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Abstract

Post-concussion syndrome (PCS) is characterized by persistent cognitive, somatic, and emotional symptoms after a mild

traumatic brain injury (mTBI). Genetic and other biological variables may contribute to PCS etiology, and the emergence

of biobanks linked to electronic health records (EHRs) offers new opportunities for research on PCS. We sought to

validate the EHR data of PCS patients by comparing two diagnostic algorithms deployed in the Vanderbilt University

Medical Center de-identified database of 2.8 million patient EHRs. The algorithms identified individuals with PCS by: 1)

natural language processing (NLP) of narrative text in the EHR combined with structured demographic, diagnostic, and

encounter data; or 2) coded billing and procedure data. The predictive value of each algorithm was assessed, and cases

and controls identified by each approach were compared on demographic and medical characteristics. The NLP algo-

rithm identified 507 cases and 10,857 controls. The negative predictive value in controls was 78% and the positive

predictive value (PPV) in cases was 82%. Conversely, the coded algorithm identified 1142 patients with two or more

PCS billing codes and had a PPV of 76%. Comparisons of PCS controls to both case groups recovered known epide-

miology of PCS: cases were more likely than controls to be female and to have pre-morbid diagnoses of anxiety,

migraine, and post-traumatic stress disorder. In contrast, controls and cases were equally likely to have attention deficit

hyperactive disorder and learning disabilities, in accordance with the findings of recent systematic reviews of PCS risk

factors. We conclude that EHRs are a valuable research tool for PCS. Ascertainment based on coded data alone had a

predictive value comparable to an NLP algorithm, recovered known PCS risk factors, and maximized the number of

included patients.
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Introduction

More than 1.7 million Americans visit an emergency de-

partment or are hospitalized for a traumatic brain injury

(TBI) each year—a number that underestimates the true burden due

to those who do not seek medical care.1 TBI disproportionately

affects the young and the old, and while motor vehicle collisions are

a leading cause of TBI,1,2 TBIs sustained in sport and military

combat are increasingly recognized.3,4

Up to 90% of TBIs are classified as mild (mTBI), defined as

positive brain imaging with Glasgow Coma Scale (GCS) scores of

13–15, or concussion, defined as negative brain imaging with a

similar GCS score range.2,5 Symptoms of an mTBI may include

temporary confusion, loss of consciousness, amnesia, or other

neurological abnormality such as seizure,6,7 and these symptoms

typically resolve spontaneously or within 7 to 10 days.5,8–10 Up to

30% of patients, however, do not recover in this time and are unable

to return to work, school, or other pre-injury activities for up to

several months.8,11,12 These patients complain of persistent so-

matic, cognitive, and emotional symptoms, known clinically as

post-concussion syndrome (PCS).

The determinants of PCS are poorly understood. Females and

those with low educational attainment endure a longer recovery, as

do patients with a personal and/or family history of headaches, mi-

graines, and mood disorders.11–16 The literature is mixed, however,

with regard to the effects of age, attention deficit hyperactive disorder
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(ADHD), and learning disability, although these factors may increase

the risk of injury.17,18 Initial injury severity and symptom burden also

contribute to PCS risk, fueling the view that PCS is the result of both

trauma to the brain and underlying psychological factors.17,19

Despite this knowledge, PCS prediction tools explain at most

30% of the variability in mTBI outcome,11–16 spurring research into

the role of other biological factors in recovery, including genet-

ics.20 Preliminary studies in small selected samples have found

associations between candidate genes and short- and long-term TBI

outcomes. But aside from the APOE e4 allele, which, in a meta-

analysis of 14 studies21 increased the risk of poor 6-month out-

comes by 36%, results have yet to be replicated in larger, repre-

sentative populations. Moreover, there has been no agnostic search

for genetic determinants of TBI recovery, as in a genome-wide

association study. Such hypothesis-free approaches have revealed

novel biology in many rare and common diseases,22 but require

very large numbers of cases and controls to be adequately powered,

and replication of significant findings in an independent dataset to

avoid false positives.23

Electronic health records (EHRs) linked to biorepositories such

as DNA databanks offer new opportunities to study the biology of

TBI recovery and PCS. EHRs are a rich data source, including

information on pre-injury medical conditions, time-of-injury pro-

cedures, diagnoses, and post-injury follow-up care. The sample

sizes afforded by EHRs are unprecedented, and since these data are

collected in the course of routine clinical care, EHR studies are less

costly and time-consuming than clinically recruited samples or

prospective trials. EHR-linked biobanks are also growing in num-

ber and scale worldwide. Within the United States, 10 institutions

have joined the National Human Genome Research Institute–

funded Electronic Medical Records and Genomics network (https://

emerge.mc.vanderbilt.edu) since 2007, with at least 126,000 sam-

ples genotyped to date. More ambitiously, the National Institutes of

Health Precision Medicine Initiative All of Us program (https://

allofus.nih.gov) aims to recruit and follow over 1 million Ameri-

cans, linking their EHR to physical assessments, participant sur-

veys, mobile health technologies, and biospecimens. Similar data

are already available from the first 500,000 participants enrolled in

the U.K. Biobank (http://www.ukbiobank.ac.uk), as well as the first

500,000 enrolled in the U.S. Department of Veterans Affairs’

