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Abstract

Fucose is a common terminal modification on protein and lipid glycans. Fucose can also be 

directly linked to protein via an O-linkage to Serine or Threonine residues located within 

consensus sequences contained in Epidermal Growth Factor-like (EGF) repeats and 

Thrombospondin Type 1 Repeats (TSRs). In this context, fucose is added exclusively to properly 

folded EGF repeats and TSRs by Protein O-fucosyltransferases 1 and 2, respectively. In both 

cases, the O-linked fucose can also be elongated with other sugars. Here we describe the 

biological importance of these O-fucose glycans and molecular mechanisms by which they affect 

the function of the proteins they modify. O-Fucosylation of EGF repeats modulates the Notch 

signaling pathway, while O-fucosylation of TSRs is predicted to influence secretion of targets 

including several extracellular proteases. Recent data shows O-fucose glycans mediate their effects 

by participating in both intermolecular and intramolecular interactions.

O-Fucose Biology

Proteins and lipids are commonly modified with glycans containing fucose. The fucose 

residues typically occur as terminal or core modifications of the glycan, added by Golgi 

localized fucosyltranferases [1]. These modifications perform many functions including 

immune modulation, selectin-mediated extravasation of leukocytes, and as blood group 

antigens. In contrast, fucose can be directly added to proteins via an O-linkage to hydroxyl 

groups of Serines or Threonines of folded Epidermal Growth Factor-like (EGF) repeats and 

Thrombospondin Type 1 Repeats (TSR) in the endoplasmic reticulum (ER). ER O-

fucosylation of EGF repeats is observed in metazoans [2,3], and O-fucosylation of TSR is 

observed in metazoans [1,4] as well as Plasmodium falciparum and Toxoplasma gondii [5–

9]. Recently, O-fucosylation of nuclear and cytoplasmic proteins was also observed in 

Arabidopsis [10] and Toxoplasma gondii [11].

EGF repeats and TSRs are small protein modules characterized by three disulfide bonds 

(Figure 1). Protein O-fucosyltransferases 1 and 2 (POFUT1 and POFUT2) add O-linked 
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fucose to folded EGF repeats and TSRs, respectively [12,13]. These enzymes are highly 

specific for their substrates [13], due to inherent differences in the three-dimensional shape 

of EGF repeats and TSRs and complementary differences in the binding pockets of the 

respective fucosyltransferases [14,15]. Not surprisingly, the cytoplasmic SPINDLY protein 

O-fucosyltransferase in Arabidopsis, which modifies the disordered domain of the 

transcriptional repressor DELLA, is unrelated to POFUT1 or 2, but rather is a homolog of 

the nuclear/cytoplasmic O-GlcNAc transferase (SECRET AGENT in Arabidopsis) [10]. A 

SPINDLY homolog responsible for O-fucosylation of nuclear pore proteins has also been 

reported in Toxoplasma gondii [9]. Interestingly, 39 POFUTs are annotated in the 

Arabidopsis genome [16]. Although none have been demonstrated to have POFUT activity, 

mutations in some affect growth and reproduction [16].

Recent evidence suggests that the O-linked fucose on EGF repeats can participate directly in 

intermolecular interactions with binding partners. In addition, O-fucose participates in 

intramolecular interactions with neighboring amino acids of correctly disulfide-bonded EGF 

repeats and TSRs. These interactions are proposed to stabilize the structure and as a 

consequence accelerate the overall rate of folding in the ER [17,18]. In this review we will 

consider structure/functional evidence to support these hypotheses.

Within the ER, POFUT1 adds O-linked fucose to folded EGF repeats containing the 

consensus sequence C2-X-X-X-X-(S/T)-C3 (Figure 1A) [1,12]. Nearly 100 potential human 

protein targets, with vastly diverse functions, contain this consensus sequence in the context 

of an EGF repeat [1]. The Notch receptor family (mammals express four Notch receptors, 

NOTCH1–4) has more EGF repeats with this consensus sequence than any other protein in 

databases. Eliminating POFUT1 in mice or flies results in Notch phenotypes [19,20] 

suggesting that Notch is a major biological target for POFUT1, although O-fucosylation has 

been reported to affect other POFUT1 targets as well [21,22]. In the Golgi, FRINGE adds a 

β3-linked GlcNAc to the O-fucose, and this GlcNAcβ1–3Fucose disaccharide can be further 

extended to a tetrasaccharide by B4GALT1 and ST6GAL1 (Figure 1A) [23]. Three Fringes 

exist in mammals: LUNATIC, MANIC, and RADICAL FRINGE (LFNG, MFNG, RFNG) 

[24]. Notably, Fringes are known to modulate Notch function [25–27].

