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Abstract

Downscaled climate projections need to be linked to downscaled projections of population

and economic growth to fully develop implications for land, natural resources, and ecosys-

tems for future scenarios. We develop an empirical spatiotemporal approach for jointly pro-

jecting population and income at the county scale in the United States that is consistent with

neoclassical economic growth theory and overlapping labor markets and that accounts for

labor migration and spatial spillovers. Downscaled projections generated for the five Shared

Socioeconomic Pathways used to support global scenario analysis generally show growth

focused around relatively few centers especially in the southeast and western regions, with

some areas in the Midwest and northeast experiencing population declines. Results are

consistent with economic growth theory and with historical trends in population change and

convergence of per capita personal income across US counties.

Introduction

The size and affluence of human populations directly affect the demand for and supply of eco-

system services. Land use and natural resource projections therefore require insights into the

spatial distribution of human populations and activities at scales much finer than the national

level [1]. For example, population density and average personal income are effective predictors

of the area of land in developed uses at the county level, and they are often statistically signifi-

cant variables explaining natural resource changes [2, 3]. Official population projections for

the United States [4] based on demographic methods that account for cohort-specific births,

deaths, and migration are currently provided only at the national scale. Similarly, the Shared

Socioeconomic Pathways (SSPs) developed as an adjunct to global climate projections [5] pro-

vide alternative population/income projections only at the continental/national scale. Analysts

interested in understanding how natural resource conditions could respond to economic and

population changes need fine scale projections of relevant driving predictors—that is, fine

scale patterns of change based on aggregate projections. Yet methods are not well developed

for downscaling national economic and demographic projections to finer spatial scales.
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In climate science, several alternative methods for downscaling coarse horizontal resolution

(e.g., half-degree grid scale) climate projections have been developed [6, 7]. Climate downscal-

ing approaches include two broad methods, statistical and dynamic—the former being effi-

cient but often bringing with it restrictive assumptions about stationarity and covariability of

sets of climate variables that are simultaneously downscaled, the latter sometimes relaxing

these assumptions. Dynamic methods are often considered superior because they recognize

“first principles” of meteorological processes and hence would be more accurate in downscal-

ing long-run projections. On the other hand, dynamic methods require incorporation of more

relationships among variables and therefore are more computationally intensive. Downscaling

approaches for economic and demographic variables would also ideally be based on first prin-

ciples of the joint dynamics of economic measures of interest to achieve greater accuracy in

downscaling long-run projections. The objective of this paper is to develop an empirical

method for projecting county-level income and population changes that accounts for covaria-

bility of local population and income, consistent with economic growth theory, and is suffi-

ciently parsimonious to support long-run projections for broadly defined scenarios. An

expectation of the method is that it generates long-run projections of income and population

variables that are consistent with historical patterns of wage-driven migration at fine spatial

scales.

Our modeling is set in the context of coherent socioeconomic/climate futures and specifi-

cally addresses “downscaling” of the SSP projections of population and income for climate

impact/assessment modeling. The SSP projections of population and income [8,9], when

paired with atmospheric emissions described as Representative Concentration Pathways

(RCPs), define an integrated assessment scenario designed to provide a consistent socioeco-

nomic-emissions-climate future for Global Circulation Models (GCM) [10]. The coherence of

the SSP-RCP combination in terms of total emissions is reconciled through Integrated Assess-

ment Models (IAM), utilizing a set of policy assumptions [11]. We downscale population and

income projections for the United States defined by the five SSPs [8,9].

Previous studies that address the downscaling of socioeconomic futures do not provide fine

scale projections that account for interactions between local population and income changes.

For the Special Report on Emissions Scenarios (SRES [12]), Gaffin et al. [13] downscale popu-

lation density and income (GDP/land area) projections to countries and then to 1/4˚ grid cells

using proportional change rates applied to a starting population density map. Their method

ties per capita personal income to population projections, thereby embodying a restrictive

assumption regarding interdependency akin to methods used in statistical downscaling of cli-

mate variables. Van Vuuren et al. [14] adopt a similar approach to population downscaling

and apply exogenous convergence rules to downscale to country level GDP projections. Their

approach involves within-country downscaling that assumes constant per capita personal

income across gridded units. The US Environmental Protection Agency pairs a spatially

explicit demographic model with a model of housing density to generate downscaled popula-

tion/urbanization projections (but not economic projections), also for the fourth IPCC assess-

ment scenarios [15]. US resource assessments [16] have rescaled and extrapolated county

projections, from midrange projections produced by proprietary models of economic and

demographic change [17]. McKee et al. [18] develop a spatially explicit downscaling of the US

Census national projections of population alone using a demographic cohort-component

method with migration factors based on Internal Revenue Service records, coupled with a

growth suitability measure linked to geographic features and road infrastructure. Jones and

O’Neill [19] downscale population in the United States to a gridded landscape based on a pop-

ulation potential model that links available land and current population with population in
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neighboring grid cells. Adjusting contagion parameters generates a variety of spatial patterns

of change, but independent of economic projections.

