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Abstract

Purpose of review: Antibiotic stress can evoke considerable genotypic and phenotypic changes 

in Gram-positive bacteria. Here, we review recent studies describing altered virulence expression 

in response to cell wall-acting antibiotics and discuss mechanisms that coordinate regulation of the 

antibiotic response.

Recent findings: Pleiotropic effects induced by antibiotic exposure include alterations to 

bacterial metabolism, cell wall structure and antibiotic resistance. In addition, subinhibitory 

concentrations of cell wall-active antibiotics have increasingly been shown to induce the 

production of exotoxins and biofilm formation that may influence virulence. Remarkably, 

phenotypes associated with comparable antibiotic stresses can vary considerably, emphasizing the 

need to better understand the response to cell wall-active antibiotics. Recent studies support both 

direct antibiotic recognition and recognition of antibiotic-induced stress to the bacterial cell wall. 

Specifically, bacterial two-component systems, PASTA kinases and conserved oxidative-stress 

sensors each contribute to modulating the antibiotic stress response.

Summary: Bacterial sensory systems and global regulators coordinate signaling in response to 

cell wall-active antibiotics. Regulation of the antibiotic response is complex and involves 

integration of signals from multiple response pathways. A better definition of the antibiotic stress 

response among Gram-positive pathogens may yield novel therapeutic targets to counter antibiotic 

resistance and virulence factor expression.
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INTRODUCTION

In Gram-positive bacteria, a thick peptidoglycan layer comprises the cell wall and provides 

structure for the organism. The cell wall also serves a sensory function as bacteria have 

evolved intricate mechanisms to perceive environmental change including heat, pH, nutrient 
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limitation, and chemical and oxidative stress. Cell wall-active (CWA) antibiotics target 

biosynthesis of the bacterial cell wall and it is well established that these agents can act as 

bacterial signaling molecules, evoking diverse biological responses in a concentration-

dependent manner (1, 2). Specifically, CWA antibiotics can alter bacterial metabolism, 

antibiotic resistance and virulence through a coordinated response involving conserved 

signaling pathways. Considerable heterogeneity exists in the response to antibiotic stress and 

mechanisms controlling this response remain largely unknown. The current review 

highlights recent findings of altered virulence potential in response to CWA antibiotics and 

discusses current insights into signaling pathways that influence the antibiotic stress 

response.

Altered virulence potential in response to cell wall-active antibiotics

Antibiotics can remarkably influence the production of bacterial toxins. Studies in 

Staphylococcus aureus have demonstrated that subinhibitory concentrations of CWA 

antibiotics induce production of potent exotoxins including alpha-hemolysin (3, 4), PVL and 

TSST-1 (5-7). In Clostridium difficile, subinhibitory CWA antibiotics similarly induce toxin 

expression (8) including Toxin A and Toxin B (9, 10). Regulation of toxin expression is 

undoubtedly complex and factors that control toxin expression in response to CWA 

antibiotics are not completely understood. Recent studies suggest that two-component 

signaling (TCS) systems, global regulators and certain penicillin-binding protein utilization 

can influence toxin induction (6, 11). Long noncoding RNA also contributes to the control 

of antibiotic-induced toxin production in S. aureus (12), indicating an integration of various 

regulatory pathways in virulence expression.

In addition to toxins, the expression and architecture of bacterial biofilm is modified in 

response to CWA antibiotics. In S. aureus and Enterococcus faecalis, subinhibitory 

concentrations of β-lactam and glycopeptide antibiotics induce biofilm formation in a 

manner dependent upon cell lysis and extracellular DNA (13-16). Recent studies highlight 

that CWA antibiotics increase bacterial attachment under both static and flow conditions and 

produce thicker biofilms containing more pillar and channel structures (17). Exposure of 

existing biofilms to subinhibitory concentrations of antibiotics can similarly lead to biofilm 

restructuring (18).

Many of the studies assessing the impact of subinhibitory antibiotics on virulence have been 

conducted in vitro and require validation of antibiotic effects in vivo and in a polymicrobial 

context. Importantly, strain- and antibiotic-dependent behavior is often observed when 

monitoring the effects of CWA antibiotics on virulence expression. This points toward a 

multifaceted response to CWA antibiotics that is dependent upon genetic background, 

context of the interaction, and multiple interacting signaling pathways, discussed further in 

the present review.