POFUT2 similarly adds O-linked fucose to folded TSRs containing the consensus sequence 

C1-X-X-(S/T)-C2 or C2-X-X-(S/T)-C3, depending upon the disulfide bonding pattern of the 

TSR (Figure 1C) [13,14,28]. In contrast to elongation of the O-fucosylated EGF repeat in 

the Golgi, the O-fucosylated TSR is extended in the ER. There, β3-glucosyltransferase 

(B3GLCT) adds a terminal glucose to form the characteristic Glucoseβ1–3Fucose 

disaccharide [29,30]. Based on the presence of the POFUT2 consensus sequences within the 

context of TSRs, 49 proteins are likely modified by POFUT2 and B3GLCT [1]. Most of 

these targets are either secreted factors that modulate the function of the extracellular matrix 

(ECM) or are cell surface proteins that modulate signaling. Nearly half the POFUT2 targets 

are members of the A-Disintegrin and Metalloproteinase with ThromboSpondin Type-1 

motifs (ADAMTS) family of extracellular proteases.
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Diseases and phenotypes associated with O-fucosylation defects

In humans, heterozygous mutations in POFUT1 are linked to a rare skin condition, Dowling-

Degos Disease [31], and amplification of POFUT1 is associated with several types of cancer 

[32,33]. Although no human POFUT2 mutations have been reported, knockout of either 

Pofut1 or Pofut2 is embryonic lethal in mice [19,34]. Loss of Pofut1 causes embryonic 

lethality with defects in somite, neural tube, heart, and blood vessel development, similar to 

Notch1 knockout [19]. Similar loss of Notch function is seen in O-fut1 (POFUT1 homolog 

in flies) mutants in flies [20]. Loss of Pofut2 in mice causes early embryo lethality resulting 

from abnormalities in gastrulation and axis elongation, similar to Adamts9 mutants [35]. 

The phenotypic similarities between these POFUT knockouts and knockouts of single target 

proteins provides strong evidence that O-fucosylation of these targets is essential for their 

function.

While the O-fucose modification of EGF repeats and TSRs is essential for function, 

elongation of the O-fucose on these modules has less severe effects. Reduced Notch 

signaling in Fringe mutants provides evidence that extension of the O-fucose with GlcNAc 

is not essential for Notch function, but rather is important for modulating Notch signaling. 

Fringe mutations in flies affects a subset of Notch functions, especially in formation of the 

wing [25]. Mutations in either mouse or human Lfng/LFNG show skeletal defects consistent 

with reduced Notch signaling, but are less severe than Pofut1 or Notch1 mutants. In humans, 

LFNG mutations cause Spondylocostal Dysostosis Type 3, characterized by abnormal 

development of the bones in the spine and ribs [36]. Similarly, mouse Lfng knockout causes 

abnormalities in vertebrae and ribs [37,38], but more detailed analysis also shows defects in 

lungs, T- and B-cell development, reproduction, and vasculature of the retina [39–42]. 

Knockout of Mfng or Rfng alone result in no major developmental defects [43], but both 

have been implicated in T- and B-cell development [41] and Mfng in heart development 

[44]. Both Lfng and Mfng also play roles in cancer [45,46].

Failure to add glucose to O-fucosylated TSR domains causes human Peters Plus Syndrome 

(PPS) [47]. PPS, caused by loss-of-function mutations in B3GLCT, is characterized by 

Peters anomaly of the eye, widened craniofacial structures and shortened long bones and 

digits [48]. The viability of these patients compared to early embryo lethality observed in 

Pofut2-null mice provides evidence that proteins O-fucosylated by POFUT2 have different 

requirements for the glucose. As mentioned above, both Pofut2 and Adamts9-null mice are 

embryonic lethal, but loss of B3GLCT in PPS is not. Since ADAMTS9 is modified with the 

Glucoseβ1–3Fucose disaccharide [49], this suggests that ADAMTS9 function is more 

dependent on POFUT2 than B3GLCT.

How does O-fucosylation affect protein function?

O-fucosylation influences intermolecular interaction with binding partners

Recent results suggest that one mechanism by which O-fucose glycans affect protein 

function is by modulating interactions between binding partners. This is most clearly seen in 

the case of Notch interactions with its ligands (DLL1 and 4, JAG1 and 2). Twenty of the 36 

EGF repeats in the mouse NOTCH1 extracellular domain (ECD) contain the consensus 
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sequence for POFUT1 modification, and mass spectral site mapping revealed that 17 of 

those sites are modified at high stoichiometry with O-fucose (Figure 2A) [26]. Similar 

results were seen with Drosophila NOTCH [50]. Thus, O-fucosylation by POFUT1 is a 

highly efficient process in cells. In contrast to POFUT1, Fringe modifications are site 

selective (Figure 2A) [26,50]. The basis of this selectivity is unknown, although preliminary 

results suggests that some EGF repeats contain sequences that block modification by a 

Fringe [51]. LFNG and MFNG modify similar sites on mouse NOTCH1, while RFNG 

modifies a subset of these sites (EGF8, 12 and 26) (see [26] for details). Again, the basis for 

the difference in specificity between the Fringes is unknown.