These previous studies simulate change at the scale of small regional units or grid cells.

Modeling focused on fine scale units such as individuals’ or households’ decisions provides an

alternative approach that has proved useful for evaluating effects of policy options and other

mechanisms of change [20]. Because microsimulation/agent-based approaches are built from

complex specifications with many variables and require calibration constraints, those

approaches can complicate long-run projections because of their high input data demands,

especially when nested within broader assessment models [20, 21]. We sought a parsimonious

approach consistent with historical change mechanisms and patterns of growth that relies on a

small number of explanatory variables that are essential to the broad SSP scenarios. These con-

siderations support the development of a statistical model of net change for US counties, the

finest scale of reporting for important socioeconomic variables.

In this study, we posit that population and income changes are interrelated, generally con-

sistent with observed population change and per capita income convergence across locations

over time [22], and that future changes follow these population-income relationships Eco-

nomic growth theory posits that factors of production, including labor and capital, driven by

their owners’ desires to earn more per unit of each factor, will move from locations of relative

abundance where returns (earnings) are low relative to other places, to locations of relative

scarcity, where returns are higher [22]. This process tends toward equalization of relative

abundance and earnings across space over time. One measurable effect of convergence is that

locations which today have lower income per capita will experience faster future rates of per

capita income growth compared to locations which today have higher per capita income. The

presence of such economic forces, embodied in the Solow model of economic growth [22]

under assumptions of free or low-cost movement of factors of production and rapid diffusion

of technology, implies that fine-scale allocations of population and income across space should

be jointly determined in the long run. Such jointness could mean that models of downscaled

population and income that recognize their joint relationship would provide more accurate

projections of population and income changes at fine spatial scales compared to methods that

ignore their relationship. However, previous efforts to downscale national scale population

and income to counties or grid cells in the United States have not linked population and

income projections at this scale in a manner consistent with economic growth theory.

Our approach to downscaling population and income change incorporates their joint rela-

tionships to quantify the spatiotemporal process of labor migration. Assuming that the

strength of net migration is governed by the level of income, we employ a statistical model that

allows for joint determination of county-level population and per capita income change.

Observed changes are expected to be influenced by spatial spillovers (contagion) and for a set

of unmeasured county-specific factors (e.g., illiquidity of housing capital, immobility of pen-

sioners), and these potential influences are factored into the model specification. Coefficient

estimates provide a means to test for a correlation between population changes and per capita

incomes that would be consistent with economic growth theory, and out-of-sample forecasts

provide a test of the overall fit of the modeling system. Moreover, projections provide a means

to test for consistency with observed patterns of income convergence in U.S. counties, a mea-

sure of the meta-behavior of the modeling framework. While recent work has documented ris-

ing income inequality across individuals and households in the United States [23, 24], due in

part to housing supply constraints [25], convergence across regions, to varying degrees and in

various forms, has held up to empirical scrutiny at multiple spatial scales: across countries

[26–29], US states [30–32], and US counties [33, 34].
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Our approach utilizes statistical, fixed-effects panel models of population and per capita

personal income (PCPI) at the county level, with data from 1970 to 2010 on a five-year time

step. To embody the joint determination of population and income, we model levels of popula-

tion and PCPI as reciprocal functions of lagged population and lagged PCPI. We use a fixed

effects panel model that includes both location and time fixed effects as well as spatially lagged

and spatio-temporally lagged explanatory variables. Location (county) fixed effects capture

time-invariant local differences in population and per capita income changes across spatial

units. These fixed factors capture the county level differences in unobserved variables includ-

ing demographic factors such as birth and death rates and other amenity or economic factors

influencing net population changes. Spatio-temporal lags account for spatially contagious

exogenous economic growth processes. Time fixed effects account for nationwide shifts in the

rates of population and per capita income changes between time periods. The time fixed-

effects parameters can be used to generate forecasts based on alternative assumptions regard-

ing national rates of population and per capita income changes. When put into projection

mode, the time fixed-effects component provides the mechanism to match the sum of county-

level projections with nationwide population and income (projected population times pro-

jected per capita income) projections of SSPs. We define these two aggregate “growth rate” fac-

tors to determine total US level changes in population and per capita income at each time step

while the estimated model is used without constraints to define the implied county level

projections.

