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Abstract

Côte d’Ivoire has among the most generalized HIV epidemics in West Africa with an estimated 

half million people living with HIV. Across West Africa, key populations, including gay men and 

other men who have sex with men (MSM), are often disproportionately burdened with HIV due to 

specific acquisition and transmission risks. Quantifying population sizes of MSM at the 

subnational level is critical to ensuring evidence-based decisions regarding the scale and content of 

HIV prevention interventions. While survey-based direct estimates of MSM numbers are available 

in a few urban centers across Côte d’Ivoire, no data on MSM population size exists in other areas 

without any community group infrastructure to facilitate sufficient access to communities of 

MSM. The data are used in a Bayesian regression setup to produce estimates of the numbers of 

MSM in areas of Côte d’Ivoire prioritized in the HIV response. Our hierarchical model imputes 

missing covariates using geo-spatial information and allows for proper uncertainty quantification 

leading to confidence bounds for predicted MSM population size estimates. This process provided 

population size estimates where there are no empirical data, to guide the prioritization of further 

collection of empirical data on MSM and inform evidence-based scaling of HIV prevention and 

treatment programs for MSM across Côte d’Ivoire.
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1. Introduction

The last five years have witnessed significant advancements in the response to HIV 

including universal treatment for those living with HIV, antiretroviral based pre-exposure 

prophylaxis to prevent HIV, and new diagnostic approaches including HIV-self testing 

(UNAIDS 2017). However, leveraging these strategies to achieve an AIDS-Free generation 

by 2030 necessitates understanding who and why people continue to acquire HIV (Beyrer et 

al. 2014; Stahlman et al. 2016). In concentrated epidemics, it has long been understood that 

the majority of HIV infections are among populations with specific acquisition and 

transmission risks for HIV including gay men and other men who have sex with men 

(MSM), sex workers, people who inject drugs (PWID), and transgender women (Beyrer et 

al. 2014). However, in generalized HIV epidemics, the specific proximal risks for HIV have 

been less studied which challenges the ability to effectively specify both the most 

appropriate benefactors for these new interventions as well as the number of people in need 

(Boily et al. 2015; Mishra et al. 2016). To address the former, there have been a number of 

epidemiologic and mathematical modeling studies demonstrating the importance of 

addressing the HIV prevention and treatment needs of key populations in the context of 

generalized HIV epidemics (Mishra et al. 2016). However, there remain limited empirical 

data on the sizes of key populations across most generalized HIV epidemic settings (Abdul-

Quader, Baughman, and Hladik 2014).

Characterizing the size of key populations facilitates an understanding of the numbers of 

potential eligible candidates for more intensive HIV prevention interventions, the overall 

potential impact of those interventions when implemented at scale, and finally an improved 

understanding of the local HIV epidemic (Abdul-Quader, Baughman, and Hladik 2014; 

Holland et al. 2016). Moreover, to effectively parameterize mathematical models 

characterizing the modes of transmission, high quality data regarding the size, 

characteristics, and HIV burden among key populations are needed (UNAIDS/WHO 

Working Group on Global HIV/AIDS and STI Surveillance 2010). Concurrently, there has 

been increasing consensus on the appropriate methods for population size estimation for key 

populations (Quaye et al. 2015;UNAIDS/WHO Working Group on Global HIV/AIDS and 

STI Surveillance 2010).

While many current size estimates resulted in national estimates, less documentation in the 

literature has focused on subnational estimates in the majority of low and middle income 

settings (Tanser et al. 2014). However, it is the size estimates at the subnational level that are 

most often used by local ministries of health, implementing partners, and bilateral and 

multilateral funding agencies to guide the geographic and population prioritization of 

resources and efforts (Yu et al. 2014). Often empirical data collection and direct estimates of 

key population size have been in urban or peri-urban areas where the population densities of 

key populations are higher and where the infrastructure exists to facilitate sufficient access 

to the community (Yu et al. 2014). However, HIV prevention and treatment needs are 

universal, necessitating methods for estimating population size of key populations at high 

risk of HIV acquisition and transmission at the subnational level where there are no 

empirical data (Tanser et al. 2014) and in rural areas as well.
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There exist a range of extrapolation methods to generate estimates at the national and 

subnational level. These methods differ in terms of their reliance on data, cost, and scientific 

rigor (Yu et al. 2014). Expert opinion involves consulting experts, including national 

stakeholders, technical experts, and key population groups, on how confident they are with 

the direct estimates and seeking their advice on how to apply these numbers to other off-

sample areas. This method has low reliance on data, little cost, and relatively low scientific 

rigor. Simple and stratified imputation methods apply the mean from areas with direct 

estimates to the areas where predictions are needed. These methods have some reliance on 

auxiliary data and result in arguably more evidence-based rigor than relying on expert 

opinion alone. Less is known about other more complex methods, including regression, 

treating off-sample areas as a missing data problem, and using geospatial covariation or 

correlation to predict values, that is, small-area estimation.

In West Africa, the epidemiology of HIV has been shown to be distinct from that in Eastern 

and Southern Africa (Djomand, Quaye, and Sullivan 2014; Holland et al. 2016; Papworth et 

al. 2013). Specifically, HIV prevalence among all reproductive-aged adults has not surpassed 

5% though very high burdens have been observed among key populations (Djomand, Quaye, 

and Sullivan 2014). The burden of HIV in Côte d’Ivoire was estimated to be 3.2% among all 

adults equating to an estimated half a million people living with HIV, nearly all of whom are 

over 15 years old. In the national strategic plan for HIV, key populations including MSM, 

female sex workers (FSW), and PWID have been deemed to be priority populations for HIV 

prevention and universal treatment for those living with HIV. However, similar to other 

settings, the enumeration and representative sampling of key populations has been 

challenged by significant stigma and even criminalization of sexual practices, orientations, 

and addictions (Beyrer et al. 2012). Consequently, specialized sampling strategies for key 

populations in these settings have included respondent-driven sampling (RDS, Heckathorn 

1997), time-location sampling, prioritization for local AIDS control efforts (PLACE), and 

others. The majority of these studies have taken place in urban centers resulting in lim ited 

study of population size estimates for key populations in the majority of the country 

including rural, less densely populated settings (Abdul-Quader, Baughman, and Hladik 

2014).

