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Abstract

PulseNet USA is the molecular surveillance network for foodborne disease in the United States. The network
consists of state and local public health laboratories, as well as food regulatory agencies, that follow PulseNet’s
standardized protocols to perform pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS)
and analyze the results using standardized software. The raw sequences are uploaded to the GenomeTrakr or
PulseNet bioprojects at the National Center for Biotechnology Information. The PFGE patterns and analyzed
sequence data are uploaded in real time with associated demographic data to the PulseNet national databases
managed at the Centers for Disease Control and Prevention. The PulseNet databases are organism specific and
provide a central storage location for molecular and demographic data related to an isolate. Sequences are
compared in the databases, thereby facilitating the rapid detection of clusters of foodborne diseases that may
represent widespread outbreaks. WGS genotyping data, for example, antibiotic resistance and virulence profiles,
are also uploaded in real time to the PulseNet databases to improve food safety surveillance activities.
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Introduction

PulseNet USA is the national molecular subtyping
network for foodborne disease surveillance (Swami-

nathan et al., 2001; Gerner-Smidt et al., 2006; Ribot et al., in
press). The network enables the rapid detection of local and
national clusters of foodborne illness, reducing the likelihood of
foodborne outbreaks becoming large and widespread, thus
preventing illness and reducing health care costs (Scharff et al.,
2016). Before PulseNet, these multistate outbreaks often went
undetected because an individual state might only have had one
case and without PulseNet the state may have been unaware that
its case was part of a larger multistate outbreak.

The network consists of 82 state and local public health
laboratories and food regulatory federal agencies coordinated
by Centers for Disease Control and Prevention (CDC) and the
Association of Public Health Laboratories. Individuals in
each laboratory are trained and certified in pulsed-field gel
electrophoresis (PFGE) and whole genome sequencing
(WGS) laboratory methods and data analysis. Laboratories
analyze PFGE and WGS data using a PulseNet-customized
version of BioNumerics (Applied Maths, Sint-Martens-
Latem, Belgium), a commercial off-the-shelf data analysis
and management software. Analyzed data are uploaded to
national databases that contain both PFGE and WGS data and
are housed at CDC. This article provides an update on the

submission of data to the databases as well as their man-
agement, including the types of analyses performed.

PFGE Historical Databases

Before the combined PFGE and WGS databases, CDC
maintained nine separate PFGE-only national databases.
Each database contained PFGE pattern images and associated
demographic information separated by organism: Escher-
ichia coli O157, non-O157 Shiga toxin–producing E. coli
(STEC), non-flexneri Shigella species, Shigella flexneri, Vi-
brio cholerae, Vibrio parahaemolyticus, Salmonella, Lister-
ia, or Campylobacter. By the end of 2017, the historical
PFGE databases had a combined total of >800,000 entries
representing bacterial isolates from human, food, animal, and
environmental sources (Fig. 1). Salmonella is the most
common foodborne bacteria monitored by PulseNet, causing
an estimated one million illnesses each year; therefore, the
Salmonella PFGE national database contains the majority of
PFGE patterns uploaded to PulseNet (Scallan et al., 2011)
(Fig. 2).

PulseNet participating laboratories maintained their own
local PFGE databases containing tagged image file format
(TIFF) images of PFGE patterns. The TIFF images were
analyzed using BioNumerics software with PulseNet Mas-
terScripts installed. MasterScripts were customizations in
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BioNumerics developed by Applied Maths for PulseNet. The
scripts ensured that data were standardized and comparable
within each database and provided reference standards, in-
formation fields, and PFGE experiment types for the
organism-specific entries (Gerner-Smidt et al., 2006).

PFGE TIFF images were analyzed in the local databases
by marking bands that corresponded to their molecular
weights. Each lane on the TIFF image represented a single
bacterial fingerprint, or PFGE pattern, digested with a re-
striction enzyme.

Demographic data associated with each pattern were entered
into the database. The demographic data included information
such as isolate source (human, food, environmental, and ani-
mal), serotype or species data, and isolate collection date. Per-
sonal information such as name or street address was not
uploaded for isolates collected from patients, but certain data
needed to characterize foodborne disease clusters, such as pa-
tient location, gender, and age, were included.

Within 4 working days of receiving isolates in the labo-
ratory, the analyzed TIFF image and the demographic data
were uploaded to the organism-specific national databases
located at CDC. Once patterns were uploaded, database
managers assigned alphanumeric pattern names to the up-
loads within 24 h. Each pattern name had three components.