To select among alternative model specifications, we estimate several models and evaluate

performance based on fit statistics applied to out-of-sample forecasts. Given that we cannot

predict a priori the model specification that would work best in producing long-run projec-

tions of population and income at fine spatial scales, we average the projections from four

specifications of the model for our downscaling. We test for consistency with economic growth

theory using significance tests on model coefficients and evaluate historical and projected rates

of income convergence using standard measures from economic growth theory: changes in

the per capita income dispersion across counties, known as sigma convergence (decreasing rel-

ative dispersion across spatial units is consistent with convergence), and per capita income

change rate versus per capita income level, known as beta convergence (an inverse relationship

between growth rate and starting income level is consistent with convergence) [35]. Projec-

tions of county-level population and per capita income are provided for the five SSPs.

Methods

Model specification

Methods derive directly from the structure of the data: a county panel of observations mea-

sured at regular time intervals. Start with the general model:

Yit ¼ dYit� 1 þ bXit þ mi þ εit ð1Þ

where Y is either population or PCPI, i indexes the county (N counties), t indexes the time

period (T periods), X is a vector of K exogenous variables (including lagged values of the

dependent variables), and δ and β are estimated coefficients, with separate equations for total

population in the county and PCPI. As specified, errors are expected to vary with time and

location, defining an error-components structure. Estimation can proceed by estimating the

model conditionally on the error terms (μ and ε), defining a fixed-effects model, or can be esti-

mated unconditionally, defining a random-effects model [36]. Furthermore, the fixed-effects

model may be specified to account for differences across both location and time or location

alone.
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Choosing between fixed and random effects models generally depends on a Hausman test

[37] to evaluate the null of equivalent random effects and fixed effects; rejection indicates the

fixed-effects model is needed in order to generate statistically consistent estimates of parame-

ters. However, the nature of the county-level data set indicates a fixed effects model a priori.
That is, because the data set is exhaustive and not a sample (i.e., the sample is the population),

the measured unit is unique and not a sample representative of a larger population [38, 39].

Although the fixed effects model accounts for constant locational or temporal effects, it does

not account for spatial interactions between locations. Given the contagious nature of eco-

nomic growth and the large survey units defined by counties, we anticipate that spatial depen-

dence would arise within this data set. That is, spillover effects will likely give rise to some

form of spatial dependence [36, 38] among endogenous variables, exogenous variables, or

error terms of the Eq 1. Following Elhorst [38] we consider the expanded model:

Yit ¼ dYit� 1 þ rWYit� 1 þ/iN þXitbþWXityþ mi þ εiN þ ut ð2Þ

ut ¼ lWut þ εt ð3Þ

The error components address location, time, and spatial effects structured by the spatial

weights matrix W. We specify W as an N x N first order binary contiguity matrix with unit

entries indicating a shared boundary between the referenced county pair and zero entries

along the diagonal. The error term in Eq 2 anticipates spatial autocorrelation among error

terms (Eq 3, λ6¼0) but distinguishing between spatially weighted independent variables and

spatial error terms is difficult [40]. Alternative estimation strategies include maximum likeli-

hood methods and, to address the lagged endogenous variables, generalized methods of

moments (GMM).

Model estimation

Projections and downscaling. Forecasting requires an algorithm that applies Eq 2 to ini-

tial (lagged) conditions to project next period values, updates the temporally lagged population

and income values along with associated spatial lags using the spatial weights matrix, and so

on. Key elements for forecasting with the fixed effects formulation are estimates of the county-

level fixed effects and application of time fixed effects terms. Fixed effects are not directly esti-

mated from GMM estimates (which uses a differencing approach) but can be approximated as

the average of residual terms (including time effects) across periods for each county. The value

of a time fixed effect can be adjusted for simulations that generate US-level projections that are

consistent with a desired (e.g., SSP) target level.

Downscaling the Shared Socioeconomic Pathways using our county-level model requires

first selecting models among the alternatives and then developing a strategy for defining time

fixed effects values for future periods that match SSP projections at the national level. As

described in the Results section, model estimates indicate strong support for the specification

of variables (the logarithmically transformed population equation and the untransformed

PCPI equation) but less clarity regarding the specification of temporal and spatial lag struc-

tures. Because AIC statistics indicate that several alternative models are informative (have pre-

dictive power out of sample), we adopted a model averaging approach. We selected the best

performing equations (based on out-of-sample goodness of fit statistics) for population and

PCPI with and without spatial lags, and defined four models based on the permutations of the

equations. Model averages define the projections for each scenario.

We match our projections to national SSP projections generated by the IIASA Integrated

Assessment Model [41]. We directly compare rates of change for total population projections.
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However, comparisons of income projections are less direct. For our projections, we calculate

the total US personal income by multiplying projected population by projected PCPI for each

county and then sum across all counties. We compare rate of change in projected total per-

sonal income with the SSP projected rate of change for GDP—i.e., we assume that personal

income remains a constant proportion of GDP, which is generally consistent with national

economic projection models including the Annual Energy Outlook from Department of

Energy [42]. The assumption is further supported by national income accounts, which indicate

that the ratio of personal income to GDP ranged from 0.83 to 0.88 between Q2:2007 and

Q2:2017, without a discernable trend in the ratio [43]. Because we do not project values for

counties in Alaska or Hawaii, we match the rates of change of conterminous US projections of

both population and personal income/GDP with the IIASA projections, which cover all 50

states, US territories, US Virgin Islands, and Puerto Rico.