Million Veteran Program (http://www.research.va.gov/mvp), and

studies using these data across a range of disorders and research

questions are proving the value of EHR-recruited samples.24–26

Defining valid study populations is a necessary first step to using

EHR data. Manual review of EHRs to identify a gold standard

case–control set is time consuming, labor intensive, and impractical

for large datasets. Algorithms are more efficient, and usually take

one of two forms.24 Code-based algorithms apply filters to struc-

tured, coded data such as demographics, diagnostic and procedure

codes, medications, and laboratory results. Algorithms based on

natural language processing (NLP), on the other hand, use keyword

searches and text mining software to extract data from unstructured

text in the EHR. Both approaches have demonstrated merit,24 and

NLP-based algorithms are typically used in conjunction with filters

on coded data. An algorithm’s performance is often judged by its

positive predictive value (PPV), the probability that a case identi-

fied by the algorithm is a true case, and its negative predictive value

(NPV), the probability that a control identified by the algorithm is

free of the disease under study.

Given the far-reaching public health implications of mTBI and

the need for research, we sought to study mTBI recovery using

large patient datasets. The objective of our study was to evaluate the

validity of two algorithms for identifying PCS cases and controls

from EHR data: 1) an NLP algorithm with additional filters applied

to coded data; and 2) a coded algorithm, based on only a limited set

of filters applied to coded data. Our evaluation proceeded in two

stages. First, we manually reviewed a subset of records identified

by the NLP and coded algorithms and calculated positive and

negative predictive values. Second, we compared all identified

cases and controls on known PCS risk factors to determine the

epidemiology of PCS in an EHR-recruited sample. We conclude

with recommendations for designing future EHR algorithms to

diagnose TBI and PCS.

Methods

Data source

Vanderbilt University Medical Center (VUMC) is a tertiary
care hospital in Nashville, Tennessee, with affiliated clinics
throughout the region. EHRs have been used at VUMC since the
early 1990s, and data are compiled in a de-identified IBM Ne-
tezza database known as the Synthetic Derivative (SD).27 The SD
contains more than 2.8 million patient EHRs, and these are linked
to DNA biosamples in >275,000 patients, who could eventually
be used in genetic studies of PCS. Available data in the SD in-
clude basic demographics, billing codes, procedure codes, clin-
ical documents, medications, laboratory values, and dates of
inpatient stays and outpatient visits. The majority of billing codes
are International Classification of Diseases, Ninth Revision
(ICD-9), with VUMC transitioning to Tenth Revision (ICD-10)
in 2015. The resource is continuously updating, and data ex-
tracted for this project were current to January 13, 2017. The
Vanderbilt University Institutional Review Board approved this
project (IRB #151116).

Gold standard PCS definition

PCS was defined as one or more post-concussion symptoms
(Supplementary Table S1) that persisted beyond 14 days of an
mTBI. The TBI was considered moderate/severe and subsequently
excluded if it was: 1) penetrating; 2) accompanied by a neurosur-
gical procedure including hemorrhage evacuation, decompression,
or invasive intracranial pressure monitoring within 7 days; 3) as-
sociated with a GCS score <13; or 4) accompanied by a hospital-
ization >5 days. A strict concussion definition also was considered,
in which the TBI was ineligible in the presence of positive brain
imaging.5 Additional exclusion criteria were <5 years of age, or any
confounding neurological disease diagnosed before the mTBI
(brain tumor, stroke, seizures, meningitis, intracranial abscess,
multiple sclerosis, Alzheimer disease, Parkinson disease, or other
cerebral degeneration).