The first three characters represented the organism, the next
three characters represented the enzyme used to generate the
pattern, and the last four characters represented the pattern
number, for example, EXHX01.0001, PFGE XbaI pattern
one for E. coli O157. Indistinguishable patterns were given
the same pattern name (Gerner-Smidt et al., 2006). Pattern
names allowed database managers to quickly graph indis-
tinguishable patterns over time to detect clusters that may
become widespread outbreaks.

PFGE clusters were defined as two or more clinical isolates
that shared the same pattern and whose frequency exceeded
that pattern’s historical occurrence when compared with the
previous 4 years. When a cluster was detected, a unique
cluster code was assigned to database entries included in the
cluster. The cluster code identified the time (month, year)
when the cluster was detected, the geographic distribution
(state or multistate), and the organism involved, for example,
1702MLEXH-1, the first multistate cluster of E. coli O157
detected in February 2017 (Gerner-Smidt et al., 2006).

Although PFGE had long been the gold standard for Pul-
seNet, it did have limitations. Not all bacterial strains produce
PFGE patterns when cut with standard restriction enzymes,
and PFGE may not fully distinguish background cases from
outbreak cases for clonal organisms such as Salmonella

FIG. 1. Graph of the number of PFGE pattern uploads to the Escherichia coli O157, E. coli non-O157 STEC, non-flexneri
Shigella species, Shigella flexneri, Vibrio cholerae, Vibrio parahaemolyticus, Listeria species, and Campylobacter species
PFGE National Databases from 2007 through 2017. PFGE, pulsed-field gel electrophoresis; STEC, Shiga toxin–producing
E. coli.
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serotype Enteritidis (Deng et al., 2014). Isolates with dif-
ferent PFGE patterns can also be highly related. If PFGE data
are the only method used for cluster detection, those cases could
be excluded from the cluster (Besser et al., in press). To further
characterize the isolates, laboratories also determined the sero-
type, antibiotic resistance, and/or virulence using conventional
methods. Marking pattern bands is subjective and at times bands
were not marked the same way across laboratories.

To enhance cluster detection and surveillance, PFGE has
been phased out and replaced with WGS as PulseNet’s primary
surveillance tool. WGS provides superior discrimination
compared with PFGE and allows multiple characterizations of
isolates with a single workflow (Besser et al., 2018). With the
introduction of WGS, the nine PFGE databases were merged
and migrated into five databases (see Combined PFGE and
WGS Databases section) in 2019. This configuration enables
the users to still access historical PFGE data as well as WGS
data in the same database.

Combined PFGE and WGS Databases

The first organism to become routinely subtyped by WGS
in PulseNet was Listeria monocytogenes. Subtyping L.
monocytogenes using WGS began as a pilot project in 2013
( Jackson et al., 2016). The Listeria Pilot Project was one of

the U.S. Department of Health and Human Services (HHS)
secretary’s picks in 2014 in the HHS innovates competition,
and also received the CDC Director’s Award for Innovation
the same year. For a number of years, WGS and PFGE were
performed in parallel in PulseNet, but since 2018, WGS has
been the only method PulseNet participants have been re-
quired to use for Listeria subtyping.

The combined WGS and PFGE databases are being man-
aged at CDC using the most recent version of BioNumerics
(v 7.6), which has added functionality for analyzing nucleic
acid sequence data. Whereas there were nine separate data-
bases for PFGE, there are only five databases for WGS: Es-
cherichia, which combines E. coli O157, non-O157 STEC,
non-flexneri Shigella species, and Shigella flexneri into one
database; Salmonella; Listeria; Campylobacter; and Vibrio,
which combines V. cholerae and V. parahaemolyticus into
one database and will also include V. vulnificus. The four
former databases have been validated and are implemented,
but Vibrio is still under validation. Organisms historically
separated in PFGE databases were combined by genus/spe-
cies in WGS databases due to the genetic similarity of the
organisms. As of the writing of this article, the databases had
a combined total of >125,000 sequences.

Database plugins are used to add PulseNet data fields,
experiment types, and WGS-related features. If both PFGE

FIG. 2. Graph of the number of PFGE pattern uploads to the Salmonella PFGE National Database from 2007 through
2017.
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and WGS profiles are available, the isolate accession number
and demographic data are linked to both PFGE and WGS data
in the combined PFGE and WGS national databases. This
allows both data types to be used simultaneously in cluster
investigations.