Two-component signaling systems orchestrate the response to CWA antibiotics

Antibiotic stress can induce an adaptive response in bacteria that comprises the cell wall 

stress stimulon (CWSS). Notably, the CWSS in Gram-positive organisms is controlled by 

one or more TCS systems. Although some CWSS TCS systems are triggered by specific 
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classes of antibiotics, others appear to be activated less selectively in response to diverse 

CWA antibiotic stress (19). Genome-wide transcriptional profiling studies in several Gram-

positive pathogens have demonstrated that the CWSS includes a subset of genes that rapidly 

modulate cell wall metabolism, providing a mechanism of tolerance to antibiotic-induced 

stress (20-24) (Figure 1A). A systems-wide proteomic analysis in S. aureus similarly found 

an upregulation of the peptidoglycan biosynthetic pathway following CWA antibiotic stress 

(25). Activation of CWSS TCS systems results in transcriptional profiles that are strain-

dependent (26), and induction kinetics reflect antibiotic- and concentration-dependent 

growth inhibition (19). CWSS TCS systems provide specificity to the CWA antibiotic 

response and function in response to disrupted cell wall synthesis, or cell wall hydrolysis, 

but not toward other external stresses.

Modulation of the CWA antibiotic response by PASTA kinases

Recently, serine/threonine kinases, containing extracellular penicillin-binding protein and 

serine/threonine kinase-associated (PASTA) domains, and their cognate phosphatases have 

emerged as critical factors regulating the bacterial response to CWA antibiotics. As 

regulators of cell wall metabolism, PASTA kinases are important in perceiving 

environmental stress. Genetic deletion of a PASTA kinase sensitizes Gram-positive 

organisms to CWA antibiotics, supporting an integral role for these kinases in the cell wall 

stress response and antibiotic resistance (27-32). Likewise, selectively targeting PASTA 

kinase activity with chemical inhibitors increases susceptibility to β-lactam antibiotics (31, 

33-36). Conversely, mutation of an antagonistic Ser/Thr phosphatase in S. aureus contributes 

to reduced vancomycin susceptibility (37-39) and recapitulates the characteristic thick cell 

wall phenotype of vancomycin resistance (27).

PASTA kinases coordinate the response to cell wall stress through interactions with bacterial 

TCS systems and global regulators. For example, S. aureus PASTA kinase signaling targets 

VraRS, WalKR, GraSR, CcpA, MgrA and SarA (reviewed in (40)) and an E. faecalis PASTA 

kinase targets CroSR (41), involved in CWA antibiotic resistance. Crosstalk among these 

independent stress response pathways demonstrates an appreciable level of complexity in the 

signaling network that underlies the bacterial response to CWA antibiotics. Gene expression 

studies demonstrate that PASTA kinase activity regulates broad cellular functions including 

cell wall biosynthesis, metabolism and virulence expression (Figure 1B) (42). Their 

involvement in toxin expression support that PASTA kinases play a role in the response to 

subinhibitory concentrations of CWA antibiotics. Remarkably, the contributions of PASTA 

kinase activity to CWA antibiotic stress are bacteria- and strain-specific. Sequence 

divergence of PASTA domains (43) and dissimilar interactions with TCS systems among 

bacteria confound our current understanding of PASTA kinase signaling.

The mechanism by which PASTA kinases recognize cell wall stress remains unclear. 

Extracellular PASTA domains can recognize the cell wall precursor lipid II and soluble 

muropeptides (44-47) supporting the notion that cell wall stress could be sensed by altered 

peptidoglycan precursor pools. Recent evidence also points toward the direct recognition of 

β-lactam antibiotics by PASTA kinases (45, 46, 48). Intriguingly, a S. aureus isolate that 

encodes a truncated PASTA kinase, lacking the extracellular PASTA domains, still provides 
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resistance to CWA antibiotics, signifying kinase activation can occur via a mechanism 

independent of PASTA ligand recognition (32). Further studies are required to clarify the 

mechanism of PASTA kinase activation, signaling interactions and observed phenotypes in 

response to CWA antibiotic stress.

Activation of the Spx regulon by CWA antibiotic stress

In addition to TCS systems and PASTA kinases, the Spx stress regulator is highly conserved 

among Gram-positive bacteria and controls the expression of genes involved in stress 

tolerance and virulence. Spx is recognized as a transcriptional regulator in the oxidative 

stress response and spx mutants were recently found to exhibit sensitivity to CWA antibiotic 

stress (49, 50). Consistent with a role for Spx in the antibiotic stress response, mutation of 

yjbH, a negative regulator of Spx, reduces bacterial susceptibility to both glycopeptide and 

β-lactam antibiotics (39, 51).

