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Abstract

Data from observational studies indicate that both physical activity as well as exercise (i.e., 

structured physical activity) is associated with reductions in the risk of recurrence and cancer 

mortality after a diagnosis of certain forms of cancer. Emerging evidence from pre-clinical studies 

indicate that physical activity / exercise paradigms regulate intratumoral vascular maturity and 

perfusion, hypoxia, and metabolism and augments the anti-tumor immune response. Such 

responses may, in turn, enhance response to standard anticancer treatments. For instance, exercise 

improves efficacy of chemotherapeutic agents, and there is rationale to believe that it will also 

improve radiotherapy response. This review overviews the current preclinical as well as clinical 

evidence supporting exercise modulation of therapeutic response and postulated biological 

mechanisms underpinning such effects. We also examine the implications for tumor response to 

radiation, chemotherapy and immunotherapy.

Introduction

Over the past two decades, increased research and clinical attention has focused on the 

efficacy of exercise therapy as an adjunct strategy following a cancer diagnosis 1, 2. 

Randomized trials demonstrate structured exercise therapy is a feasible adjunct strategy 

associated with significant improvements in symptom-related outcomes including exercise 

tolerance3, 4 as well as multiple patient-reported end points such as fatigue, quality of life, 

and physical functioning both during conventional adjuvant therapy. We have previously 

reviewed the pre-clinical literature to assess the role of exercise in tumor incidence, 

progression and metastasis 5. A critical corollary is whether exercise impacts the antitumor 

efficacy of cancer treatment. Such a notion is biologically plausible, as emerging evidence 

suggests exercise modulates several factors inherent in cancer treatment sensitivity, 

including radiotherapy. Arguably, some of the most relevant are alterations in the tumor 
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microenvironment (TME) include tumor hypoxia, perfusion, tumor cell metabolism, and the 

anti-tumor immune phenotype.

In this review, we outline how exercise-mediated changes in the TME and anti-tumor 

immune response may influence the radiation response. We further explore the impact of 

exercise on additional treatment modalities such as chemotherapy and immunotherapy.

Reduction in systemic levels of oxidative stress may play a role in improved neurocognitive 

function after chemotherapy. Several studies have shown increases in levels of circulating 

inflammatory markers in women with breast cancer who underwent adjuvant chemotherapy 
6, 7. Changes in systemic levels of several inflammatory markers are associated with reduced 

neurocognitive performance. Importantly, patients who undergo exercise in conjunction with 

chemotherapy exhibit reduced levels of inflammatory biomarkers and retain neurocognitive 

function. However, cancer patients participating in a thrice-weekly exercise program 

demonstrated reduced blood 8-OhDG levels 8, a significant (41%) increase in systemic 

antioxidant capacity, and a significant (36%) decrease in protein oxidation; these changes 

correlated with reduced cancer-related fatigue 9. It is not known whether the systemic 

changes in oxidative stress caused by exercise extend to effects on tumor. We previously 

reported that physical activity improves perfusion and reduces hypoxia in the 4T1 breast 

tumor model 10. Not reported was our observation that levels of oxidative stress in the tumor, 

as depicted by 8-OHDG levels within tumor, were reduced by nearly three-fold in tumors of 

mice that engaged in physical activity (running wheel) vs. sedentary controls (Figure 1). It is 

not known is whether changes in oxidative stress within the tumor were a consequence of 

alteration in systemic levels of oxidative stress or whether they were secondary to local 

alterations in the tumor microenvironment induced by physical activity. Furthermore, the 

consequences of reduced oxidative stress associated with exercise on treatment response are 

not defined. Additionally, in order to fully understand how exercise affects oxidative stress, a 

more comprehensive set of studies with more in-depth assessment of the oxidative stress 

environment within the host and the tumor would need to be conducted 11.

1. Exercise regulation of the host milieu

The direct effects of exercise on the respiratory, cardiovascular, and musculoskeletal systems 

are well-described12. In response to repeated bouts of exercise, multiple organ systems 

adapt, resulting in improved oxygen delivery and utilization, VO2 max and mitochondrial 

biogenesis.