PulseNet participants maintain their own local reference
identification database and their own local combined PFGE
and WGS databases, giving them access to the same func-
tionalities as the national databases. After the raw sequence
data are linked to an entry in the local reference identification
database, the sequence is submitted to a high capacity com-
puting cluster at CDC, the ‘‘calculation engine,’’ for de novo
assembly and average nucleotide identity to determine the
taxonomic identification (genus and species) of the isolate
(Thompson et al., 2013).

The sequence is checked for contamination, and basic
quality metrics (Q-scores of reads 1 and 2, average coverage,
and sequence length) are assessed on the assembled sequences.
Assemblies, quality metrics, and the taxa identification for
sequences that pass the initial quality check are imported into a
local organism-specific database that contains both PFGE and
WGS data generated by the local laboratory. The organism-
specific database contains demographic data associated with
the isolate, including, but not limited to, source information
(human, food, environmental, and animal), serotype or species
data, and isolate collection date.

After the data have been imported into the organism-
specific database, each laboratory again submits its assem-
blies to the calculation engine, and allele calls, as well as
genotyping data such as serotype, antibiotic resistance, vir-
ulence, and plasmid identification, are retrieved. Additional
quality data determining percentage core loci identified are
also obtained.

The raw sequence data of good quality sequences (those
with percentage core ‡95%) are uploaded to the GenomeTrakr
or PulseNet bioprojects at National Center for Biotechnology
Information (NCBI) (Timme et al., 2017). Sequence files are
large and require a large amount of disk space. Uploading the
raw data to NCBI allows the public health laboratories to store
their data safely without purchasing extra disk space for stor-
age. Since NCBI is a publically available website, the se-
quence is given an anonymized unique identifier before
uploading to protect the identity of the case patient. To further
anonymize the data, minimal demographic information is in-
cluded (Ribot et al., in press). After the sequence has been
submitted to NCBI, NCBI-assigned accession numbers are
downloaded into the local database so isolate information can
be easily linked back to NCBI.

All laboratories are responsible for uploading their own
sequence data and demographic data to NCBI. Making data
publically available on NCBI allows comparison of sequence
data with non-PulseNet laboratories. This is especially
valuable when contaminated food is imported or exported
globally. The raw sequence data from non-PulseNet labora-
tories on NCBI can be linked to an entry in BioNumerics and
processed through the calculation engine at CDC to compare
with sequences in the PulseNet network.

Once data are analyzed, laboratories upload allele calls,
genotyping data, demographic data, and NCBI information to
the national organism-specific databases managed at CDC.
Laboratories are expected to upload analyzed data within 7
working days of receiving a pure culture for DNA extraction

in the laboratory. The uploaded sequence data receive an
automatically assigned allele code similar to the single nu-
cleotide polymorphism (SNP) address concept developed
and used by Public Heath England for foodborne disease
surveillance in Europe (Inns et al., 2017). An allele code is a
unique name given to all sequences based on the core genome
multilocus sequence typing (cgMLST) profile. Like a PFGE
pattern name, an allele code provides a way of communi-
cating strain information; however, allele codes demonstrate
phylogenetic relatedness between isolates.

The code comprises the organism identifier and version of
the allele code naming script used, followed by a set of up to
six numbers representing the genetic similarity of the isolate
at different allelic thresholds compared with the rest of the
database, for example, at 5, 10, 25, 50, 100, and 250 allelic
differences. The codes are based on the allelic thresholds that
were shown to be most stable for each organism during the
validations of the databases. Ninety-five percent of the core
genome must be present in order for an allele code to be
assigned (Moura et al., 2016). If a sequence fails quality, the
reason for failing is displayed in place of an allele code. This
provides the generating laboratory information as to why the
isolate should have sequencing repeated.

Clusters are detected based on cgMLST. The allele range
for cases to be considered closely related and coded into a
cluster without other information varies by organism. In
general, a cluster is coded if there are three or more clinical
isolates within 10 alleles in the past 120 d (for Listeria) or
60 d (for all other organisms), and 2 of those cases are within
5 alleles of each other. Any historical sequences of interest
that are closely related to a newly identified cluster are in-
cluded in a report to epidemiologists for follow-up (Besser
et al., in press). Depending on the discriminatory ability of
cgMLST, additional typing schema may be used such as
whole genome multilocus sequence typing (wgMLST) (www
.applied-maths.com/applications/wgmlst) and SNP analysis
(Ribot et al., in press). Clusters are communicated and named
using the same nomenclature for WGS as PFGE by the da-
tabase team at CDC.