Sample selection

NLP algorithm. We developed a multi-step NLP algorithm
that leveraged contextual information in clinical documents to di-
agnose PCS cases and controls. The algorithm identified keywords
for ‘‘post-concussion syndrome’’ and PCS symptoms (Supple-
mentary Table S1) from the narrative text of clinical notes and
problem lists using regular expression logic built into Netezza
Structured Query Language. Keyword misspellings were defined
a priori (e.g., ‘‘postconcussion syndrome’’), and mentions were
excluded if a negation phrase occurred within 15 characters before
a keyword (e.g., ‘‘no evidence of post-concussion syndrome’’).
Negation phrases were not expanded to characters after the key-
word, as this was more likely to capture a negation phrase not
associated with the original keyword. Text was not vectorized, and
there were no filters on problem lists since at VUMC these are
completed anew by providers at each clinical encounter.
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FIG. 1. Inclusion and exclusion criteria used by the natural language processing algorithm to select mild traumatic brain injury
(mTBI) patients from the Vanderbilt University Medical Center Synthetic Derivative (VUMC SD), with and without subsequent post-
concussion syndrome (PCS).
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The NLP algorithm was augmented by filters on coded data, and
proceeded in five steps (Fig. 1). In step 1, patients with mTBI were
identified using a list of ICD-9 and ICD-10 mTBI codes (Sup-
plementary Table S2). In step 2, we excluded patients with evi-
dence of severe TBI, defined as any TBI code (Supplementary
Table S3) followed by a neurosurgical procedure code (ICD-9 01*
and 02*; ICD-10 00*, 0N*, R40.242, R40.243; Current Proce-
dural Terminology 61000–62258) within 7 days. These neuro-
surgical procedure codes were previously found to be 97%
sensitive and 94% specific for severe TBI.28 In step 3, we iden-
tified the most recent eligible mTBI using discharge windows as a
proxy for TBI severity, and excluded mTBI codes that fell within
a discharge window of >5 days. If a patient had multiple mTBI
codes and the most recent code fell within a discharge window >5
days, the algorithm iterated over the second most recent mTBI
code in the chart, checked whether it fell within a discharge
window >5 days, and so on until an eligible mTBI code was found
or no previous mTBI codes remained. If a patient had no eligible
mTBI codes, they were excluded. In step 4, patients meeting the
following criteria were excluded: <5 years of age at the mTBI; a
moderate or severe TBI (defined as any TBI code occurring in a
discharge window >5 days) within 365 days of the mTBI; or a
history of confounding neurological disease diagnosed before the
mTBI (Supplementary Table S4).

In step 5, patients were classified as cases and controls based on
the occurrence of PCS billing codes (ICD-9 310.2, ICD-10
F07.81) or keywords. Controls had no evidence of PCS anywhere
in their record, and additionally had to have visited VUMC as an
outpatient at least once in the 365 days before and once in the 365
days after the mTBI (i.e., using VUMC as their ‘‘medical home’’).
Cases had to have a PCS billing code or keyword on the same day
as at least one PCS symptom billing code or keyword (Supple-
mentary Table S1), and the PCS code or keyword needed to occur
at least 14 days and up to 365 days after the mTBI. Patients
identified by this algorithm are hereafter called NLP cases and
NLP controls.

Coded algorithm. We selected a second case group entirely
independent of the NLP algorithm based on only filters applied to
coded data. The algorithm filters were deliberately minimal, to
evaluate the performance of a simple case ascertainment scheme
that maximized the number of included patients. Cases were re-
quired to have two or more instances of the PCS billing code (ICD-
9 310.2, ICD-10 F07.81) on different days, a widely adopted
standard for defining cases in EHR research,25,29 and we excluded
patients with any neurosurgical procedure code in their record
(ICD-9 01* and 02*; ICD-10 00*, 0N*, R40.242, R40.243; Current
Procedural Terminology 61000–62258), patients who were <5
years of age at their first PCS code, and those with confounding
neurological histories diagnosed before their first PCS billing code.
Patients identified by this algorithm are hereafter called coded
cases.

Variable definitions

Structured data were used to describe the injury and symptom
characteristics of patients identified by the NLP and coded algo-
rithms. Variable definitions were based only on structured data, for
ease of comparability across the NLP and coded algorithm patient
groups. TBI morbidity group was derived by mapping ICD codes to
categories of skull fracture, contusion, hemorrhage, concussion,
and other/unspecified (Supplementary Table S3). Brain imaging
was captured by ICD billing and procedure codes (Supplementary
Table S5). TBI cause was assigned by mapping ICD external cause
codes to categories of motor vehicle collision, fall, struck by and
against, and assault (Supplementary Table S6). Finally, data on
PCS symptoms were extracted from ICD codes (Supplementary
Table S1).

Manual review

The validity of both algorithms was evaluated by manually re-
viewing the clinical documents of 50 NLP cases, 50 NLP controls,
and 50 coded cases. Records were randomly selected by JD, en-
suring that the NLP and coded case groups were non-overlapping.
We extracted data on TBI severity, care sought, cause of injury, and
subsequent PCS symptoms. A REDCap data collection instrument
was piloted on 20 records, 10 of which were reviewed in triplicate
( JD, PK, and AYK or SLZ), with high inter-rater agreement (Co-
hen’s kappa = 0.80). The remaining 140 records were reviewed by
PK, with all disagreements resolved by consensus. Reviewers were
not blinded to case status.

Statistical analysis

The NPV of the NLP algorithm was the proportion of manually-
reviewed controls with no PCS symptoms persisting beyond 14
days of an eligible mTBI or concussion. The PPV of the NLP and
coded algorithms were the proportion of manually-reviewed cases
that met the broad mTBI and strict concussion definitions of PCS.
In evaluating records, we excluded first on the presence or absence
of PCS symptoms, and second on TBI severity. We chose this order
because PCS is ultimately defined by the persistence of symptoms,
and we wanted to count the number of potential cases who were
excluded based on TBI severity.