These exercise-induced physiologic adaptations (i.e. changes in glucose metabolism, 

circulating insulin levels, mitochondrial biogenesis, angiogenesis signaling pathways and 

cytokine release) are not confined to the skeletal muscle. They have broad-reaching systemic 

implications that affect the overall health of the host. It is now becoming apparent that 

systemic exercise-induced changes influence growing tumor tissue as well, and have the 

potential to profoundly impact the tumor microenvironment and treatment response, as will 

be detailed below.
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2. Tumor angiogenesis and vascular function

Solid tumor growth is dependent on angiogenesis, supported by optimized levels of vascular 

endothelial growth factor (VEGF) and other pro-angiogenic cytokines in the TME. VEGF 

expression is increased under hypoxic conditions, driven by signaling through the hypoxia-

inducible factor-1 (HIF-1) pathway 13. However, the pressure to create new blood vessels 

able to serve an ever-evolving mass results in chaotic and immature vessel structure. 

Consequently, most tumors feature tortuous and leaky vasculature, characterized by shunts, 

low microvessel density and poor pericyte coverage 14. Aberrant tumor vasculature causes 

mismatch between oxygen supply and demand, resulting in pockets of hypoxia. Hypoxic 

regions are intensified by a decreased microvessel density, which results in regions too far 

from a vessel to receive adequate oxygen 15. Finally, poor pericyte coverage is associated 

with leaky tumor vessels and contributes to invasion and metastasis 16.

Tumor angiogenesis and vascular normalization are targets of anti-tumor therapeutics 17. 

“Normalization” of tumor vasculature refers to several steps, including improvement in 

vascular maturity (reduced permeability, increased pericyte coverage and reduced 

microvessel diameter), combined with pruning of redundant or non-functional microvessels. 

The normalization process, by definition, therefore, results in a lowered vascular density. 

However, efficient normalization increases oxygen and drug delivery because of 

improvement in the orientation and network structure of the resulting normalized vascular 

network.

Initial trials with anti-angiogenic agents were promising, but clinical use of anti-angiogenic 

agents became problematic in many tumor types due to treatment resistance, vascular 

rarefaction and re-emergence of hypoxia following prolonged use of such agents 18, 19. 

Some of the negative effects of angiogenesis inhibitors have been avoided by using lower 

doses of antiangiogenic agents 18. This approach prolongs the period of normalization, 

which could prove beneficial for optimizing drug delivery or enhancing radiotherapy. 

Nevertheless, alternative approaches to altering tumor vascularity / angiogenesis may have 

clinical promise – exercise is one such potential strategy.

Vascular changes are perhaps the most well-documented effects of exercise on solid tumor 

physiology in pre-clinical studies. Several reports have shown that exercise increases tumor 

VEGF levels 10, 20, 21, vessel density and perfusion 10, 22. In addition to VEGF, platelet 

derived growth factor receptor-beta (PDGFRβ) is involved in endothelial cell recruitment 

during angiogenesis 23. Interestingly, one report showed that exercise increased tumor 

VEGF expression occurred in conjunction with a reduction in PDGFRβ expression 10 

leading to an overall increase in tumor angiogenesis, which dramatically reduces tumor 

hypoxia through increased microvessel density and perfusion.

The increased tumor microvessel density 10 and perfusion 22 may have implications for drug 

delivery and are associated with reduced tumor hypoxia (discussed in more detail below). 

Importantly, we have also shown that exercise increases HIF-1 expression, which is 

regulated by oxidative stress 22, 24. Therefore, the observed differences in microvessel 
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density and perfusion may reflect how exercise either reduces oxidative stress, or improves 

the tumors’ ability to deal with oxidative stress.

