released into the environment throughout the lifecycle, for 

example, during industrial processing, use phase and waste disposal.(48) The ARs and ERs 

estimated for the use phase alone therefore constitute only a fraction of total lifecycle 

emissions. Future research can address the uncertainty from ARs and ERs by refining and 

improving methods for estimating ARs and ERs in a mechanistic, lifecycle-based manner.

Additional RAIDAR-ICE model evaluation efforts are encouraged. Comprehensive model 

evaluations require spatially and temporally consistent multimedia monitoring and 

biomonitoring data with chemical use and human behavior information. A recent review(49) 

has compiled measurements of semivolatile organic compounds in a wide range of articles 

and indoor compartments, which can serve as a valuable starting point for further model 

evaluations. Meanwhile, values of key parameters, for example, exchange rate between 

indoor and outdoor air,(6) can be further examined and refined to ensure greater 

representation of variability. For example, new work indicates that diet dominates human 

exposure to polychlorinated biphenyl congener 153 among the general Swedish population 

while indoor sources contribute more than 80% of its total regional emission, that is, 

ventilation from the indoor to outdoor environments plays a critical role in human exposure 

via far-field pathways.(9) In this sense, a comprehensive understanding of human chemical 

exposure via multiple relevant vectors helps improve environmental and health management 

decision-making, which in turn necessitates a combination of near- and far-field models.(45)

Finally, the application domain of RAIDAR-ICE can be expanded. The current version of 

RAIDAR-ICE does not discriminate between neutral and disassociated species for ionizable 

organic chemicals (IOCs), which may be a source of the less satisfactory performance in 

reproducing the inferred exposure to some chemicals, for example, PCPs. This warrants 

inclusion of algorithms to better address the properties and behavior of IOCs in the indoor 
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environment and in humans. Furthermore, RAIDAR-ICE is a steady-state model and this 

condition may not always be satisfied, for example, when a chemical has episodic, 

intermittent use. Whereas a calculated iF is independent from whether an application/

emission is episodic or continuous,(50) calculated iRs can be overestimated in cases of 

highly degradable chemicals. A dynamic version of RAIDAR-ICE or correction algorithms 

are necessary to expand the capacity of this framework to address a more extensive range of 

chemical use and exposure scenarios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Conceptual representation of the RAIDAR-ICE model indicating two mode-of-entry 

scenarios, that is, application of a chemical to human compartments (“direct”) and emissions 

to indoor compartments (“indirect”). Red arrows depict direct (i.e., inhalation, ingestion and 

dermal permeation) and indirect (i.e., inhalation, nondietary ingestion and dermal 

permeation) exposure pathways. Blue arrows depict processes eliminating a chemical from 

human compartments. Calculations of D-values are tabulated in SI Table S2. Mass balance 

of chemicals in human compartments is given in SI Text S1. Far-field exposure pathways 

(not shown) can also be included for quantification of aggregate human exposure.
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Figure 2. 
Comparison between RAIDAR-ICE modeled intake rates (based on averages of the reported 

ranges of chemical weight fractions) and the median intake rates inferred from NHANES 

biomonitoring data. Vertical error bars denote the ranges of modeled intake rates based on 

the maximum and minimum of chemical weight fractions reported in the Consumer Product 

Chemical Profiles database (CPCPdb). Horizontal error bars denote the 5th and 95th 

percentiles of the inferred values. Blue dashed line indicates a log–log regression between 

the modeled and inferred intake rates.
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Figure 3. 
(a) Tier 1 intake fractions, (b) unit emission rate-based whole-body concentrations, (c) 

critical emission rates, and (d) bioactivity quotients of 131 chemicals released into indoor 

air, ranked by the Tier 1 intake fractions. Higher concern is technically associated with 

chemicals with higher Tier 1 intake fractions, unit emission rate-based whole-body 

concentrations, and bioactivity quotients, but those with lower critical emission rates. Names 

of the chemicals are given in SI Table S5. Organochlorine pesticides identified as persistent 

organic pollutants are labeled.
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Figure 4. 
Contributions of near- and far-field routes to total human intake rate of 131 chemicals.
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