In addition to predictive values, EHR diagnostic algorithms can
be validated by replicating known epidemiological associa-
tions.25,26 We therefore compared each case group to controls on
age, sex, and pre-morbid diagnoses that have previously been
associated with PCS risk: ADHD, anxiety, depression, learning
disability, migraine, and post-traumatic stress disorder (PTSD).
Diagnoses were captured by billing codes (Supplementary
Table S7), and we only considered those that occurred before the
eligible mTBI in NLP patients, and before the first PCS code in
coded patients. An age difference was detected by a t-test while
categorical variables were evaluated by chi-squared tests. Statis-
tical tests were two-sided, and all analyses were conducted in R
version 3.3.30

Results

Sample characteristics

The NLP algorithm identified 28,114 patients with one or more

mTBI billing codes, 26,857 with an eligible mTBI, and 24,255

potential cases and controls after excluding patients <5 years of age

at the eligible mTBI, those with evidence of a moderate/severe TBI

following the mTBI, and those with neurological disease preceding

the eligible mTBI. Of these, 507 cases and 10,857 controls met our

inclusion criteria. Cases were on average 2 years younger than

controls (Table 1) and were more likely to be female. More than

half of mTBI codes in cases and controls mapped to the ‘‘Con-

cussion/loss of consciousness’’ TBI morbidity group, while the

remainder mostly fell into the ‘‘Other and unspecified head injury’’

category. Details of the eligible TBI were more complete among

controls than in cases: brain imaging was more common in controls

(52.6% vs. 31.0%), as was documentation of the cause of injury

(recorded in 65.7% of controls vs. 35.7% of cases), suggesting that

controls were more likely than cases to have sought care at VUMC

for the eligible mTBI, and that cases were only coming to VUMC

and being assigned a head injury code at follow-up. Among those

with a documented cause of injury, motor vehicle collision was the

most common cause in both cases and controls. Nearly one-fifth of

patients were identified by PCS keywords as opposed to billing

codes, and only 46.4% had two or more PCS billing codes. By

definition, all cases had at least one PCS symptom keyword or
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billing code, but we used only billing code data to compare PCS

symptoms across cases and controls so that comparisons could also

be made with coded cases. Memory difficulties (18.1%), dizziness

(17.9%), and headache (15.2%) were the most common PCS

symptoms captured by billing codes in the year following the mTBI

in cases, and these were much more common in cases than in

controls.

The coded algorithm identified 5039 patients with at least one

PCS code and 1372 patients with at least two PCS codes. Of these,

we excluded 30 who were younger than 5 years of age, 36 who had

a neurosurgical procedure code, and 164 patients with a history of

neurological disease when the first PCS code was assigned, for a

final sample of 1142 coded cases (266 patients were identified as

cases by both algorithms). Exactly half of cases were female. A TBI

code was found in 61.8% of cases, again suggesting that many PCS

patients either did not seek care for the TBI, or sought care outside

of VUMC. Most TBI codes mapped to the milder categories of

‘‘Concussion/loss of consciousness’’ and ‘‘Other and unspecified

head injury,’’ although a small number mapped to the more severe

categories of ‘‘Skull fracture’’ (8.2%), ‘‘Contusion’’ (4.9%), and

‘‘Hemorrhage’’ (10.5%).

Nearly half of patients had brain imaging, a proportion that was

much higher than that in NLP cases, but this likely reflected dif-

ferences in how brain imaging was defined in both case groups

(Supplementary Table S5). In NLP patients, brain imaging codes

had to occur within 7 days after the eligible mTBI; in coded cases,

since the date of the eligible mTBI was unknown, brain imaging

codes had to occur within 365 days before and 30 days after the first

PCS code. The cause of injury was documented in 36.9% of coded

cases, and motor vehicle collision was again the most common cause

of injury. Coded cases had a median of 3.0 PCS billing codes (range,

2 to 125), with a median maximum of 65.5 days between first and last

code (range, 1 to 6102). Thirty-two coded cases had first and last PCS

codes separated by a more than 365 days, and 334 had first and last

PCS codes separated by <14 days. The top three PCS symptoms were

headache (31.9%), memory difficulties (14.3%), and dizziness

Table 1. Characteristics of Patients Identified by the NLP and Coded Algorithms

NLP controls (n = 10,857) NLP cases (n = 507) Coded cases (n = 1142)

Female gender, n (%) 4259 (39.2) 257 (50.7%) 571 (50.0)
Age, mean (SD)a 30.29 (18.54) 28.25 (17.15) 34.09 (18.36)
Pediatric (< 18 years of age), n (%)a 3842 (35.4) 222 (43.8) 294 (25.7)
TBI code and morbidity group, n (%)b 10857 (100) 507 (100) 706 (61.8)