Functional vasculature that can effectively deliver blood, oxygen, and systemic therapies 

requires mature, long vessels with visible lumens and few non-functional sprouts. Emerging 

data suggests that exercise may improve vascular function / maturity. Increased sheer stress 

during exercise results in vascular remodeling, as defined by increased number of visible 

vessel lumens and longer average vessel length 25. Exercise-induced shear stress activates 

the transcription factor, NFAT (nuclear factor of activated T-cells), which in turn increases 

transcription of thrombospondin 1 (TSP-1), thereby promoting vascular maturity. These 

changes have important implications for delivery and potential efficacy of systemic 

anticancer agents. For instance, two studies have demonstrated improved efficacy of 

chemotherapy in combination with exercise. Our group demonstrated that voluntary running 

improved response to cyclophosphamide in mice bearing syngeneic mammary tumors 10. 

Three doses of cyclophosphamide significantly slowed tumor growth compared in exercising 

mice compared to sedentary control mice. Similarly, Schadler et al. found that gemcitabine 

was significantly more efficacious at slowing tumor growth in a mouse pancreatic ductal 

adenocarcinoma model when administered to mice running at 60%−70% of exercise 

capacity using a forced exercise paradigm, compared to sedentary mice 25. This effect was 

abrogated in thrombospondin-1 knockout mice, suggesting that exercise-mediated vascular 

normalization is an important mechanism underpinning the exercise – chemotherapy 

efficacy relationship. Schadler et al. quantified tumor doxorubicin concentrations twenty 

minutes post-treatment and found that when doxorubicin administration was preceded by 

two weeks of treadmill running (45 minutes of 12 m/min, 5 days/week) doxorubicin 

concentrations increased in murine PDAC allografts nearly two-fold 25. Further, doxorubicin 

was more efficacious at slowing B16F10 melanoma growth in exercising vs. sedentary mice.

The underlying mechanisms for improved tumor growth delay with the combination of 

exercise and chemotherapy is likely multifold. First, and perhaps the most logical, is that the 

increase in functional tumor microvessels increases chemotherapy exposure to a higher 

portion of tumor cells. Normalization of the tumor vasculature also may promote 

homogeneous blood flow throughout the tumor, eliminating shunts that leave certain regions 

unexposed to drug. Using MR perfusion imaging, Betof at al. showed that exercise-mediated 

increases in uniformity of blood flow 10. Additionally, by improving vascular maturity, 

exercise may decrease interstitial fluid pressure (IFP). Decreasing IFP could improve 

macromolecular and nanoparticle drug transport (>1000MW), because transport of these 

sized drugs is dominated by the pressure gradient across the vessel wall. The pressure 

gradient is a consequence of the extent of vascular permeability 26. Elevated IFP directly 

impedes large drug and nanoparticle transport from tumor blood vessels into the tumor 

tissue.

Changes in tumor angiogenesis may influence alternative mechanisms of tumor control, 

including anti-tumor immunity. Tumors use a variety of mechanisms to diminish T-cell 

infiltration and recognition, thereby attempting to evade immune surveillance and 

contributing to decreased anti-tumor immunity 27, 28. Interleukin-6 (IL6) can overcome this 

checkpoint, to facilitate T-call trafficking into tumors 28. Lack of pericyte coverage 
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facilitates myeloid-derived suppressor cell (MDSC) trafficking 29. This contributes further to 

an immune suppressed phenotype within the tumor microenvironment.

Both local and systemic effects of exercise may contribute to enhanced T-cell infiltration 

into tumors. First, exercise increases circulating levels of IL6, which can promote 

upregulation of adhesion molecules on tumor vascular endothelium, thereby promoting T-

cell trafficking. Further, exercise causes redistribution of NK cells in an epinephrine and 

IL-6 dependent manner, and these mature effector NK cells have cytotoxic activity against 

cancer cells in vitro 30, 31. “Exercise-induced leukocytosis” is the phenomenon by which a 

single bout of exercise mobilizes vascular, pulmonary, hepatic, and splenic white blood cells 

into peripheral circulation 32. A 45–60 minute bout of vigorous exercise increases NK cell 

concentrations 10-fold and CD8+ T cells approximately 2.5-fold 33. Dynamic changes in 

blood pressure, shear force, and epinephrine-mediated stimulation of beta-2-adrenergic 

receptors on the surface of lymphocytes collaborate to cause leukocyte demargination and 

circulation 34, 35, 36. This intensity-dependent mobilization occurs in proportion to the 

expression of beta-2-adrenergic receptors on lymphocytes, with NK cells and CD8+ T cells 

responding more strongly than B cells and CD4+ T cells 33, 37, 38.