Induction of the Spx regulon by CWA antibiotics suggests a link between the antibiotic and 

oxidative stress response. Remarkably, studies in Bacillus subtilus demonstrate that 

mechanisms of Spx activation during CWA antibiotic stress are distinct from the oxidative 

stress response (Figure 1C) (50, 52). Specifically, CWA antibiotic stress requires 

upregulation of spx from a σM promoter, whereas several promoters can activate spx 
expression during disulfide stress (50). Contrary to oxidized Spx (redox switch) present 

during disulfide stress, Spx was maintained in a reduced form during antibiotic stress, 

permitting differential gene regulation in response to different stresses (50). Oxidation of the 

YjbH regulator was also dispensable for S. aureus β-lactam resistance, but not disulfide 

stress (51). Thus, Spx is a common regulator in both oxidative and antibiotic stress, but 

independent signaling interactions provide specificity to each response.

Proteolytic activity regulates adaptation to the CWA antibiotic response by eliminating 

stress-damaged proteins, controlling cell wall metabolism and regulating virulence (53). In 

addition to complex transcriptional regulation, Spx is subject to posttranslational oxidation 

and proteolysis (54). Under non-stress conditions, Spx is targeted to the ClpP protease by 

YjbH. CWA antibiotic stress induces spx expression but also stabilizes Spx protein levels by 

the anti-YjbH factor, YirB (52). YirB is induced by the CssRS TCS system in response to 

CWA antibiotics (52), pointing toward interaction of the Spx pathway with TCS sensory 

systems. Further, TrfA, a factor contributing to glycopeptide and oxacillin resistance, is 

induced by Spx in response to CWA antibiotics (55-57). TrfA imparts both specificity and 

timing to protease-mediated degradation of antitoxins and other factors implicated in the 

response to antibiotic stress (58). Together, the Spx regulon actively controls both gene 

expression and protein turnover during the CWA antibiotic stress response.

CONCLUSION

The bacterial response to CWA antibiotics is well appreciated; however, mechanisms 

directing the outcome of such interactions remain less clear. Multiple conserved sensory 

systems have now been shown to contribute to perception of CWA antibiotic stress. 

Alternative sigma factors (20, 59) and the SOS response (60, 61) also play a role in response 

to antibiotic stress. Interestingly, considerable variation is evident in the global antibiotic 

Evans and Bolz Page 4

Curr Opin Infect Dis. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response. Strains of the same pathogen can exhibit fundamentally dissimilar responses to the 

same antibiotic stress (62), highlighting a dependence upon genetic background, the context 

of the antibiotic interaction and possible epigenetic effects. Phenotypic variations among 

bacterial subpopulations ultimately contribute to pathogen success and persistence during 

environmental stress. In the context of genome-wide responses, a strikingly poor correlation 

between transcriptional and phenotypic fitness suggests that CWA antibiotic stress is quite 

complex (63). Together, the overall significance of antibiotics toward bacterial evolution and 

virulence merits the continued investigation of mechanisms controlling CWA antibiotic-

induced stress.
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KEY POINTS

• Cell wall-active antibiotics can induce the expression of potent exotoxins and 

alter biofilm formation in Gram-positive bacteria.

• Strain-specific responses to cell wall-active antibiotics indicate that complex 

mechanisms regulate the antibiotic-induced stress response.

• Bacterial two-component signaling systems, PASTA kinases and the global 

Spx stress regulator coordinate a response to cell wall-active antibiotics.

• Antibiotic-induced cell wall stress utilizes conserved signaling pathways but 

independent interactions provide specificity to the response.
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Figure 1. An integrated signaling network coordinates the Gram-positive bacterial response to 
cell wall-active antibiotics.
The response to cell wall-active antibiotics involves multiple sensory systems including TCS 

systems, PASTA kinases and the Spx stress regulon. (A) One of more TCS systems comprise 

the CWSS. A TCS histidine kinase responds to cell wall stress by autophosphorylation and 

subsequent transphosphorylation of its response regulator. A third TCS component can act 

as an activator, or repressor, in regulating TCS signaling. (B) PASTA kinase signaling occurs 

by direct recognition of antibiotics or, alternatively, by responding to cell wall stress. PASTA 

kinase activation contributes to modulation of several cellular functions including cell wall 

biosynthesis, metabolism and virulence by acting on global regulators. (C) The Spx pathway 

responds to independent stresses. Under no-stress conditions, Spx is bound by YjbH and 

targeted for degradation. Disulfide stress increases Spx levels and oxidizes Spx to control 

activation of gene expression. In contrast, antibiotic stress increases Spx, in a manner 

dependent upon σM, and YirB sequesters YjbH allowing a reduced form of Spx to activate 

target gene expression. TrfA is induced by Spx during antibiotic stress and serves as a 

proteasome adapter for recognition of SsrA-tagged substrates. Notably, cross-talk exists 

among PASTA kinases and TCS systems and between the Spx and TCS systems, 

coordinating activities of the antibiotic response. Dashed boxes indicated degraded protein.
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