Skull fracture 13 (0.1) 1 (0.2) 94 (8.2)
Contusion 0 (0) 0 (0) 56 (4.9)
Hemorrhage 0 (0) 1 (0.2) 120 (10.5)
Concussion/loss of consciousness 6349 (58.5) 262 (51.7) 444 (38.9)
Other and unspecified head injury 4918 (45.3) 253 (49.9) 560 (49.0)

Brain imaging, n (%) 5714 (52.6) 157 (31.0) 544 (47.6)
TBI cause, n (%)

Motor vehicle collision 3877 (35.7) 90 (17.8) 246 (21.5)
Fall 1156 (10.6) 38 (7.5) 92 (8.1)
Struck by and against 684 (6.3) 47 (9.3) 63 (5.5)
Assault 330 (3.0) 6 (1.2) 20 (1.8)
Unknown 4810 (44.3) 326 (64.3) 721 (63.1)

Any PCS code 0 420 (82.8) 1142 (100)
Two or more PCS codes 0 235 (46.4) 1142 (100)
PCS symptom codesc

Any 799 (7.4) 208 (41.0) 582 (51.0)
Anxiety 121 (1.1) 21 (4.1) 61 (5.3)
Apathy 0 0 0 (0)
Depression 325 (3.0) 37 (7.3) 39 (3.4)
Concentration difficulties 7 (0.1) 20 (3.9) 13 (1.1)

Dizziness 232 (2.1) 91 (17.9) 148 (13.0)
Emotional lability 0 0 0 (0)
Fatigue 109 (1.0) 19 (3.7) 11 (1.0)
Headache 102 (0.9) 77 (15.2) 364 (31.9)
Irritable 1 (0) 0 1 (0.1)
Impulsive 0 0 0 (0)
Memory difficulties 164 (1.5) 92 (18.1) 163 (14.3)
Sleep disturbances 91 (0.8) 16 (3.2) 32 (2.8)
Other 34 (0.3) 7 (1.4) 31 (2.7)

aAge was determined at the time of the most recent eligible mTBI code in NLP patients and at the time of the first PCS billing code in coded patients.
bSome NLP patients received multiple TBI codes on the date of the qualifying event, and some coded cases had multiple TBI codes within the window

of 365 days before and 30 days after the first PCS billing code. Each TBI code was mapped to TBI type categories, which is why the row counts exceed
the number of individuals in each group.

cBy definition, all NLP cases had a PCS symptom billing code or keyword. For comparison with coded cases, however, in this table we only report the
distribution of symptom codes. Symptom codes had to have been recorded up to 365 days after the eligible mTBI in NLP cases and controls, while in
coded cases, symptom codes had to have been recorded on the same day as any PCS code.

NLP, natural language processing; SD, standard deviation; TBI, traumatic brain injury; PCS, post-concussion syndrome.
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(13.0%), and while these were much more common in coded cases

than in controls, any code was still only found in 51.0% of cases.

Algorithm predictive values

The NPV of the NLP algorithm was 80% (Table 2). Two controls

were excluded because they had PCS symptoms during the eligible

time window and thus were true cases, but they were misclassified

by the algorithm because providers had not labeled the symptoms

as PCS. The first patient was <18 years of age with symptoms that

resolved within 4 weeks, and recovery is known to take longer in

youth.17 The second patient was an assault victim whose physician

attributed the PCS symptoms to ‘‘tension.’’ Four controls were

excluded because the TBI was of unclear severity, despite our ef-

forts to ensure that controls had sufficient data in their EHRs. An

additional four controls were excluded because the TBI was

moderate/severe, mostly by virtue of a hospitalization >5 days.

Although the algorithm had excluded patients with an eligible TBI

code occurring during a hospitalization >5 days, upon manual re-

view, the algorithm-identified eligible TBI did not always corre-

spond to the true TBI, which in these patients was associated with a

lengthy hospitalization. Of the 40 remaining controls, one had

positive brain imaging, corresponding to an NPV of 78% for the

strict concussion definition.

The PPV of the NLP algorithm was 82%, and most cases were

excluded because there was no evidence of PCS symptoms after the

eligible TBI (n = 2) or because the symptoms resolved within 14

days of the TBI (n = 4). Three of these six patients had no PCS

billing codes, only keywords. One keyword was based on a self-

reported diagnosis by the patient, one was included in a negation

phrase that was not captured by the algorithm (‘‘postconcussive

symptoms have resolved’’) and the third was an unsupported pro-

vider diagnosis. Two of the six patients had a PCS billing code, but

no symptoms consistent with PCS, and the last patient was assigned

a PCS billing code at a follow-up visit during which symptoms

were deemed to have resolved. After removing these patients,

two additional NLP cases were excluded because the TBI was

moderate/severe, again identified by a hospitalization >5 days,

and a single case was excluded for other reasons (a prior pituitary

tumor). Restricting to cases with negative imaging reduced the

PPV to 76%.