Given limited empirical data on the size of key populations in much of Côte d’Ivoire, the 

objective of this study was to assess the utility of small area estimation approaches to 

estimate the population size in 61 specific areas of Côte d’Ivoire, referred to as departments, 

along with proper quantification of uncertainty of those estimates. Specifically, the study 

aimed to utilize available direct estimates of MSM population size for a few of the 

departments and demographic covariates in Côte d’Ivoire in a regression setup to generate 

model-based estimates of population sizes of MSM for all the 61 departments. A linear 

regression model was used to extrapolate the percentage of MSM population to areas with 

no size estimate. The total male population and HIV prevalence of each department were 

used as covariates. Since HIV prevalence was missing for nearly half of the departments, a 

spatial model was deployed to impute the missing values, which then served as inputs to the 

extrapolation model. Finally, the extrapolation and imputation models were tied together in a 

Bayesian hierarchical setup, which ensured uncertainty from the imputation component was 

properly propagated into the final estimates and confidence intervals of MSM population 
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sizes. To our knowledge, ours are the first probabilistic estimates of the numbers of MSM in 

all areas of Côte d’Ivoire prioritized in the HIV response.

In settings where public health systems are decentralized, estimates for program 

denominators are needed at both the national and subnational level to set actionable program 

targets. This is especially important if there are large regional differences in burden of 

disease, resources, etc. Currently subnational estimates are mostly derived from either expert 

opinion or simple imputation, at best. Providing more principled model-based estimates will 

improve the rigor upon these currently practiced methods and make assumptions explicit. 

The intended impact of this process is to increase uptake and use of high quality, 

comprehensive epidemiologic and interventional data in program planning, while increasing 

consensus on small area estimations of available data to guide additional data collection and 

programmatic efforts focused on HIV among key populations.

The rest of the article is organized as follows. In Section 2, we present the available direct 

estimates at a few of the departments which were inputs to our extrapolation model. We 

describe the data sources and survey methodology used to obtain these direct estimates. We 

also describe the demographic covariates that were available for the majority of the 

departments, to facilitate the extrapolation. In Section 3, we present details of our 

methodology including choice of the extrapolation model, rationale behind using total male 

population and HIV prevalence as covariates, the spatial model for imputing HIV 

prevalence, and finally, the hierarchical Bayesian model for joint estimation. In Section 4, 

we present results—uncertainty quantified predictions of MSM population size in all of the 

61 departments, and discuss the salient findings. Finally, in Section 5, we discuss future 

steps to incorporate these results in ongoing and future HIV prevention programs, 

underscore some of the key assumptions that went into this modeling exercise, and how 

additional data complemented with well-principled statistical methods can lead to more 

improved estimates in the future.

2. Data Sources and Direct Estimates

Direct estimates refer to estimates of population size for a specified geographical area using 

empirical data from survey sampling studies. In contrast, the goal of this article is to 

generate indirect extrapolated estimates for areas with no direct data on MSM population 

size. In this section, we provide a description of the direct estimates that were available at 

few departments in Côte d’Ivoire, along with a description of the departments where we 

want to predict MSM population sizes, and the covariates available to aid in the 

extrapolation.

2.1. Data Sources

Information on MSM population size was available from a number of sources at five 

departments of Côte d’Ivoire: Abidjan, Agboville, Bouake, Gagnoa, and Yamoussoukro. 

Counts of MSM were taken from programme data for NGO membership, service provision, 

and social event attendance. Specifically, the following counts were available for the five 

departments:
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Unique object: One method to evaluate population size makes use of unique object 

distribution. Objects are handed out to members of the population. The number of MSM 

who have received a unique object can be obtained from the log of how many objects were 

distributed. The unique objects serve the purpose of tagging or marking members of the key 

population. In a subsequent survey, participants will be asked whether they had received a 

unique object before, which will help to estimate the population size. More details on this 

are provided later in this section and Section 2.2.

Service: A second method involves using clinic or service provider total counts. Counts of 

a population using a particular service, in conjunction with a second source of information, 

can provide information about the population size as will be detailed in Section 2.2. In this 

case, the total number of MSM attending services at “Clinique de Confiance” was captured 

from program logs.

NGO membership: Similarly, a record of the members of an organization is a useful data 

source about the population. The total number of MSM belonging to NGOs was also 

captured from program logs.

Social event: If a special event is planned by the MSM community for MSM members, a 

list of attendees can constitute the first of the two data sources needed to estimate the 

population size. In this case, data on the total number of MSM who attended the social event 

“evening GNARA” was available. Not all five departments had records for all the sources. 

Some were missing as detailed in Table 1.

In addition to these count data, a second independent source of information on the MSM 

population is needed to estimate the population size. For the five departments, there was a 

representative survey in which MSM were recruited through RDS (Heckathorn 1997), a 

strategy employed when individuals in the target population are hard-to-reach and when no 

known sampling frame exists. Methods for RDS have been described and compared 

previously (White et al. 2012; Stahlman et al. 2016; Wirtz et al. 2016). Individuals were 

purposively asked questions about their involvement in the aforementioned services which 

provides counts of MSM. As one example, for the service multiplier method, participants 

were asked if they had ever received services from “Clinique de Confiance” (see Appendix 

A for the list of questions asked for each source category). The binary responses to these 

questions, combined with the respective total counts obtained from the program logs helped 

to derive direct estimates for MSM population using the multiplier method as outlined in 

Section 2.2.

2.2. Direct Estimates via the Multipler Method

Multiplier methods are a standard approach to directly estimate the size of a subpopulation. 

A first data source provides a total count (T) of the subpopulation who participate in a 

certain event or activity, and a second independent data source provides an estimate of the 

proportion (p) of that subpopulation who are associated with the aforementioned activity. 

The basis for this method rests on the assumption that the proportion of individuals in the 

subpopulation who appear at a specific institution (which provides the first source) is equal 
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to the proportion who appear at that same institution among the second source. For example, 

the proportion of all MSM who are currently registered in an NGO is assumed to be equal to 

the proportion of the members of the same NGO among the survey participants. The 

population size estimate N then satisfies T /N = p and is estimated by N = T / p.

For each of these five departments, size estimates were available to us which had been 

previously generated through the use of various multiplier methods. The multiplier method 

is commonly named after the data source providing the count of MSM participating in that 

event, that is, unique object multiplier, NGO membership multiplier, service multiplier, and 

social event multiplier. The RDS survey is the second independent data source which 

contained binary responses about involvement of the survey participants for each of the four 

events/activity listed as the first source.