On a systemic level, immune cells exhibit a characteristic bi-phasic response to exercise, in 

which acute leukocytosis (during or immediately following exercise treatment) is followed 

by leukopenia within 1–2 hours after cessation 37, 39, 40. Stromberg et al. reported that an 

hour of exercise transiently increased ICAM-1 and VCAM-1 in skeletal muscle vasculature 
41, while Santos et al. reported increased neutrophil ICAM-1 and L-selectin expression in 

marathon runners following the race 42. Lymphocyte counts generally nadir below baseline 

and then normalize within 24 hours 37, 39, 40. This has led to speculation of an “open-

window” following vigorous exercise in which the individual is particularly susceptible to 

infection due to immunosuppression 43. However, recent evidence force re-evaluation of this 

hypothesis. In a rodent model, Kruger et al. demonstrated that the leukopenia following 

exercise reflects a redistribution of T lymphocytes to peripheral tissues (i.e. the lung and 

Peyer’s patches) 36. This is now known as the acute stress/exercise immune-enhancement 

hypothesis 44, 45. It is unclear at this time how these time-dependent systemic changes in 

circulating immune cells affect local infiltration of the tumor.

3. Tumor hypoxia

Tumor hypoxia is the result of a discrepancy between oxygen supply and demand. Although 

proliferating tumor cells have high oxygen requirements, immature tumor vasculature and 

low microvessel density results in hypoxia 46. Vaupel et al. reviewed 125 clinical studies and 

determined that tumor tissue generally is poorly oxygenated compared to normal tissue, and 

that all types of solid tumors include regions with clinically relevant hypoxia (<10 mmHg 

O2) 47. Tumor hypoxia is associated with poor radiotherapy outcome 48 as well as an 

increased propensity toward metastasis. The impact of hypoxia on prognosis has been 

reported in multiple trials. For example, a multi-center study stratified head and neck cancer 

patients based on median pre-treatment tumor oxygen tension (pO2) and fraction of tumors 

with pO2 of ≤2.5 mmHg (HP2.5) and reported significantly worse survival in patients with 
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“more hypoxic” (HP2.5 >19%) tumors compared to those with “less hypoxic” (HP2.5 ≤19%) 

tumors, regardless of treatment approach.

McCullough et al. found that a single bout of aerobic treadmill training increased oxygen 

delivery three-fold in rat prostate tumors by decreasing vascular resistance and increasing 

blood flow to the tumor 49. Wiggins et al. postulated that although exercise redirects blood 

flow from splanchnic organs to the active skeletal muscles, tumor vessels are uniquely 

unable to respond to vasoconstrictive signals 49, and therefore benefit from exercise-induced 

increases in cardiac output 50. These physiological effects of exercise reduce tumor hypoxia, 

as has been shown by multiple researchers 10, 49, 51. Betof et al. reported that voluntary 

running throughout tumor development reduced the hypoxic fraction by nearly 50%, and 

McCullough et al. reported that a single bout of treadmill running halved the hypoxic tumor 

fraction.

Hypoxic cells are 3-fold more resistant to radiation, compared with aerobic cells 52. Nearly 

all solid cancers contain some hypoxic cells, and the severity and extent of hypoxia is 

associated with poor prognosis 47. A number of different strategies have been attempted to 

alleviate the impact of hypoxia, including increasing oxygen delivery or reducing oxygen 

consumption rate. Despite some successes, there is no accepted standard of care for reducing 

hypoxia 53.

Against this background, several groups have shown that exercise reduces tumor hypoxia 
10, 49, 51, 54. The chronic effects of exercise in reducing hypoxia may make it an attractive 

means of increasing tumor radiosensitivity. Our group sought to test the hypothesis that 

exercise would improve the tumor response to radiation, in preclinical murine models 51. 