The PPV of the coded algorithm was 76% (Table 2). Reasons for

exclusion were an absence of symptoms (n = 4), symptoms first

reported >365 days after index TBI (n = 3), a preceding TBI of

unclear severity (n = 1), and evidence of moderate/severe TBI

(n = 4). Applying the strict concussion definition reduced the PPV

to 66%. The coded algorithm was simple, based mainly on PCS

billing codes, and the loss of 12 patients for the above reasons

shows the uneven quality of the PCS billing code. Yet, the coded

algorithm has potential for improvement and is appealing for its

ease of implementation and maximal subject retention. Therefore,

in an exploratory analysis, we compared the characteristics of true

and false positives to identify additional features that could im-

prove case ascertainment (Table 3). Although numbers were small,

true cases were less likely to have sought care at VUMC and to have

received a TBI billing code, and were more likely to have at least 14

days between their first and last PCS billing codes and to have a

PCS symptom billing code. The specialization of the provider as-

signing the PCS code did not differ markedly between true and false

positives.

Epidemiology of PCS in EHR

To complement the manual review, we next evaluated the al-

gorithm by comparing the distribution of known PCS risk factors

across algorithm-identified cases and controls. Cases identified

Table 2. Negative and Positive Predictive Values of the Algorithms Determined

in a Randomly Selected Sample of 150 Patients

NLP controls
(n = 50)

NLP cases
(n = 50)

Coded cases
(n = 50)

Symptom-based exclusion criteria applied to controls
PCS symptoms persist beyond 14 days of the index TBI

and are first reported <365 days after the index TBI
2 NA NA

Symptom-based exclusion criteria applied to cases
No PCS symptoms after the index TBI NA 2 4
PCS symptoms resolve within 14 days of the index TBI NA 4 0
PCS symptoms are first reported >365 days after the index TBI NA 0 3

TBI-based exclusion criteria applied to controls and cases
Index TBI was of unclear severity 4 0 1
Index TBI was moderate/severe (categories are not mutually exclusive) 4 2 4

Penetrating head injury 0 0 0
Neurosurgical procedure within 7 days of index TBI 0 0 0
Glasgow Coma Scale score £13 1 0 3
Hospitalization >5 days 3 2 2

Other reasons for exclusion 0 1 0
Patients remaining 40 41 38
Predictive value NPV 5 80% PPV 5 82% PPV 5 76%
Positive imaging 1 3 5
Patients remaining 39 38 33
Predictive value (strict concussion definition) NPV 5 78% PPV 5 76% PPV 5 66%

NLP, natural language processing; PCS, post-concussion syndrome; NA, AUTH; TBI, traumatic brain injury; NPV, negative predictive value; PPV,
positive predictive value.
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by both approaches were more likely than controls to be female

(Table 1; p = 3.25 · 10-7 for NLP cases and p = 2.25 · 10-7 for co-

ded cases). The association with age, however, was discrepant

across case groups; compared to controls, NLP cases were 2 years

younger on average ( p = 1.58 · 10-3), while coded cases were

nearly 4 years older ( p = 4.15 · 10-11). Pre-morbid anxiety, mi-

graine, and PTSD were more frequent in both case groups versus

controls (Table 4). A higher prevalence of depression in cases also

was found, but the increase was only statistically significant in the

larger sample of coded cases. In contrast, diagnoses with uncer-

tain associations with PCS, ADHD, and learning disabilities were

equally common in our cases and controls, suggesting that the

enrichment of pre-morbid anxiety, migraine, and PTSD in our

cases captured true associations as opposed to a systematic un-

derreporting of diagnoses in controls.

The above exploratory analysis of the 50 manually reviewed

coded cases suggested that the coded algorithm could be improved

by filtering on TBI codes and PCS code density. To further in-

vestigate the effect of these filters, we additionally report the

characteristics and PCS risk factors in coded cases 1) with and

without a TBI billing code, 2) with and without a moderate/severe

TBI billing code, and 3) with at least 14 days between first and last

PCS billing codes. Coded cases with an TBI billing code were

younger and more likely to be male than coded cases without an

TBI billing code (mean age 31.4 vs. 38.4 years; 53.1% vs. 45.0%

male; Supplementary Table S8). Among patients with TBI billing

codes, those with moderate/severe as opposed to mild TBI codes

were even more likely to be male (65.3% vs. 49.3%). Conversely,

imposing a minimum time between first and last PCS codes reduced

the proportion of males in the sample (46.2% vs. 50.0% of all coded

cases) and of patients with an TBI billing code (55.6% vs. 61.8% of

all coded cases). The cardinal pre-injury PCS risk factors of anxi-

ety, migraine, and PTSD were marginally more prevalent in coded

cases without an TBI billing code versus with an TBI billing code,

and in coded cases with at least 14 days between first and last PCS

codes versus all coded cases (Supplementary Table S9). The known

risk factors, however, were markedly absent in the sample of coded

patients with a moderate/severe TBI billing code, suggesting that

Table 3. Characteristics of True and False Positives Identified by Manual Review of 50 Coded Cases

True positives (n = 38) False positives (n = 12)