Since RDS is a network-based sampling approach, the Volz-Heckathorn estimator (Volz and 

Heckathorn 2008) uses the personal network sizes of the participants to obtain estimates of 

characteristics of the population. If bi,NGO denotes the binary indicator for the ith survey 

participant being a member of an NGO, and di denotes the reported network size of that 

individual, then the Volz-Heckathorn estimator (also commonly referred to as the RDS II 

estimator) of pNGO —the proportion of MSM who are NGO members is:

pNGO =
∑i

bi, NGO
di

∑i
1
di

.

Subsequently, using the total count TNGO of MSM registered for that NGO, the NGO 

multiplier estimate of MSM population size is given by TNGO/ pNGO . Similarly, other 

multiplier based size estimates can be derived based on the respective count of other first 

sources and the corresponding binary responses in the RDS.

Table 1 presents the multiplier based direct estimates of MSM in the age group of 18–29 

years for the five areas. The column names indicate which data source was used as the first 

source in the multiplier method, with the RDS survey being the second source. Confidence 

intervals for the Volz–Heckathorn estimators of the proportions were calculated based on 

Salganik (2006) which were then used to calculate the confidence intervals of the population 

size estimates, as reported in Table 1. Note that not all survey methods were implemented in 

all areas. In Abidjan, there were two NGos where we had access to the total count of 

members. On the other hand, Agboville does not have a service multiplier based estimate 

and Gagnoa does not have an estimate from NGO membership.

The direct estimates presented in Table 1 were already available to us and have been used in 

the web-report (http://www.endasante.ci/images/rapport/

rapport_IBBS_MSM_2015_2016.pdf). Our main goal is to use these direct estimates in a 

regression model to produce the estimates of MSM population size in areas with no data. 

Hence, we did not pursue more methodological developments to improve direct estimates 
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using multiplier methods based on an RDS, but rather focused on using the direct estimates 

derived using certain assumptions as inputs to the extrapolation model.

Nonetheless, we note that several assumptions are used in the calculation of direct estimates 

in Table 1. First, at the heart of the multiplier method is the assumption that the first and 

second sources of data are independent, which may not be the case. We discuss this more 

later in Section 5 in the context of the results. Also, even if the four different sources used as 

the first data source in the multiplier method are each independent of the RDS, they may not 

be independent of each other. Size estimation methods based on multiple capture–recapture 

exist (Castledine 1981). However, they usually require the total number of subjects that 

participated in at least one of the independent surveys. This information is not available to us 

as the overlaps between the four sources are unknown. Hence, we could not use joint 

multiplier method in its most basic implementation. However, since we have multiple areas 

here, there might be alternate ways of modeling this dependency via jointly modeling all the 

areas under certain assumptions. We did not pursue them here. Finally, because those 

sampled were 90% from the age group 18–29, all population size estimates produced in this 

manuscript are for this age group.

2.3. Prediction Areas and Covariates

In total, there were 61 prediction areas that were selected to coincide with PEPFAR 

organizational units (OUs) to provide evidence-based estimates for targeted prevention, care 

and treatment programs and to inform country operational processes. These PEPFAR 

departments also roughly correspond with the official department-level administrative 

divisions in Côte d’Ivoire.

Covariates were selected based on relevance to the prediction model (as will be detailed in 

Section 3.2) and availability of quality data at the appropriate administrative division 

(department) level. Data for population density, density change and male population were 

obtained from publicly available data published by the Institut National de la Statistique, 

Republique de Côte d’Ivoire. Data for HIV prevalence was obtained from a UNAIDS report 

on subnational estimates of HIV prevalence in Côte d’Ivoire (http://www.unaids.org/sites/

default/files/media_asset/2014_subnationalestimatessurvey_Cotedivoire_en.pdf).

There was no department-level age-stratified, sex-stratified data. Therefore, we assumed a 

constant age and sex distribution across all departments: 55% of total male population for 

each of the departments/area seats is in the age group 18–29. Also, for Abidjan, close to 

90% of our sample reported being from either Abobo, Cocody, Marcory, Triechville, or 

Youpougon. This is just five communes out of the total ten in Abidjan. We therefore 

considered our sample to better represent these five communes of Abidjan rather than the 

whole city. The total male (15–49) population for these communes was 842,551 rather than 

1,286,750 for the whole city, and for men 18–29 it was 368,097 rather than 562,160. We also 

assumed that the age-sex distribution was the same across all communes.

Additionally, we used estimated population density from the Landscan database (http://

web.ornl.gov/sci/landscan/) based on night light data. The night light data is from Defense 

Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) which 
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detects nighttime lights from satellite imagery. Landscan provided estimated population size 

over 1 km × 1 km grid cells. For each of the 61 prediction areas, the population estimates 

were averaged over a 25 km2 radius centered on the area to obtain the average population 

density for the areas.

3. Methods

In this section, we describe our methodology. We used the direct estimates provided in Table 

1 for the five departments to train a regression model for predicting the MSM population 

size based on the covariates, and subsequently used this model to extrapolate to all other 

areas. Although the direct estimates are not raw data but are statistical end-products from the 

multiplier method, we treat them as “data” for the extrapolation model. Hence, the 

extrapolation model in this section can be viewed as the second step of a two-step approach 

where the first step is to calculate the direct estimates as detailed in Section 2.2. Since our 

main objective is the prediction of MSM population size for the areas without direct data, we 

will plug-in the available direct estimates as “pseudo data” for the regression model and use 

the confidence intervals for the direct estimates to specify the heteroscedastic variances in 

the model. In Section 5, we expand on why we chose this two-step method and the 

difficulties of implementing a comprehensive method that uses the actual raw data, that is, 

counts and individual survey responses.

3.1. Linear Model

Most of our modeling choices are guided by the extremely small sample size (a total of 19 

datapoints from five departments), which proscribed the use of complex models involving 

many parameters. The covariates described in Section 2 were area specific. Hence, although 

there were 19 datapoints, there were only five unique sets of covariate values, one for each 

area. This impeded exploring nonlinear models linking the MSM population size to the 

covariates, and confined us to the parsimony of the linear model. For the ith area, let Ni 

denote the total male population in the age group of 18–29 years, xi denote the set of 

demographic covariates and nij denotes the direct estimate obtained from the jth method. A 

natural choice for modeling the population size would have been a generalized linear model 

(GLM) nij ~ Binomial(Ni,pi) where pi = logit xi
Tβ =

exp xi′β

1 + exp xi′β
 However, note that not all 

the direct estimates are equally precise. For example, we observe in Table 1 that the NGO 

membership-based estimate of MSM population in Bouake differs by an order of magnitude 

from the other three estimates for the same area. The confidence interval for this estimate is 

also very wide suggesting low precision of the estimate. Since it is less clear howto 

incorporate information from the confidence intervals in a binomial GLM setup, we used a 

suitable transormation of the size estimates and worked in the linear regression paradigm. 