Indeed, in unpublished data from our group mice bearing either 4T1 mammary or MC38 

colorectal carcinomas, exercise prior to and during radiation improved tumor response, 

characterized by slowed tumor growth and delayed metastasis 51. The addition of voluntary 

exercise to fractionated radiation treatment increased time to 4T1 tumor volume quintupling 

from 5.4 days in sedentary/RT mice to 11.6 days in exercising/RT mice. Importantly, we also 

showed that at the time that RT was applied, the tumor hypoxic fraction averaged 8.8% in 

sedentary mice, compared to 2.8% in tumors from exercising mice.

Hypoxia is also a well-known mediator of chemoresistance. The same mechanisms that 

cause hypoxia, such as low microvessel density and vascular shunts limit the delivery of of 

chemotherapy to the tumor 26. Another key mechanism of drug resistance is upregulation of 

the transcription factor HIF-1 and its downstream targets, including key protein and miRNA 

mediators of proliferation, drug efflux, metabolism, and autophagy 55. Notably, HIF-1 

activation increases expression of MDR1, which confers multidrug resistance by increasing 

drug efflux. For example, targeted downregulation of HIF-1α showed a dose-dependent 

increase in cisplatin-mediated apoptosis in oral squamous cell carcinoma cells 56. Hypoxia 

may also abrogate the apoptotic effects of chemotherapy 57. Thus, it is possible that the 

reduction of tumor hypoxia associated with exercise will be accompanied by improved 

response to chemotherapy.
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An exercise-induced decrease in tumor hypoxia may affect the efficacy of immunotherapy. 

Infiltration of various immune cells is affected by hypoxic conditions. Hatfield et al. showed 

that CD8+ tumor infiltrating lymphocytes (TILs) have a decreased presence in hypoxic 

tumor regions 58. Hypoxic microenvironments also limit the efficacy of TILs by inhibiting 

their activation by dendritic cells 59 and increasing tumor expression of PD-L1, a key 

modulator of the immune checkpoint mechanisms 60, 61. Housing mice in hyperoxic 

chambers (60% oxygen) increased the numbers of CD8+ TILs more than three-fold 58. The 

potential clinical implications of this finding are staggering, as Adams et al., postulated that 

for every 10% increase in CD8+ TILs would translate to a 19% decrease in patient mortality 
62. Yet the sobering reality is that Hatfield’s findings have limited clinical scope, as patients 

cannot be sequestered in 60% oxygen environments at the time of tumor development. 

However, exercise may be an effective way to increase TIL numbers, in part by creating a 

more favorable, normoxic tumor.

The effects of hypoxia extend beyond TILs. Dendritic cells are suppressed by hypoxia-

inducible genes including VEGF 55. Additionally, tumor-associated macrophages (TAMs) 

respond to the hypoxia-induced cytokines IL-4 and IL-10 by differentiating into an 

immunosuppressive M2 phenotype 63. Indoleamine 2,3-dioxygenase (IDO), a tryptophan 

metabolism enzyme expressed by most tumors, is garnering interest for its 

immunomodulatory role in T cell suppression and tumor tolerance 64, 65. IDO expression 

correlates with reduced TILs and poor prognosis in numerous cancer types 66, 67, 68, 69, 70. 

Notably, IDO production by dendritic cells increases when cultured in a hypoxic 

environment 71. Thus far, no one has reported the effects of exercise on IDO levels in 

tumors. However, it is a logical hypothesis that as exercise reduces tumor hypoxia, IDO 

production may be reduced, thereby reducing immunosuppression. Expanding this 

hypothesis, exercise may improve tumor response to immunotherapy by removing one of the 

roadblocks to an effective anti-tumor immune response.