Projections are generated on a five-year time step, consistent with estimation data, and we

compare projections with SSP results by computing the residual sum of squares and mean

absolute percentage error (MAPE) for five-year time steps from 2015 to 2070. We use a

gridded search strategy to calibrate the models, starting with an initial naive extrapolation and

then adjusting the time fixed effects parameters for the population and PCPI equations. Then,

simulations are conducted for a grid of adjustment factors for both equations. From among

the grid, we select models that provide the best fit for the individual SSPs based on MAPE sta-

tistics. We then repeat the grid search for each of these initial selections at each time step for

progressively smaller increments in the adjustments and continue the search until the MAPE

is less than 1 percent for both variables in all time periods of the projection.

Income convergence measures. We further examine projections for consistency with

convergence growth theory. Historical and projected patterns of inter-county convergence are

evaluated using trends of PCPI dispersion (sigma convergence) and the relationship between

county-level economic growth and output levels (beta convergence). An approximation of β-

convergence is defined by regressing the PCPI growth rate on the logarithm of base year PCPI

[26]:

log
yit
yit� 5

� �

¼ a � b logðyi;t� 5Þ þ mi ½4�

where b ¼ ð1 � e� bÞ and β is a periodic growth rate. A positive β indicates an inverse relation-

ship between income growth and starting PCPI levels, so that lower PCPI areas would grow at

higher rates, consistent with convergence. Changes in β over time indicate acceleration

(increasing β) or deceleration (decreasing β). Sigma convergence is indicated by a decline in

income dispersion over time, measured as the coefficient of variation (CV) of county PCPI

across counties. Spatial patterns of sigma convergence are estimated by mapping changes in

the coefficient of variation for individual counties with all their neighbors (S1 and S2 Figs

defined by the spatial weight index W and weighted by county population).

Data

We use decadal and five-year updates to US Census estimates of total population and total real

personal income in 2005 dollars from the Department of Commerce. Total personal income

includes earnings plus dividends, interest income, rental income, government transfer pay-

ments less contributions to social insurance. Average personal income is estimated as total per-

sonal income divided by total population within a county.

Data were compiled for the counties of the 48 conterminous US states, with some adjust-

ments to account for special geographic regions and changes in county names and the Federal
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Information Processing Standards (FIPS) codes that are commonly used by governments in

data reporting for counties. Many Virginia cities exist outside of surrounding county entities,

and we used the aggregation scheme of the Woods and Poole data set [17] to define aggregate

county-city units in Virginia. County structure in 1970 is retained for consistency across the

estimation period, by reaggregating each county formed during the estimation period with the

county from which it was derived (Cibola and Valencia Counties in New Mexico, Menominee

and Shawano counties in Wisconsin, Broomfield and Boulder counties in Colorado). Our

dataset accounted for counties that were renamed and renumbered during the estimation

period (e.g., Shannon to Oglala Lakota County, SD).

With the adjusted set of county FIPS entities, we modified a standard county-FIPS shapefile

of the 48 conterminous US States to construct a spatial weights matrix (W) using the poly2nb

and nb2listw functions in R [44]. The poly2nb function constructs the neighborhood list using

one of two criteria: “Queen” for polygons with any shared boundary point and “Rook” for

those with two or more shared boundary points. We compare models developed using both

criteria and find a slight preference for the Queen configuration based on out-of-sample pre-

dictions. We eliminated three isolated counties (where the respective row in W contains only

zeros) because they were physical islands and hence could not be included in the modeling.

These were Dukes and Nantucket Counties in Massachusetts and San Juan County in Wash-

ington. The resulting dataset has 3073 observational units.

Results

Econometric equations for population and per capita income indicate significant coefficients

with anticipated signs and magnitudes for temporally and spatially lagged values (see SI). Esti-

mates are consistent with posited wage-driven population migration—i.e., population growth

is significantly and positively related to lagged per capita income levels—and with spatial con-

tagion or spillover effects, as indicated by significant and positive coefficients for spatio-tem-

porally lagged dependent variables. Alternative models were estimated using equations

specified as levels or logarithms and with or without quadratic terms and then compared using

various fit statistics for an out-of-sample forecast. Out-of-sample performance indicated no

clear preference for a single model specification, so four informative alternatives are averaged

to develop projections.