This allowed us to leverage the confidence bounds of the direct estimates in Table 1 in a 

linear regression setup via heteroscedastic errors.

We used log-transformation of the fraction of total 18–29 male population who are MSM as 

the response and specified the linear regression model as
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yi j
ind N xi

Tβ, τi j
2 , where yi j = log ni j/Ni . (1)

We used the confidence intervals provided in Table 1 to specify the heteroscedastic errors < 

τi j
2 . Specifically, if (nij.l, nij.u) denotes the 95% confidence interval of nij in Table 1, then 

(yij.l,yij.u) is a 95% confidence interval for yij, where yi j . l = log ni j . l/Ni  and 

yi j . u = log ni j . u/Ni . Since the variance of a normal random variable is proportional to the 

square of the width of the 95% inter-quantile range, we specified τi j
2 = τ2 yi j ⋅ u − yi jl

2
. This 

ensures that more uncertain estimates with very wide confidence bounds are given less 

weight in the model than the ones with narrow confidence intervals providing more precise 

information.

Regression models for small area estimation often include area specific random effects to 

improve estimation (Fay and Herriot 1979). However, Datta, Hall, and Mandal (2011) 

argued that when the number of areas is small, the simpler model without random effects 

often performs better. Owing to the very small sample size of the dataset, we decided against 

introducing area specific random effects as it involves additional parameters.

Finally, we used a log-transformation to define the yijs in 1) although a logit transformation 

is more natural, as nij/Ni is a proportion. In the dataset, the proportions nij/Ni are typically 

very small (80% are smaller than 0.05). So the two transformations yield very similar yijs. 

Furthermore, as we discuss in Section 3.2, the log transformation is more interpretable in our 

final model which includes log(Ni) as one of the covariates.

3.2. Covariate Selection

Given the limited data size, we wanted to select only one or two most relevant covariates 

from the five available—male population, population density, density change, HIV 

prevalence, and Landscan density. We kept HIV prevalence in the model as we expected 

areas where there are more MSM to be areas with high HIV prevalence, as MSM are 

disproportionately affected by HIV given the biology of HIV transmission.

We conducted model selection using leave-one-out cross-validation to choose the second 

covariate (alongside HIV prevalence). Hence, there were five candidate models—one with 

HIV prevalence as the only predictor, and four others with HIV prevalence and each of the 

four other covariates as the second predictor. For each of the five models, we left all the 

direct estimates from one area out and fitted the model using the remaining areas to predict 

the MSM population size for the left-out area. We repeated this for all the five areas. If ni 

denotes the mean of the direct estimates for the ith area and ni,M denotes the estimate of 

MSM population for the ith area using model M and all the direct estimates except those for 

the ith area, the leave-one-out cross validated mean square error (MSELOOCV) for the model 

M is given by ∑i = 1
5 ni − ni, M

2.
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Table 2 provides the LOOCV based mean square error for the five models. The model with 

log male population and HIV prevalence as covariates had the lowest MSE. This result was 

surprising to us as the total male population in the age group (Ni) has already been used to 

define yij’s in (1). However, Figure 1 reveals that yij’s have a very strong negative correlation 

with log(Ni)’s. In fact, each of the four population based covariates considered in Table 2 

were negatively correlated with yij’ s, with log (Ni) exhibiting the strongest negative 

correlation.

Initially, this negative correlation seems counter-intuitive given a rural-to-urban migration. 

One conjecture that explains this trend is that in large urban centers the MSM community 

grows at a slower rate than the overall population even if the absolute numbers of MSM is 

higher in those urban areas. For example, if the numbers of MSM population for the ith city 

(ni) grows at a rate proportional to Ni
γ for some γ < 1, then although the absolute MSM 

numbers are positively correlated with total population (cov(log(ni), log(Ni)) α γ > 0), the 

proportion of MSM is negatively correlated with the total population (cov(log(ni/Ni), 

log(Ni)) α γ – 1 < 0). We provide additional discussion on alternate explanations for this 

relationship in Section 5. Including log(Ni) as a covariate, in turn, prompted us to use a log-

transformation of MSM proportions (and not logit transformation) for the linear regression 

model, as it imparted the nice interpretability about the relative growth rates of the MSM 

population and the total population mentioned above.

The final linear regression model was yi j = β0 + β1log Ni + β2Hi + ϵi j where Hi denote the 

HIV prevalence for the ith area.

3.3. Spatial Model for HIV Prevalence

HIV prevalence data were missing for about 50% (30 out of 61) of the locations where we 

want to predict MSM population, and we need to impute the missing values. A simple 

choice for imputation would be to use the average of the observed values. However, 

exploratory analysis suggested that HIV prevalences in nearby areas were generally more 

similar, a spatial correlation that was confirmed by an empirical variogram. The variogram is 

an effective tool for detecting spatial structure. It plots pairwise squared data differences, 

averaged over bins of spatial distances, as a function of the distance.

Formally, let H(si) = Hi denotes the HIV prevalence at an area with geographical co-

ordinates si. Let Bk denote the collection of pairs (i, j) such that Ik–1 ≤ ||si – sj|| ≤ Ik with || • || 

being the Euclidean distance. Then, the empirical variogram for the mid-point of mk of the 

interval (Ik–1, Ik) is given by

v mk =
∑(i, j) ∈ Bk

H si − H s j
2

∑(i, j) ∈ Bk
1 ,

and is interpreted as the average squared data difference for HIV prevalences for areas 

separated by approximately mk distance. A variogram with small values for low mk (high 

positive correlation) and higher values for large mk (low positive correlation) indicates 
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spatial dependence that decreased with distance. Figure 2, which plots the empirical 

variogram, confirms this trend.