Care sought for index TBI, n (%)
Yes - VUMC 17 (45) 7 (58)
Yes - Not VUMC 9 (24) 0 (0)
No 2 (5) 1 (8)
Unknown 10 (26) 4 (33)

TBI code and morbidity group, n (%)b 23 (61) 9 (75)
Skull fracture 3 (8) 1 (8)
Contusion 1 (3) 1 (8)
Hemorrhage 4 (11) 2 (17)
Concussion / loss of consciousness 14 (37) 6 (50)
Other and unspecified head injury 21 (55) 6 (50)

First and last PCS codes separated by a minimum of 14 days, n (%) 31 (82) 7 (58)
First and last PCS codes separated by a maximum of 365 days, n (%) 1 (3%) 0 (0)
PCS symptom codes - any 26 (68) 6 (50)
Specialty of provider assigning the first PCS billing code, n (%)

Neurology 15 (39) 5 (42)
Primary care 2 (5) 0 (0)
Emergency medicine 8 (21) 4 (33)
Psychiatry 0 (0) 0 (0)
Sports medicine 2 (5) 0 (0)
Other 6 (16) 0 (0)
Unknown 5 (13) 3 (25)

TBI, traumatic brain injury; VUMC, Vanderbilt University Medical Center; PCS, post-concussion syndrome.

Table 4. Pre-Injury Diagnoses in Controls and Cases

Diagnosis
NLP controls
(n = 10,857)

NLP cases
(n = 507) p value vs. controls

Coded cases
(n = 1142) p value vs. controls

ADHD, n (%) 227 (2.1) 14 (2.8) 0.39 24 (2.1) 1
Anxiety, n (%) 560 (5.2) 39 (7.7) 0.02 112 (9.8) 1.26E-10
Depression, n (%) 581 (5.4) 36 (7.1) 0.11 101 (8.8) 1.74E-06
Learning disability, n (%) 129 (1.2) 10 (2.0) 0.17 19 (1.7) 0.21
Migraine, n (%) 246 (2.3) 35 (6.9) 1.31E-10 117 (10.2) 4.16E-50
PTSD, n (%) 100 (0.9) 14 (2.8) 1.25E-04 27 (2.4) 1.18E-05

Diagnoses (see Supplementary Table S7) had to occur before the eligible mTBI in NLP patients, and before the first PCS billing code in coded patients.
NLP, natural language processing; ADHD, attention deficit hyperactive disorder; PTSD, post-traumatic stress disorder.
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these moderate/severe TBI billing codes could be useful exclusion

criteria in future algorithms.

Discussion

TBIs are sustained by more than 1 in 120 Americans annually,1

and adverse outcomes affect many. In an initial attempt to capture

patients with mTBI and PCS from an EHR, we report moderate

predictive values for both an NLP-based algorithm, and a simpler

coded algorithm that used only structured data. We also show that

including all algorithm-identified patients in case-control compar-

isons recovered the known epidemiology of PCS, suggesting that

when the sample size is large, true associations can be detected

despite imperfect patient classification. Female gender, prior mood

disorders, and headache history are some of the strongest predictors

of poor recovery after an mTBI.11–16 We used only EHR data to

capture pre-injury medical histories and found statistically signifi-

cant associations with these variables. Our results indicate that EHR-

based subject ascertainment can substantially increase sample sizes,

paving the way for discoveries of novel biological determinants of

recovery that could ultimately lead to early identification and inter-

vention for patients at risk.

The NLP algorithm had the best PPV (82%), in line with that of

EHR algorithms for other neuropsychiatric disorders.24,31,32 In

addition, the algorithm detected patients by PCS keywords that

were not captured by the coded algorithm. These keywords,

however, were of questionable validity. Moreover, the number of

cases captured by the NLP algorithm was less than one-tenth of

the patients in the SD with a single PCS billing code, and requiring

coded documentation of the TBI prior to the PCS diagnosis ex-

cluded many potential cases. The algorithm also was time-

consuming to develop and test and complicated to implement.

These strengths and limitations of NLP algorithms are well rec-

ognized.24 EHR algorithms for autism,31 bipolar disorder,33 and

major depression24 had the best PPV (*85%) when narrative text

was included, and a systematic review of 19 algorithms across a

range of chronic and infectious conditions found that incorpo-

rating narrative EHR text improved case detection from 61.7% to

78.1%.34 Nonetheless, fewer patients have sufficient EHR data to

be classified by NLP algorithms, leading to considerable reduc-

tions in sample size.24,35

The coded algorithm had a lower PPV (76%) but captured twice

as many cases. Diagnostic and procedure codes can be ‘‘noisy,’’ yet

they have been used repeatedly in EHR research to validate known

environmental and genetic associations, and for novel discov-

ery.25,26,35–38 In the largest proof-of-concept experiment, 77 robust

disease-gene associations were tested for replication using disease

diagnoses derived from ICD-9 billing codes in 13,835 patients.39

Sixty-six percent of the associations replicated, again showing that

large datasets can overcome imperfect case-control assignments.