Initial model estimates addressed the potential for dynamic panel bias arising from incor-

poration of the lagged dependent variable (Yt-1) GMM estimation [45, 46]. While tests indi-

cated no problems with residual autocorrelation, results of Sargan tests indicated universal

rejection of the hypothesis of over-identifying instruments. In addition, projections based on

the estimated GMM models led to explosive growth in population, which seems implausible

given historical evidence. As a result, we use Maximum Likelihood estimation in lieu of GMM

to estimate the panel models, accepting the potential for some bias in coefficient estimates. We

also dropped the spatial autocorrelation component of the error term, accepting the loss of

efficiency that may result.

Alternative models based on specifications of the error term were estimated using the PLM

package in R [47]. Several alternative models are possible given the error components

involved, various lag structures, and alternative specifications (i.e., logarithmically transformed

versus untransformed specifications). We evaluate alternative models using coefficient esti-

mates, fit statistics, and out-of-sample forecasts. With T time periods in the data set, we esti-

mate the model for observations through period T-1 and then use predictions of the out-of-

sample year T to evaluate forecast performance based on the Akaike Information Criterion

(AIC), root mean square error, mean error, and mean absolute error statistics. Given our focus
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on projections, all variables on the right hand side of Eq 2 are expressed as temporal lags. For

both equations, explanatory variables include temporally lagged (up to two lags) population

and PCPI, along with spatially lagged values of the temporally lagged variables (one temporal

lag only).

Eight alternative fixed effects panel models for each of the two dependent variables (popula-

tion and PCPI) were estimated using maximum likelihood. These were defined as permuta-

tions of: 1) specification in levels or logarithms, 2) one or two temporal lags, and 3) with or

without the spatial lag terms (S1 and S2 Tables contain coefficient estimates and evaluation sta-

tistics for all models of population and PCPI, respectively). S3 Table shows the Akaike Infor-

mation Criterion (AIC), root mean squared error (RMSE) (level and percent), mean error

(ME, also known as bias) (level and percent), and mean absolute error (MAE) (level and per-

cent) for the out-of-sample (2015) evaluation.

Across the eight models for population, only two coefficients were not significant at the one

percent level; both were for the lagged PCPI in the levels specification (S1 Table). Model com-

parisons based on out-of-sample predictions (S3 Table) indicate that a logarithmic specifica-

tion for population would be preferred over a non-logarithmic model (i.e., lower RMSE, mean

error (bias), and AIC values). Specification in levels yields much higher ME across these mod-

els. The inclusion of spatial lags reduces bias somewhat, but their inclusion acts to increase

RMSE. For all model specifications (log/level, with and without spatial lags), the 2-lag structure

outperforms a 1-lag structure.

Across the eight models for PCPI, only lagged population in one model (levels, 2-lag, spa-

tial) and the spatially lagged PCPI in two models (level, spatial for both 1-lag and 2-lag) were

insignificant (S2 Table). Model comparisons (S3 Table) indicate that the levels specifications

outperform comparable models in logarithms (smaller RMSE, ME, and MAE). However, these

models generate very little variation in evaluation statistics among models specified in loga-

rithms or levels. The “levels, 1-lag, no spatial lags” model results in minimal AIC, RMSE, ME,

and MAE. Among models with spatial lags, the “levels-two lag” model generates fit statistics

that are the lowest among models tested.

Our ensemble of four projection models are defined by permutations of two population

and two PCPI equations (see S3 Table) and projections are defined as the unweighted average

of predictions from the four models. To test model predictions we conducted out-of-sample

projections for the final two time steps (2010 and 2015) based on equations estimated with

data through 2005. Table 1 shows mean average and absolute mean average errors of county

projections for validation runs with time fixed factors held at their 2005 levels (a naïve extrapo-

lation).The mean percent error and mean absolute percent error for 2010 are 0.3% and 3.1%

respectively. As expected, these values increase to 2.3% and 5.1% respectively for 2015, but

indicate an overall strong fit with little systematic bias. Spatial patterns of errors (not shown)

indicate some overestimation of population in counties in Michigan and northern Ohio where

economic growth was below national averages and underestimation of population in counties

Table 1. Validation statistics. Fit statistics for out-of-sample population projections (number of people in thousands)

of US Counties in 2010 and 2015. Projections generated by naïve extrapolation from equations fit with data through

2005.

Test Statistics 2010 2015

Root mean square error 11.0989 18.0460

Mean percentage error 0.2984 2.2551

Mean absolute error 2.8682 4.6745

Mean absolute percentage error 3.0975 5.1198

https://doi.org/10.1371/journal.pone.0219242.t001
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in Plains States that have experienced rapid economic growth due to oil exploration and devel-

opment. The error patterns observed for 2015 might also reflect the somewhat temporary

effects of the 2007–2009 economic recession, which hit some states and counties harder than

other counties. The pattern therefore might in part constitute a shock unlikely to persist and

perhaps not possible to predict at the county scale.