A Gaussian process (GP) is a popular tool for modeling data whose empirical variograms 

indicates spatial structure, such as that in Figure 2. Consequently, we modeled H(s) as a GP 

with a constant mean and an exponential covariance function. If H(S) denotes the vector 

formed by stacking up the HIV prevalence data for the set of areas S that have data on HIV 

prevalence, then the GP specification uses the multivariate Gaussian distribution 

H(s) N(μ1, Σ ) where Σ = σ2exp −ϕ si − s j si, s j ∈ S
. We plot in Figure 2 the model-based 

variogram corresponding to this exponential GP. This fits the exponential variogram σ2(1 – 

exp(–ϕmk)) (red curve) to the points v(mk) from the empirical variogram. The fit documents 

the utility of using GP for modeling HIV prevalence. Using the GP model, the prevalence 

data at S is used to estimate the parameters (μ, σ2, ϕ). Subsequently, the prevalence at any 

new location s is given by

[H(s) H(S)] N v(s)T Σ−1 H(S), σ2 − v(s)T Σ−1 v(s) , (2)

where v(s) = σ2 exp − ϕ s − si si ∈ S
. The conditional distribution in (2) used to predict HIV 

prevalence at any location s is commonly referred to as “kriging” in the geostatistics 

literature. We refer the reader to the books by Cressie and Wikle (2011) and Banerjee, 

Carlin, and Gelfand (2014) for more details on variograms, spatial GP models and kriging.

We compared the predictive performance of the spatial model with simple mean imputation 

for HIV prevalence using leave-one-out cross-validation. For the cross-validation, we used 

the kriging equations in (2) to impute the HIV prevalence at each left-out area, based on 

parameter estimates using data from the remaining areas. For comparison, we used the mean 

HIV prevalence of the in-sample data to predict at the left-out area. The leave-one-out MSE 

for the spatial model (MSE = 0.37) was around 20% better than for the mean imputation 

(MSE = 0.48). Hence, we used the spatial GP model for imputing the missing HIV 

prevalence data.

3.4. Hierarchical Bayesian Modeling

Obtaining meaningful confidence bounds for the predicted MSM population is critical. The 

uncertainty of the regression parameters and especially the spatial parameters are often 

ignored. Furthermore, for areas with missing HIV prevalence data, the kriging estimates in 

Equation (2) are accompanied by the kriging variances which can be large if the location is 

far from the data locations. Ignoring this source of uncertainty can lead to prediction bounds 

that are too narrow. In a frequentist approach, it is unclear how to use the kriging variance 

when the imputed HIV prevalence will be used as a covariate to predict MSM population 

size. However, we can seamlessly integrate this multistage procedure into a hierarchical 

Bayesian model that allows for proper propagation of uncertainties associated with all 

inferences for all model components.
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To do so, let S denote the set of locations where HIV data are available. Also, for any 

location s, let N(s) and H(s), respectively, denote the male population in the 18–29 age 

interval and the HIV prevalence. Define y j si = yi j, wi j = yi j, u − yi j, l
2
, and β = β0, β1, β2 ′, 

and the full specification of the hierarchical model is given by:

∏
i = 1

5
∏

i
N y j si β0 + β1log N si + β2H si , τ2wi j ×

N H(S) μ1, Σ σ2, ϕ ×

N β 0, 106I × N μ 0, 106 × Unif (ϕ 0, 10) ×

Gamma 1/τ2 0.01, 0.01 × Gamma 1/σ2 2, 1 .

(3)

The top row of (Equation 3) is the log-normal regression model for the MSM percentages, 

the middle row is the spatial GP model for HIV imputation and the bottom two rows are the 

parameter priors. Gamma(a, b) denotes the Gamma distribution with shape parameter a and 

rate parameter b and Unif(a, b) is the uniform distribution on (a, b). We use the Nimble 
package in R (https:\\r-nimble.org) to generate 30,000 MCMC samples from this model, the 

first 15,000 of which is discarded as burn-in. The posterior estimates for all the parameters 

are provided in Table 3.

We observe, from the estimate of β1, that there is strong negative association between yij and 

log(Ni) whichwehavediscussed in Section 3.2. The association of MSM population size with 

HIV prevalence is relatively weak as the credible interval of β2 covers zero. The estimates of 

the spatial parameters indicate a strong spatial dependence in HIV prevalence, previously 

insinuated by the variograms in Figure 2.

3.5. Prediction

We used composition sampling (Chib 2001) to obtain posterior predictive distributions of 

MSM population size at a new location. If s ∈ S, then the predictive distribution is given by 

the samples ynew
(m) (s) = β0

(m) + β1
(m)log N(s) + β2

(m)H(s) |m =1, 2, …, M  where 

βi
(m) |m = 1, 2, …, M  denotes the MCMC samples from posterior distribution of βi. For 

locations outside S with no HIV prevalence data, the posterior distribution of H(s) is given 

by

∫ p H(s) H(S), μ, σ2, ϕ p μ, σ2, ϕ H(S) dμdσ2dϕ .

This is effectively accomplished using the samples {μ(m), (σ2)(m), ϕ(m)} to generate H(s) | 
H(S) via the kriging equation in (2). Subsequently, the samples 

ynew
(m) (s) = β0

(m) +β1
(m)log N(s) + β2

(m)H(m)(s) |m = 1, 2, …, M  represent the posterior predictive 

distribution for MSM population size at those locations.
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By necessity, we had to train the linear regression model on a very limited set of predictor 

values, based on just five unique data points. It is difficult to assess a priori whether we can 

extrapolate this linear relationship to other areas with significantly different demographics. 

We observed that for some areas with very low population, the predicted MSM population 

percentage was noticeably high. Further investigation into this reveals that the minimum 

total male population among the five departments with direct estimates corresponds to the 

36th percentile of the empirical distribution of total male population among all the 61 areas. 

Hence, the training data corresponds to larger areas with greater population and does not 

inform much about the regression relationship in areas where the population is very low. 

This, combined with the strong negative value of β1 in Table 3 results in such high estimated 

MSM fractions.

For a heuristic remedy, we assumed that the negative relationship flattens out below a certain 

population threshold. We truncated the total male population at the 10% quantile of the 

empirical distribution and used these thresholded values for prediction. While this is ad hoc, 

more formal methods like estimating the truncation point based on the data will always 

truncate within the data values, whereas replacing a linear regression with a general 

monotonic function will involve more parameters and hence is infeasible for our small 

dataset. Our truncation did not affect parameter estimation because all the total population 

values for the training data are above the truncation level. This issue is less severe for HIV 

prevalence as the observed values for the five departments better represented the empirical 

distribution of HIV prevalence. Since it also has a much weaker association with population 

size of MSM, we did not truncate the HIV prevalence values.

4. Results

We discuss the quality of HIV imputation in Section 4.1 and then in Section 4.2 we 

summarize predictions of MSM population size estimates and discuss the impact of different 

factors on the resulting predictions and prediction variances.