The combination of radiation and immunotherapy creates the perfect storm of augmenting 

the immune response’s potential and increasing tumor cells’ susceptibility to immune cell 

killing 72. Immunogenic cell death (ICD) occurs when an injured cell increases presentation 

of damage associated molecular patterns (DAMPs) such as calreticulin and high-mobility 

group box 1 protein (HMGB1) 73. These changes promote dendritic cell activation and 

facilitate an anti-tumor T-cell response. Radiation therapy is a means of inducing ICD in 

tumor cells. In addition, radiation increases tumor cell expression of MHC Class I 74 and Fas 
75. Together, these changes have been viewed as using the tumor to create an in situ vaccine 
76 and contribute to abscopal effects, in which the immune response extends beyond the 

primary irradiated tumor to target distant metastases. However, although the reported 

radiation-mediated “abscopal effects” against metastatic lesions 77, 78, 79 have sparked much 

excitement, abscopal effects in humans remain rare 80. Nevertheless, it is worth considering 

how exercise may further prime the anti-tumor immune response for an abscopal effect. As 

detailed above, many of these changes will stem from exercise-mediated modulations in 

hypoxia (increased T cell infiltration 58) or changes to tumor vascular maturity (decreased 

MDSC trafficking 29). Hypoxia also reduces tumor MHC class I expression 81; by removing 

this blockade, antigen recognition and immunogenic cell death may be enhanced.
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4. Tumor cell metabolism

One of the emerging “hallmarks of cancer” is deregulated cellular energetics, or altered 

metabolism 82 which influences radiosensitivity 83, 84, 85. Many cancer cells increase 

glucose consumption rate and preferentially utilize glycolysis over aerobic respiration; this 

may be due to hypoxia or a high rate of cell proliferation and oxidative stress 86, 87. A 

downstream consequence of glycolysis is increased lactate concentration within tumors via 

the Pasteur effect – increased lactate stabilizes HIF-1 88, which promotes VEGF expression 
88, increases metastasis, and correlates with worse prognosis 89, 90. Exercise may regulate 

metabolic reprogramming of tumor cells. For example, Bacurau et al. reported that treadmill 

running (at 60% VO2 max) decreased carcinoma glucose consumption and decreased lactate 

production 91, 92. Lu et al. showed that metabolic responses to exercise were associated with 

tumor response to exercise (unpublished data 93). Specifically, comparison of exercise-

responsive and non-responsive patient-derived colorectal xenograft (PDX) models revealed 

that phosphocreatinine metabolism was predictive of tumor growth delay. Tumors that 

showed growth delay in response to exercise had significantly lower phosphocreatinine 

compared to sedentary controls, whereas there was no difference in phosphocreatinine levels 

between sedentary or exercising mice with tumors whose growth was not affected by 

exercise. Metabolomics data reported by Glass et al. showed that nucleotide metabolism, 

which correlates with increased cell proliferation, was increased in a murine tumor cell line 

that showed accelerated tumor growth following exercise, compared to an exercise-

responsive tumor that showed growth delay following exercise 94.

Our group also found preliminary evidence that exercise increased long chain acyl 

carnitines, consistent with fatty acid metabolism, elongation and oxidation (Ashcraft et al., 

unpublished data). The effects of fatty acid oxidation (FAO) versus glycolysis on oxygen 

consumption rate relate to the respiratory exchange ratio (RER), or the ratio of ATP 

molecules gleaned per molecule O2 consumed. While the RER for glycolysis is 6.3 ATP/O2, 

the RER for FAO is 5.6 ATP/O2, indicating that equivalent energy is produced by FAO, with 

~10% less oxygen consumption. Mathematical modeling by Secomb et al. predicted that a 

30% decrease in oxygen consumption rate in the R3230Ac mammary carcinoma would 

completely abolish tumor hypoxia 95; thus even a modest decrease in oxygen consumption 

rate induced by exercise could prove important in dictating radiotherapy response. It is also 

important to note that hypoxia suppresses FAO by regulating medium and long-chain acyl 

carnitines through the hypoxia-inducible transcription factor, HIF-1 96, meaning that the 

cascade of events leading to improved tumor oxygenation is likely bi-directional. Tumors 

that increase HIF-1 expression following exercise also demonstrate accelerated tumor 

growth compared to tumors that do not express HIF-1 94. The results with metabolism 

suggest that exercise can exert a diversity of effects on tumor metabolism and 

radiosensitivity. If exercise pushes metabolism toward aerobic metabolism, radiosensitivity 

may be improved 97, 98. If the opposite occurs, namely a push toward anaerobic metabolism 

radiosensitivity will decrease.