After a cluster is detected and throughout the cluster in-
vestigation, information pertaining to the cluster such as
demographic data and allele code is communicated to CDC
epidemiologists and to the laboratories in the PulseNet net-
work through e-mail, the PulseNet SharePoint site, and at
meetings. New cases are added to the cluster as uploads are
received and evaluated (Gerner-Smidt et al., 2006).

PulseNet participants can download cluster codes, allele
codes, and PFGE pattern names back into their laboratory’s
local databases, enabling them to manage their isolates in-
volved in clusters locally and to search for clusters at the local
level. In addition, laboratories can connect to the national
databases to view PFGE, WGS, and demographic data up-
loaded by all PulseNet participating laboratories, which al-
lows laboratories to see whether sequences or patterns of
interest are being seen in other areas of the country (Fig. 3).

Discussion

PulseNet’s transition to WGS as the primary subtyping
tool for surveillance was completed for Listeria, Salmonella,
E. coli, Shigella, and Campylobacter in 2019. Vibrio, Yersi-
nia, and Cronobacter will follow.
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Having a database containing both PFGE and WGS data
allows laboratories to analyze all data in one location while
maintaining the historical context of the data. With the in-
creased resolution of WGS, it has become possible to in-
vestigate outbreaks stretching over many years, such as the
L. monocytogenes outbreak linked to ice cream (https://
www.cdc.gov/listeria/outbreaks/ice-cream-03-15/index.html).
However, only a fraction of historical isolates, mainly from
past outbreaks, have been sequenced. If a new cluster is de-
tected using WGS, PFGE may be run on representative iso-
lates in the cluster. The PFGE patterns of representative
isolates from the newly detected cluster can then be com-
pared with historical PFGE patterns. Historical patterns
found to be indistinguishable from the new cluster can then
be sequenced. By maintaining the PFGE databases, deter-
mining which historical isolates should be sequenced can be
prioritized, providing the possibility of finding historical
isolates closely related to current clusters.

The WGS workflow generates a wealth of data that, al-
though costly compared with PFGE (100–200 USD per iso-
late at CDC for WGS vs. 25–30 USD per isolate at CDC for
PFGE), will make its use increasingly cost efficient. Because
the serotype, virulence profile, and complete antimicrobial
resistance profile can be predicted from the sequence, the
public health laboratories may largely replace the traditional
methods previously used to generate this kind of data.

Using WGS to detect clusters reduces the number of
background cases erroneously included in outbreaks com-
pared with PFGE ( Jackson et al., 2016). The availability of
resistance and virulence data for all isolates in real time has
also proven useful when interpreting outbreak data and un-
derstanding the virulence of the organism (https://www.cdc
.gov/salmonella/reading-07-18/index.html; https://www.cdc
.gov/campylobacter/outbreaks/puppies-9-17/index.html).

Throughout the transition to WGS-based surveillance, it
has been critical to create a functionality similar to PFGE.
Continuing to use the same BioNumerics software has made
training and implementation of the method easier and ensures
that microbiologists with limited bioinformatics skills can
perform the data analysis. As with PFGE, laboratories can
connect to the national databases and view other laboratory’s
WGS and PFGE data. Laboratorians can analyze their own
data and take full advantage of WGS for local investigations.
Also, as with PFGE, nomenclature information and cluster
codes can be downloaded back into the local database. It is
critical to communicate this information efficiently with all
federal and state partners in outbreak investigations.

Although PFGE has proved an invaluable tool for outbreak
surveillance for >20 years (Ribot and Hise, 2016), saving
millions of dollars in health care and productivity-related
costs (Scharff et al., 2016), WGS provides better resolution in
a likely more cost-effective approach, which will result in
more solved outbreaks with fewer cases ( Jackson et al.,
2016) and improved food safety in the United States and in
other countries.

Conclusions

With WGS, PulseNet has moved beyond subtyping for
outbreak detection and investigation, although this remains
the core function of the network. The participating labora-
tories are now able to perform most strain characterization,
for example, species identification, serotyping, virulence, and
resistance profiling, using one semiautomatic workflow that
before WGS was done using a multitude of different phe-
notypic and molecular methods. With these enhancements, as
well as improved cluster detection, public health laboratory
surveillance in the United States has become more efficient

FIG. 3. Diagram illustrating the PulseNet USA WGS data analysis workflow. WGS, whole genome sequencing.
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and precise than ever before, leading to better protection of
the American people from foodborne infections.
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