4.1. Imputed HIV Prevalences

Figure 3(a) represents the observed and imputed HIV prevalences along with the associated 

uncertainties (inter-quantile ranges) of the imputed prevalence. We see that the imputed HIV 

prevalences are roughly similar to the observed ones in nearby departments. Overall, there is 

no distinct trend suggesting that imputed HIV prevalences were generally higher or lower 

than observed ones. To confirm that indeed there is no general bias in HIV imputation, in 

Figure 3(b) we plot the densities of observed and imputed HIV prevalences. The median, 

first, and third quartiles for observed prevalence are (2.50, 2.00, 2.95) whereas for imputed 

prevalence they are (2.50, 2.20, 2.70). The densities are concentrated in a similar area with 

the imputed prevalence having narrower tails on either side. Generally, the imputed 

prevalences do not exhibit any bias.

4.2. Size Estimates

Figure 4 presents the uncertainty quantified predictions of MSM population size. The full set 

of predictions along with confidence intervals for all the 61 departments are presented in 
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Table B1 in Appendix B. In terms of absolute numbers, Abidjan has by far the highest 

predicted MSM population size though it has one of the lowest percentages. Both 

occurrences are due to the massive population of Abidjan. Outside of the five data areas, 

Katiola and Sassandra has the highest predicted MSM population size whereas some areas 

have predicted numbers as low as 100. For the areas without direct estimates, the predicted 

MSM population percentage typically varied between as low as 0.5% to around 10%. The 

highest MSM percentages are predicted in Katiola, Kouassi-kouassikro, and Bettie. 

However, these areas also had the widest credible intervals indicating the large uncertainties 

associated with the predictions.

To understand how the predicted MSM population size varied with the total population and 

HIV prevalence, we plotted pairwise scatterplots in Figure 5. We see from Figure 5(a) that 

there is strong negative correlation between the predicted MSM percentages and the total 

male population. This is expected in the context of the trend observed in Figure 1. Figure 

5(b) reveals that there is no such overall strong trend in MSM proportions with respect to 

HIV prevalence. However, generally, the predicted MSM proportions seems to be higher for 

areas with missing HIV. The scatterplot in Figure 5(c) shows that a lot of the areas with 

missing HIV prevalence have low population suggesting that the high predicted MSM 

numbers in areas with missing HIV are not an artifact of the imputation model, but a 

consequence of the negative association of MSM proportion with total male population size.

To confirm that low population, and not imputed HIV, is the driver for high predicted MSM 

percentage, in Figure 6 we compare the densities of predicted MSM from our model with 

the following hierarchical model having only HIV prevalence as the predictor:

∏
i = 1

5
∏

j
N y j si β0 + β2H si , τ2wi j

× N H(S) μ1, Σ σ2, ϕ

× N β 0, 106I × N μ 0, 106 × Unif (ϕ 0, 10)

× Gamma 1/τ2 0.01, 0.01 × Gamma 1/σ2 2, 1 .

(4)

Figure 6(a) shows how our model-based predicted MSM proportions are generally higher for 

the departments with imputed HIV prevalence. However, this is not the case for predictions 

based on the model from Section 3.5 where the densities for departments with or without 

HIV prevalence are concentrated around the same area. Both models use the same spatial 

imputation method for HIV prevalence, with the only difference being setting aside the total 

MSM population covariate in the model proposed in Section (3.5), confirming that imputing 

HIV prevalence is not causing high predicted MSM proportions; rather the difference is due 

to the strong negative association of MSM proportion with total male population.

Finally, we investigate the effect on the imputation of prediction uncertainties. Figure 7 

demonstrates the impact of HIV imputation on the prediction uncertainties. Since the 

variance and width of inter-quantile ranges of log-normal distribution are proportional to the 
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mean, we use relative width (ratio of the 95% confidence interval width to the estimate) as a 

more meaningful measure of uncertainty. In Figure 7(a) we plot predicted MSM population 

percentage against relative width. We observe that the relative width was in general larger 

for locations with missing HIV prevalence data. This is expected as the Bayesian model 

properly propagates the uncertainty associated with the imputation of HIV prevalence in the 

final predictions and is reflected in the CI widths. In Figure 7(b) we plot the relative width 

against leverages xi
⊤ X⊤X

−1
xi, where X is the design matrix and xi denotes the covariate 

vector for the ith area) for each area. For areas with HIV prevalence data, relative width 

increases with the leverage as expected indicating that predictions for areas with covariates 

values distant from those of any of the observed areas are accompanied with larger 

uncertainty. Among areas with missing HIV prevalence, this trend was less prominent due to 

the added component in the uncertainty from the imputation.

5. Discussion

We have reported fully Bayesian predictions combined with appropriate credible bounds for 

the population size of MSM in the 61 areas prioritized for HIV prevention and treatment 

services across Côte d’Ivoire. Our analysis was based on several assumptions and the results 

need to be interpreted carefully.

The direct estimates calculated for the five departments assumed that the enlistment in any 

of the four services leading to the first source of data in the multiplier method is independent 

of participation in the RDS survey. If this independence assumption fails, biases are 

introduced into the direct estimates. We conjectured that the negative association between 

the direct estimates of MSM percentages and the total male population in Figure 1 is due to 

relative rural to urban immigration rates of MSM and the broader population. While rural to 

urban migration is common for MSM, the political unrest in 2002 and 2010–2011 in Côte 

d’Ivoire was associated with significant population-wide migration to Abidjan which may 

have changed population dynamics in the city, leading to such an occurrence. Alternatively, 

it may be possible that the independence assumption in deriving the direct estimates was 

violated and that smaller departments have a higher extent of overlap between the surveys. 

In that case, these direct estimates, assuming independence, are biased upward for smaller 

departments and consequently the MSM population sizes at areas with low populations are 

also being overestimated. A third explanation for the negative correlation would be that in 

urban areas a higher proportion of MSM are not accounted for in the survey. While all three 

reasons are conceivable, the first is a feature of MSM population dynamics while the second 

and third are sampling issues.

Without additional data, it is not feasible to decide among these scenarios. However, 

internet-based surveys may facilitate learning more about the numbers of MSM in more 

stigmatizing settings. In rural areas where MSM populations are small and social stigma is 

high, risks involved in participating in conventional face-to-face surveys may lead to 

significant overlap among the participants of multiple surveys. Anonymity offered by the 

internet may help to better sample such stigmatized populations. There is a growing body of 

literature on using the internet to survey MSM (Bowen, Williams, and Horvath 2004; 
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Stromdahl et al. 2015; Buckingham et al. 2017) and direct estimates from such internet-

based surveys may be more reliable in terms of conforming to the sampling assumptions. If 

such a survey also reveals similar trends of high percentages of MSM in low population 

areas, it will confirm that this is more a feature of the MSM demographics in the country and 

not a sampling issue.