SSPs are organized within a two-dimensional “challenges space,” defined by challenges to

mitigation and to adaptation [5], the logic being that certain economic conditions define chal-

lenges to mitigation activities and that some socioeconomic conditions provide challenges to

adaptation—for example, that large populations and weak institutions limit society’s ability to

adapt to climate changes and their impacts. An initial set of four SSPs describe the permuta-

tions of high and low challenges for adaptation and vulnerability, and a fifth SSP defines an

intermediate case (moderate challenges to adaptation and vulnerability; [5]). Van Vuuren and

Carter [48] provide a rough comparison of and crosswalk between these SSPs and SRES sce-

narios. Each of the five SSPs are characterized by a narrative that addresses global states of

development for technology, economic growth, emissions, and institutions. Projections of key

variables at global and national scales have been developed for the five core SSPs [8,9].

SSP projections (numbered 1–5) are bracketed by SSP3, which has the lowest aggregate

income (measured as Gross Domestic Product, or GDP) and population growth for the United

States, and SSP5, which has the highest income and population growth for the United States.

Fig 1 shows correspondence of national SSP estimates with the sum of our county projections

based on the average of four projection models. Under SSP3, total US population grows slowly

Fig 1. Population and GDP projections. Projections of indices of (A) US population, and (B) US Gross Domestic

Product (in constant2005 dollars) projected for five Shared Socioeconomic Pathways indexed to a value of 1 in 2015.

SSPx is the US projection for the referenced SSP. DS.x is the sum of the downscaled county-level projections for the

referenced SSP.

https://doi.org/10.1371/journal.pone.0219242.g001
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to a peak in 2035 and then gradually declines to 2010 population levels by 2070, while real

GDP grows steadily at about 1 percent per year (from ~13 billion dollars in 2010 to ~24 billion

dollars in 2070 [values in constant 2005 dollars]). Under SSP5, population expands by 86 per-

cent (from 313 to 581 million people) between 2010 and 2070, while real GDP grows at a rate

of 2.5 percent per year between 2010 and 2070, more than quadrupling over this period. SSPs

1, 2, and 4 provide intermediate projections, with population growing by between 24% and

44% (to between 390 and 451 million people) to 2070 and annual real GDP growing by

between 1.4 and 1.8 percent. SSP2 provides a close match to US Census projections [4].

Projected rates of population growth are consistently higher for the most populous coun-

ties. For all SSPs, the cumulative distributions of county populations for the historical period

and the projection period show outward shifts in the distribution of population, with little

change in population density for counties in the lower quartile and strongest expansion in

population density in the upper quartile (Fig 2A). Between 1970 and 2010, the population den-

sity for the county at the 90th percentile shifted from about 200 to about 380 people per square

mile (ppsm). For SSP3 (lowest population growth), the county at the 90th percentile shows neg-

ligible changes to 2070. For SSP2 (moderate population growth), the county at the 90th percen-

tile density in 2070 is about 575 ppsm. For SSP5 (highest population growth), the county at the

90th percentile density in 2070 is at 750 ppsm. A discernable shift in the density of the 50th per-

centile county is indicated only for SSP5—i.e., counties below median population levels in

2010 are generally not projected to gain population for all scenarios except SSP5.

The PCPI cumulative distributions shift outward in a fashion that is qualitatively distinct

from the population variable. The distributions shift outward uniformly across all percentiles

Fig 2. Population and per capita personal income distributions. The cumulative distribution of (A) county population density,

and (B) county per capita personal income, for the United States for historical (1970, 1990, 2010) and projected (2040, 2070) years for

three Shared Socioeconomic Pathways SSP3 (low growth), SSP2 (moderate growth), and SSP5 (high growth).

https://doi.org/10.1371/journal.pone.0219242.g002
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(Fig 2B) and are scaled by the overall growth rate of the scenario. Boxplots of historical and

projected PCPI at the county level for SSP3 and SSP5 (Fig 3) show a regular increase in the

median PCPI of counties, with a relatively constant interquartile range, indicating a decline in

the range in percentage terms. The pattern of outliers indicates a relatively constant number of

high PCPI counties (i.e., with values greater than 1.5 times the interquartile range).