The coded algorithm is therefore appealing for further development

since it includes many patients and recovers known PCS risk fac-

tors, even in the presence of patient misclassification.

Another strength of billing codes is that they reflect real clin-

ical practice, and discoveries made with these data may better

translate into clinical advances than discoveries made in highly

ascertained samples. Real-life data are messy: physicians as-

signed PCS billing codes even when patients had moderate/severe

TBI. We excluded these patients, but arguably they should be

included in future studies of PCS since they represent the true

clinical spectrum of disease. Moreover, the biology that underlies

TBI recovery may be insensitive to TBI severity. Large pro-

spective registry-based studies have found an increased incidence

of adverse psychological, cognitive, emotional, and social out-

comes across the TBI severity spectrum, just to a lesser extent in

mTBI patients.40–43 Future EHR-based studies of PCS could

therefore test all PCS patients regardless of TBI severity in sen-

sitivity analyses.

We compared our algorithms’ performance with a gold standard

PCS definition, but diagnostic criteria for PCS are contentious.44

The term PCS was first used in the 1930s. In the ICD-9 manual,

PCS was described as a constellation of symptoms, and in the

Diagnostic and Statistical Manual of Mental Disorders, Fourth

Edition (DSM-IV) and ICD-10 manuals, explicit diagnostic criteria

were provided.45 The agreement between DSM-IV and ICD-10

criteria, however, is poor,45 the Diagnostic and Statistical Manual

of Mental Disorders, Fifth Edition has removed the PCS diagnosis

entirely in favor of defining mild or major neurocognitive disorder

following TBI,46 and few clinicians even adhere to DSM or ICD

guidelines in practice.47 Large-scale EHR data offer new oppor-

tunities to resolve these diagnostic discrepancies by revealing how

TBI patients actually cluster and recover clinically. Data-driven

approaches have already uncovered novel autism spectrum disorder

subgroups using the EHR,48 and machine learning algorithms ap-

plied to EHR data have accurately predicted suicide attempts up to

2 years in advance.49 Our study is an important first step toward

applying similar tools to the EHR of TBI patients.

Limitations and strengths

Algorithms were developed and tested at only a single insti-

tution. Also, the PPVs were modest but in line with the PPVs of

EHR algorithms published for other psychiatric disorders.24,31,33

The NPV of the NLP algorithm, on the other hand, was lower than

expected. Insufficient data to classify TBI severity was a leading

reason for excluding controls, emphasizing the challenges of us-

ing EHR data for research when care is fractured across providers.

In addition, our study was only designed to determine the algo-

rithms’ predictive values, not their sensitivity or specificity; cal-

culation of these parameters would require a gold standard case–

control set. Nonetheless, this study demonstrates the feasibility of

ascertaining large samples of PCS cases and controls from the

EHR, and is a valuable starting place for future algorithm de-

velopment efforts.

Recommendations for future EHR-based
algorithms of PCS

Our analyses revealed the advantages and disadvantages of

different approaches for identifying PCS cases and controls from

EHRs. Recommendations for future algorithms are as follows:

1. Select cases by PCS billing codes that meet a pre-specified

code density threshold. This criterion will help remove

cases who were assigned PCS billing codes at the time of

injury, without subsequent evidence of symptom persis-

tence. Do not require a TBI billing code, as this enriches the

sample for patients who seek care only for the index TBI

and not for the persistence of symptoms, and filter judi-

ciously on PCS symptom codes to avoid removing too many

potential cases.

2. Exclude cases with moderate/severe TBI billing codes.

These codes mostly captured cases who sought care for the

index TBI, and not for ongoing PCS symptoms.
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3. Select controls with mTBI billing codes, and filter those with

neurosurgical procedure codes, moderate/severe TBI billing

codes, lengthy hospitalizations, and insufficient pre- and

post-injury data. Although these recommendations violate

epidemiological first principles (a case is an eligible control,

were it not for disease diagnosis), requiring cases to have

EHR documentation of the TBI (as in our NLP algorithm)

was too restrictive. Instead, we suggest imposing strict TBI

severity filters on controls to minimize potential bias caused

by controls having more severe TBI or greater health-

seeking behavior relative to cases.

Conclusions

EHRs hold great promise for understanding TBI sequelae. We

show that EHRs are valid for TBI research, and set the stage for more

extensive data linkages, including to biorepositories with genetic

data. Two strategies were employed in the current study to ascertain

patients with mTBI and PCS from the EHR, and each strategy had

tradeoffs. On balance, however, the coded algorithm had a reason-

able PPV, recovered known PCS associations and maximized the

number of included patients. No single approach will be perfect, and

future studies should continue to compare different diagnostic al-

gorithms. EHRs are a vast, growing resource available to many

independent research groups, and the use of EHR-linked biobanks in

TBI research will have far-reaching public health benefits.
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