We also treated multiple direct estimates available for each of the five departments as 

independent in the linear model. If data are missing completely at random, treating 

correlated data as independent has little influence on the estimation target, but can have 

strong influence on the variance, so the assumption has consequences. However, we could 

not implement multiple capture–recapture based estimates of population size proposed in 

Castledine (1981) due to the lack of sufficient information on overlaps between the surveys. 

Bao, Raftery, and Reddy (2015) have demonstrated how to estimate population sizes by 

incorporating data from multiple surveys and other data sources, in a fully Bayesian setup. 

While we have multiple estimates for each department, all of them are based on RDS and it 

is not clear how to adapt that approach when working with such estimates. Directly using the 

individual survey data and the counts from the four sources as an input to the model would 

be an even more fundamental approach. In addition to accounting for dependence among the 

four sources, this will also allow us to shift from the two-stage paradigm adapted in this 

analysis, where the direct estimates were plugged into the extrapolation model, to a unified 

framework yielding direct and extrapolated estimates simultaneously and ensuring complete 

propagation of uncertainty. However, incorporating the RDS network into a hierarchical 

Bayesian area-level model to produce full distributional inference remains a challenging 

problem.

These are substantial methodological challenges concerning direct estimates that we 

circumvented. Our central focus was to extrapolate to areas with no data whatsoever using 

standard direct estimates from the five departments. However, since the extrapolation results 

depend on the quality of the direct estimates, advancing the statistical theory of RDS based 

estimates, in conjunction with more data collection, is critical for improving the results.

The small number of areas with direct estimates for MSM has been a major limiting factor 

in modeling and has contributed to the large prediction uncertainties at some of the areas. 

Other relevant datasets, like MSM populations in other countries, if available, can be 

potentially leveraged to borrow strength in parameter estimation. However, care is needed 

when leveraging data from other countries, as different countries often have entirely 

different key population dynamics and borrowing strength may not be meaningful. Perhaps, 

more useful will be data for other associated key populations like FSW, for the same set of 

areas. The correlation can be exploited in a multivariate setup to improve estimation of both 

populations. Such a bivariate extrapolation approach will rely on assumptions less extreme 

than borrowing information across countries.

To our knowledge, we present the first empirically calculated estimates of the numbers of 

MSM in all areas of Côte d’Ivoire prioritized in the HIV response. Our context of limited 

centers with measured population size is also not uncommon in the areas of the world where 

HIV prevalence is the highest given that these settings often also tend to criminalize same-
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sex practices or at least have significant stigma affecting MSM. In Southern and Eastern 

Africa, there is often only HIV prevalence data and size estimate data in one or a few urban 

centers for MSM, though, where studied, the HIV prevention and treatment needs are 

significant across these countries. Côte d’Ivoire, in West Africa, has one of the larger HIV 

epidemics in the area, but limited information has been traditionally available on the 

numbers of MSM and the HIV burden among them. Thus, while our estimates provided here 

require further validation by supporting data to be collected in additional centers for MSM, 

where predictions were completed, in the interim, these estimates can support the planning 

of the scale and content of HIV prevention and treatment programs for MSM in Côte 

d’Ivoire. Specifically, areas with wide credible intervals should be targeted for future 

surveys to improve modeling precision. Subsequently, validation and additional data points 

will highlight the strengths and weaknesses of the current approach and pave the way for 

modeling improvements.
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Appendix A:: RDS Questions for Multiplier Methods

Questions asked of MSM recruited to participant in an RDS survey in order to provide an 

independent source of data for size estimation in Côte d’Ivoire in 2014

• Unique object: “Did you receive this object before?” [show single object]

• NGO membership: “Are you a member of the NGO Rainbow Plus, or have you 

ever participated one oftheir activities or even was hit by one of their peer 

educators?”

“Are you a member of the NGO Alternative CI, or have you ever participated 

one of their activities or even was hit by one of their peer educators?”
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• Service: “Have you received care at the Clinique de Confiance through the year 

2014?”

• Social event: “Have you participated in the social event called “evening 

GNARA” which took place on Saturday, March 21, 2015 to space Embassy 

located in the Riviera II?”

Appendix B:: Size Estimate Predictions for All 61 Departments

Table B1.

Predicted MSM population size, population fraction and HIV prevalence along with credible 

intervals (within braces). Bold font indicates HIV prevalence for areas where there was data 

on it (this data was taken from UNAIDS report which did not provide any confidence 

intervals).

areas MSM population size MSM population % HIV prevalence

Abidjan 1818 (1113, 2941) 0.5 (0.3, 0.8) 3.6

Agboville 628 (352, 1134) 6.5 (3.7, 11.8) 3.1

Bouake 953 (741, 1218) 1.3 (1.0, 1.7) 3.1

Gagnoa 383 (187, 783) 1.6 (0.8, 3.2) 2.0

Yamoussoukro 822 (614, 1101) 2.3 (1.7, 3.1) 3.1

Abengourou 638 (457, 889) 1.8 (1.3, 2.6) 2.7

Agnibilekrou 755 (472, 1218) 4.3 (2.7, 7.0) 3.2

Beoumi 476 (305, 746) 3.1 (2.0, 4.8) 2.5

Biankouma 356 (176, 721) 2.1 (1.0, 4.2) 2.0

Bouafle 591 (377, 922) 1.3 (0.9, 2.1) 2.5

Bouna 328 (164, 666) 2.8 (1.4, 5.8) 2.0

Dabakala 497 (323, 769) 2.6 (1.7, 4.0) 2.5

Daloa 439 (182, 1051) 0.7 (0.3, 1.6) 1.9

Danane 421 (216, 816) 1.5 (0.8, 2.9) 2.1

Dimbokro 377 (216, 673) 4.1 (2.4, 7.3) 2.3

Divo 422 (198, 894) 1.1 (0.5, 2.3) 2.0

Guiglo 772 (495, 1214) 4.0 (2.6, 6.3) 3.2

Issia 387 (171, 865) 1.1 (0.5, 2.5) 1.9

Katiola 1134 (413, 3078) 10.3 (3.7, 27.8) 4.0

Korhogo 543 (301, 975) 1.0 (0.6, 1.8) 2.3

Lakota 374 (184, 761) 1.7 (0.8, 3.5) 2.0

Man 680 (503, 914) 1.9 (1.4, 2.6) 2.8

Odienne 261 (110, 630) 2.8 (1.2, 6.7) 1.7

Oume 540 (354, 829) 1.9 (1.2, 2.9) 2.5

Sakassou 262 (111, 634) 2.7 (1.1, 6.6) 1.7

Sassandra 1037 (647, 1684) 3.2 (2.0, 5.2) 3.5

Seguela 328 (141, 755) 1.6 (0.7, 3.6) 1.8

Sinfra 525 (343, 806) 2.1 (1.4, 3.2) 2.5

Toumodi 488 (313, 763) 3.8 (2.4, 5.9) 2.6
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areas MSM population size MSM population % HIV prevalence