Maps of population change (Fig 4) show the influence of spatial factors and differences in

growth across scenarios. For SSP3, populations shift spatially, in spite of little overall growth

and consistent with income convergence: populations decline in rural counties and across the

industrial north and Midwest but grow strongly in a few metro counties, especially in the

South and West (counties containing Raleigh, Charlotte, Atlanta, Tampa, Orlando, Dallas,

Houston, Austin, Denver, Salt Lake, and Seattle). For moderate growth scenarios (SSP2 in Fig

4), growth expands around these metro counties but also extends to counties of northeastern

coastal areas, Midwestern cities (e.g., Chicago and Detroit), and other western cities (San Fran-

cisco, Los Angeles, and Portland). For SSP5, growth expands outward from the same growth

centers found for SSP2, and no counties experience sizable population losses. Across all

Fig 3. Per capita personal income by county. Boxplots of county per capita personal income for historical (1970–

2010) and projected (2015–2070) periods for the SSP3 (lowest growth) and SSP5 (highest growth) scenarios. Center

line represents the median income, the box represents the interquartile range (25th to 75th percentile), and the

whiskers are 1.5 times the interquartile range. Individual circles indicate outliers.

https://doi.org/10.1371/journal.pone.0219242.g003
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Fig 4. Population projections. Projected change in population density (people per square mile, ppsm) between 2010

and 2070 for three Shared Socioeconomic Pathways: (A) SSP3 (low growth), (B) SSP2 (moderate growth), and (C)

SSP5 (high growth).

https://doi.org/10.1371/journal.pone.0219242.g004
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scenarios, the most rural areas (especially in the Great Plains, Midwest, and South) do not

experience substantial growth in population. Among broad regions, the southeastern United

States has the highest population growth rate for all SSPs, with only slightly lower rates for the

western United States. For SSP3, the population growth rate for the remainder of the United

States is negative (-13%), for the other SSPs it is 45–68% lower than the southeastern and west-

ern regions. Under SSP5 populations are projected to roughly double in the southeastern and

western United States (+103% and +95% respectively) and increase by 56% in the remainder

of the states.

Historical and projected patterns of inter-county income convergence are evaluated using

trends of PCPI dispersion (sigma convergence) and the relationship between the county-level

PCPI growth rate and PCPI levels (beta convergence; see Methods). Beta values for projections

generally follow historical trends, with an ongoing but decelerating convergence indicated by a

positive β that decreases over time. Historical values of β trended downward over the estima-

tion period (Fig 5A), from an average of 0.094 between 1970 and 1985 to an average of 0.029

between 1995 and 2010 (β is negative for only one period, 1995–2000). Values of β defined by

the projections are everywhere positive (p = 0.01) and range between 0.010 and 0.035, with

highest values for SSP5 (the high growth scenario) and lowest values for SSP3 (the low growth

scenario), implying that the rate of convergence is positively related to the economic growth

rate. Projections for all SSPs indicate continued β-convergence in county PCPIs through 2070.

Trends in the coefficient of variation (CV) for projected county PCPI are consistent with

the most recent (2000–2010) sigma convergence, indicated by shrinking PCPI dispersion

Fig 5. Convergence measures. (A) Beta measures of convergence, defined as the rate of personal income convergence

derived from a regression of income growth rate on the logarithm of income in the base year (five year time step), and

(B) sigma measures of convergence, measured as the coefficient of variation of per capita personal income across

counties, for the historical period (1975–2010) and SSP projections (2015–2070).

https://doi.org/10.1371/journal.pone.0219242.g005
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across counties. Historical CV estimates indicate a repositioning of CV between 1995 and

2000, which aligns with the negative β value for that period (Fig 5A). Values trended down-

ward between 1975 and 1995, rose between 1995 and 2000, and then declined again between

2000 and 2010 (Fig 5B). Projections show a continuous downward trend in CV from 2015–

2070 (Fig 5B) for all SSPs, with the strongest rate of decline for SSP5 (high economic and pop-

ulation growth scenario) and the lowest rates for SSP3 (low economic and population growth

scenario). That is, the CVs for projections of all SSPs are consistent with sigma convergence

through 2070. We further note that the differences in rates of sigma convergence at the county

scale in the conterminous United States mirror similar ordering (SSP3 the slowest, SSP5 the

fastest) of sigma convergence implied by the SSP projections of income across countries.

Changes in the income CV for individual counties with only their neighbors (defined by a

spatial weight index W and weighted by county population; see Methods) provide an addi-

tional spatial assessment of sigma convergence. The distribution of neighborhood CV values

(see SI) indicates a shift toward spatial convergence (reduced CV’s) of PCPIs between 1970

and 1990 and a slight decrease in convergence between 1990 and 2010. Projections indicate a

steady increase in spatial convergence through 2070, with spatial convergence rates directly

related to overall economic growth rates (SSP3 the lowest; SSP5 the highest). Maps of CVs (see

S2 Fig for SSP2) graphically indicate widespread diminution of variation between 2010 and

2040, with some notable exceptions: counties along the eastern front of the Rocky Mountains

from Wyoming to New Mexico, some counties in the northern Great Plains, and counties at

the periphery of high-PCPI counties along the northeastern seaboard.