The observed exercise-mediated improvement in chemotherapy efficacy 10, 25 may have 

metabolic underpinnings, possibly, by reducing the tumors’ reliance on glycolysis 91, 92. If 

exercise does reduce tumor glucose reliance, resultant metabolic changes could improve 
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efficacy of cytotoxic agents. Pharmacologically inhibiting glycolysis (via either 2-

deoxyglucose or 3-bromopyruvate) improved etoposide efficacy against lymphoma 99, 

rapamycin efficacy against neuroblastoma 100 and tamoxifen efficacy against mammary 

carcinoma 101. Cantelmo et al. showed that glycolysis inhibition within tumor vessel 

endothelial cells normalized tumor vasculature and improved perfusion, thereby increasing 

cisplatin delivery causing inhibition of tumor growth 102.

Finally, we can link shifts in tumor metabolism to potential improvement in immunotherapy. 

Immune responses become sub-optimal when they develop in acidic microenvironments 

(reviewed in 103). Deficient immune responses begin with poor immune cell infiltration into 

acidic tumor environments. In vitro lymphocyte 104 and neutrophil 105 migration is reduced 

as their environment becomes increasingly acidic. In addition, cells that are able to gain 

entry into the tumor are less effective. Increased lactate concentrations impede NK cell 

function in two ways 106. First, NK cells cytotoxic potential is decreased under acidic 

conditions. Second, exogenous lactate promotes ex vivo differentiation of MDSCs. Lactate 

increases tumor cell PD-L1 expression 107. Inhibiting the lactate/PD-L1 cascade within the 

tumor augments cytotoxic T cell numbers 108. Currently, there are no reports on how 

exercise affects tumor pH. However, given that lactate levels are decreased with exercise, it 

is likely that pH levels are reduced.

5. Concluding remarks

Oxidative stress is present in untreated tumors, and may increase following some treatment 

modalities. Oxidative stress, along with closely associated tumor hypoxia and acidic 

microenvironments, contributes to tumor aggressiveness and cancer fatigue. While 

pharmaceutical means of reducing oxidative stress have been pursued, exercise may provide 

a non-pharmacological therapy of regulating oxidative stress thereby alleviating these 

factors. Additionally, emerging evidence shows that exercise exerts other effects on tumor 

physiology including alterations in hypoxia, vascular normalization, metabolic 

reprogramming, and immune cell mobilization (summarized in Figure 2). We and others 

have begun to show that these changes translate to improved response to tumor therapy. 

Clinical studies that use functional imaging to monitor tumor hypoxia and perfusion in 

exercising vs. sedentary patients would be helpful in whether changes might influence 

response to therapy. Although additional work is needed to optimize exercise prescriptions 

(i.e. frequency, duration, and intensity), current studies suggest that human trials should be 

considered. For example, exercise could be evaluated as a means to improve treatmant 

response to established cancer treatment modalities.
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Figure 1. 
4T1 tumor sections were immunostained for 8-oxo-dG (red), a marker of oxidative damage 

to DNA. Cellular nuclei were stained with Hoechst 33342 (blue). (A) and (B) show 

representative tumors taken from sedentary (A) or running (B) mice (5x objective, 

magnificantion 100%). Panel C shows quantification of 8-oxo-dG+ pixels per square 

millimeter of viable tumor area. Error bars represent SEM, N=23, 20, * indicates p<0.05, 

Mann Whitney U test.

Ashcraft et al. Page 16

Semin Radiat Oncol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Exercise oncology studies have demonstrated that exercise modulates both the tumor 

microenvironemnt and the robustness of the anti-tumor immune response. Pre-clinical 

studies have already reported that in these changes are sufficient for exercise to play an anti-

tumor role in tumor incidence, progression and metastasis when adminsitered as a 

monotherapy. In this paper, we have described how the exercise-mediated changes may 

potentiate tumor sesitvity to radiation, chemotherapy or immunotherapy. Furthermore, we 

hypothesize that some changes may increase potency of abscopal responses, when radiation 

and immunotherapy are applied concurrently.
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