Vavoua 278 (80, 948) 0.6 (0.2, 2.2) 1.3

Zuenoula 214 (57, 783) 1.0 (0.3, 3.5) 1.1

Bettie 525 (179, 2025) 8.9 (3.0, 34.4) 3.0 (1.6, 4.3)

Blolequin 597 (204, 1859) 4.1 (1.4, 12.7) 2.9 (1.6, 4.2)

Bocanda 473 (153, 1342) 3.8(1.2, 10.8) 2.6 (1.2, 3.9)

Botro 612 (218, 2234) 7.9 (2.8, 29.0) 3.1 (1.8, 4.5)

Didievi 434 (136, 1345) 4.9 (1.5, 15.2) 2.5 (1.2, 3.9)

Dikodougou 415 (129, 1253) 5.3 (1.6, 15.9) 2.5 (1.2, 3.8)

Djekanou 261 (81, 890) 9.5 (3.0, 32.4) 2.6 (1.3, 3.9)

Doropo 328 (89, 945) 5.0 (1.4, 14.4) 2.2 (0.8, 3.5)

Fresco 527 (180, 1695) 4.9 (1.7, 15.8) 2.8 (1.4, 4.1)

Gbeleban 111 (28, 344) 6.0 (1.5, 18.5) 1.9 (0.5, 3.2)

Guitry 474 (140, 1309) 3.0 (0.9, 8.4) 2.5 (1.2, 3.8)

Kani 304 (79, 849) 3.9 (1.0, 11.0) 2.0 (0.7, 3.3)

Kouassi-kouassikro 263 (82, 921) 9.3 (2.9, 32.4) 2.6 (1.2, 3.9)

M’bengue 363 (103, 999) 4.1 (1.2, 11.3) 2.3 (1.0, 3.6)

Madinani 255 (66, 776) 6.4 (1.7, 19.4) 2.0 (0.6, 3.3)

Nassian 347 (102, 1150) 7.6 (2.2, 25.3) 2.4 (1.1, 3.7)

Niakaramandougou 636 (229, 1990) 4.6 (1.7, 14.4) 3.0 (1.7, 4.3)

Samatiguila 106 (25, 327) 5.8 (1.4, 18.1) 1.8 (0.5, 3.2)

Seguelon 166 (43, 514) 6.3 (1.7, 19.6) 2.0 (0.6, 3.3)

Sikensi 547 (195, 1838) 6.7 (2.4, 22.5) 2.9 (1.6, 4.3)

Sinematiali 363 (110, 1114) 6.4 (2.0, 19.7) 2.4 (1.1, 3.7)

Sipilou 285 (76, 873) 6.3 (1.7, 19.2) 2.1 (0.7, 3.4)

Taabo 371 (116, 1122) 6.2 (1.9, 18.8) 2.4 (1.1, 3.7)

Tai 567 (193, 1822) 5.0 (1.7, 16.2) 2.9 (1.5, 4.2)

Tehini 310 (88, 996) 7.5 (2.1, 24.1) 2.2 (0.9, 3.6)

Tiassale 550 (178, 1557) 2.8 (0.9, 7.9) 2.7 (1.3, 4.0)

Tiebissou 443 (139, 1277) 4.4 (1.4, 12.7) 2.5 (1.2, 3.8)

Toulepleu 459 (148, 1554) 7.4 (2.4, 24.9) 2.7 (1.4, 4.1)

Zouan-hounien 511 (157, 1350) 2.6 (0.8, 6.8) 2.5 (1.2, 3.8)

Zoukougbeu 342 (87, 905) 2.8 (0.7, 7.3) 2.0 (0.7, 3.4)
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Figure 1. 
Negative correlation in log–log scale between MSM proportion and total male population of 

age 18–29.
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Figure 2. 
Empirical (black dots) and exponential covariance Gaussian process (red line) variogram for 

HIV prevalence.

Datta et al. Page 23

Stat Public Policy (Phila). Author manuscript; available in PMC 2019 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
HIV imputation: plots of (a) predicted and observed HIV, where Δ represents observed data, 

• denotes predictions, and IQR 95% is the 95% inter-quantile range of predictions, that is, 

width of the 95% credible interval; and (b) overall densities of observed and imputed HIV 

prevalences
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Figure 4. 
Predicted and observed MSM population. Δ represents observed data, • denotes predictions 

and IQR 95% is the 95% Inter-quantile range of predictions, that is, width of the 95% 

credible interval.
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Figure 5. 
Pairwise scatterplots of the predicted MSM %, male 18–29 population and HIV prevalence.
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Figure 6. 
Densities of the predicted MSM % for departments with observed or imputed HIV 

prevalence.
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Figure 7. 
Impact of imputing HIV on uncertainty: Plots of (a) relative 95% CI widths versus estimates 

and (b) relative 95% CI widths versus the leverages. Red and blue dots correspond to, 

respectively, areas with and without HIV prevalence
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Table 2.

Leave-one-out cross validated mean square error for the four models.

Covariates included MSELOOCV

Log(male population)+ HIV prevalence 3.5 × 10−3

Landscan density + HIV prevalence 5.7 × 10−3

Population density + HIV prevalence 6.5 × 10−3

Density change+ HIV prevalence 6.7 × 10−3

Only HIV prevalence 20.0 × 10−3
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Table 3.

Posterior median and 95% credible interval for the hierarchical model.

β0 2.62 (0.04, 5.23) μ 2.55 (1.54, 3.61)

β1 −0.79 (−1.09, −0.51) σ2 0.86 (0.5, 2.29)

β2 0.63 (−0.07, 1.33) ϕ 7.68(2.71, 9.89)

τ2 0.65 (0.34, 1.43)
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