Discussion

We develop a parsimonious model of county-level population and PCPI change based on

lagged values of these variables and spatial neighborhood variables using fixed effects panel

models. Model average projections indicate good performance in out-of-sample forecasts.

Multi-decade projections define county level change in these variables, scaled to national pro-

jections of population and total income (GDP) from the Shared Socioeconomic Pathways by

adjusting the time fixed effects parameters. Adjustment of the fixed effects parameters allows

us to downscale national projections of population and income in a way that extends the

observed patterns of change, including spatial contagion, experienced over the past 40 years.

Parsimony is a strength for projections allowing for projections with few parameters relative to

detailed mechanistic demographic models where future birth, death, and migration rates

would need to also be modeled. Still, the assumptions of the model would become less certain

as projection length increases.

The projections to 2070 preserve the structure of adjustments reflected in the historical data

(1970–2010). Historical changes are likely limited by the costly movement of cohorts of the

population (based on age, income, education attributes that are not among the explanatory

variables), which our statistical models quantify with a partial adjustment process and county-

level fixed factors. The gradual changes captured by our model are consistent with the finding

that interrelated housing market and transportation costs would impede mobility below cost-

less migration patterns and allow local unemployment to persist [49]. As with any empirical

model, we anticipate that forecast variance increases over the length of the projections—i.e.,

that variables embedded in the county level fixed factors whose effects are parameterized using

historical data might eventually evolve to different levels.

Historical patterns of population growth indicate increasingly concentrated populations

over time in the United States. Likewise, our projections indicate an ongoing process of interre-

gional population movement, with a continued shift in the share of the nation’s population
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away from the Northeast/Midwest and toward the South and West. A comparison of the lowest

population growth scenario (SSP3) with the highest population growth scenario (SSP5) demon-

strates how strong income growth drives population expansion from existing metropolitan

cores into but not much beyond the closest surrounding rural counties. For all scenarios, a large

share of the current rural United States experiences either a stable or a shrinking population.

Overall, projections are consistent with recent historical (and slowing) PCPI convergence

across US counties for both beta- and sigma-convergence measures. Observed and modeled

growth is consistent with neoclassical growth theory, where low (high) income counties are

expected to have higher (lower) growth rates. In our models, this is driven largely by the popu-

lation variable, consistent with labor migration away from low income and toward high

income counties, as owners of labor and capital seek higher earnings. Results indicate a direct

correspondence between economic growth rates and the rate of convergence (beta measure).

Addressing both income and population in the projection framework captures first principles

of economics and allows for an accounting for economic growth dynamics across space. Sig-

nificant spatial lag terms in the models conform to the notion of overlapping labor markets

and contagious population (labor) growth that is consistent with relocation and/or expanded

commuting regions [50].

The utility of our modeling approach would derive from providing an integrated set of

income and population projections and a qualitatively distinct set of population projections

that account for income driven labor migration. As an ex post test of our approach we com-

pared the model-ensemble population projections with projections developed using a gravity-

based/urbanization potential approach [51] and downscaled to a 1-km raster [52]. After sum-

marizing data to the county level, we applied the same validation tests (Table 1) against

observed data for 2010 and 2015 for these projections (see S1 Appendix). For both time steps

and all test statistics, the gravity-based model generated higher errors than the model-ensem-

ble suggesting that incorporation of income-driven migration provided improved explanatory

power. Mapping error terms at the county level for the two models shows that the gravity-

based model generally underestimated populations in southern and western urban centers and

overestimated population in rural areas and northern urban centers, consistent with dominant

patterns of population migration in the United States. Comparison of projections to the year

2070 shows similar differences in pattern (S1 Appendix).

All projection models have limitations defined by their formulations. The model is derived

from a simple concept, labor-driven migration, resulting in gradual reductions in per capita

income variation across space, augmented by agglomeration dynamics. Notably, this model

does not account for the influence of climate change projections on potential long run change

in population or economic growth. While historical climate influences are embedded in the

model and might be evident in near term projections, longer term movements in populations

in the United States may be structurally influenced by climate change—e.g., by sea level rise in

coastal counties of the East and temperature increases in the Southwest, where our model proj-

ects that much population growth would occur. Likewise, people also migrate to seek desired

amenities and higher education opportunities. A general limitation of the model is the extrap-

olation of fixed effects. The spatial fixed effects and spatiotemporal parameters embodied in

the models capture omitted historical factors including demographic and various non-income

contributions to well-being, but in projection mode the models cannot predict changes in the

unmeasured variables, for example the emergence of new places with desirable amenity and

education features. While a more complex formulation is possible, each additional explanatory

variable must be projected within a scenario. Parsimony is a virtue for projection models, and

our approach provides a transparent and replicable starting point for conducting local effects

analysis of global change scenarios and for evaluating alternative projection approaches.
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