Demonstration that O-fucose directly participates in Notch-ligand interactions was revealed 

in two recent co-crystal structures, one between a portion of the NOTCH1 ligand-binding 

domain (EGF11–13) and a portion of DLL4 [52] (Figure 2B), the other between the 

NOTCH1 ligand-binding domain (EGF8–12) and a portion of JAG1 [53] (Figure 2C). Both 

structures revealed that the O-fucose on EGF12 of NOTCH1 is in direct contact with 

backbone and side-chain residues in both ligands. The NOTCH1-JAG1 co-crystal also 

revealed a direct interaction between the O-fucose on EGF8 of NOTCH1 and the side chain 

of N298 of JAG1. Elimination of either of these O-fucosylation sites by mutation of the 

modified Thr to Val reduced the ability of DLL1 or JAG1 to bind to and activate NOTCH1 

in cell-based assays, although the mutation at EGF12 had a larger effect on DLL1 than JAG1 

[26,53]. Mutation of both sites (EGF8 and 12) resulted in a substantial reduction in 

NOTCH1 activity, confirming the importance of the O-fucose at these sites for NOTCH1 

function. Consistent with these observations, mice homozygous for a knock-in Thr to Ala 

mutation in the EGF12 O-fucose site display slow growth and defects in T cell development 

consistent with a hypomorphic Notch phenotype [54].

Fringe modifications of the O-fucose residues on EGF8 and 12 play important roles in 

enhancing DLL1-mediated NOTCH1 activation. Both sites are modified by Fringes (Figure 

2A), and all three Fringes enhance DLL1-mediated NOTCH1 activation [26,27]. Elimination 

of the O-fucose sites on EGF8 and 12 reduces the ability of the Fringes to enhance DLL1 

binding to and activation of NOTCH1 [26]. Thus, Fringe modifications at EGF8 and 12 

enhance DLL1-mediated NOTCH1 signaling by enhancing binding. Modeling of the 

GlcNAc added by Fringe to the O-fucose on EGF12 suggests additional interactions with 

DLL4, providing a potential molecular explanation for the Fringe effect at this site [52].

In contrast to their effects on DLL1, LFNG and MFNG inhibit JAG1-mediated NOTCH1 

activation, while RFNG enhances it [26,27]. Surprisingly, modification of EGF8 and 12 by 

Fringes enhanced binding between NOTCH1 and JAG1 [26,55]. Since RFNG only modified 

O-fucose on EGF8, 12 and 26, the additional sites modified by LFNG and MFNG were 

suspected to be inhibitory (Figure 2A). Mutation of two of the O-fucose sites modified by 

LFNG and MFNG but not by RFNG, EGF6 and 36, reduced the ability of LFNG or MFNG 

to inhibit JAG1-mediated NOTCH1 activity (Figure 2A) [26]. The fact that mutations at 

EGF6 and 36 did not affect NOTCH1-JAG1 binding suggested the basis for this inhibition 

must be mediated at an event after ligand binding but before proteolytic activation. An 

intriguing possibility is that Fringe modification at EGF6 affects the establishment or 

stability of the catch-bond that forms in response to tension generated between JAG1 and 
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NOTCH1 [53]. In addition, Fringe modification at EGF36 could provide stability to the 

adjacent NOTCH1 Negative Regulatory Domain (NRR), reducing proteolytic activation 

[56]. These modifications could work together to inhibit JAG1-NOTCH1 activation.

Based on the interactions between O-fucose on Notch EGF repeats and ligands, it is 

reasonable to propose that the Glucoseβ1–3Fucose disaccharide on TSRs could participate 

in similar interactions. TSRs are known to bind a number of other proteins including TGFβ 
and heparan sulfate proteoglycans [57], but to date no one has examined whether the TSR 

O-fucose glycans affect these interactions.

O-fucosylation generates intramolecular interactions that stabilize folded EGF repeats and 
TSRs as part of a novel non-canonical ER quality control pathway

The first hint that O-fucose modifications could play a role in quality control of EGF repeat 

or TSR folding came from demonstration that both POFUT1 and POFUT2 require a folded 

domain containing the appropriate sequence as a substrate. Consistent with this prediction, 

consensus sequences are not recognized by the enzymes when located within unfolded 

domains or linear synthetic peptides [12,13]. Further evidence that these enzymes recognize 

folded structures came from co-crystal structures of POFUT1 and an EGF repeat [15], and 

POFUT2 and a TSR [14]. In both cases, the enzymes have a large binding pocket for the 

respective folded domains, and the enzymes bind these domains in such a way as to orient 

the hydroxyl group of the Ser/Thr to be modified in the exact position necessary to perform 

a nucleophilic attack on the anomeric carbon of the fucose of GDP-fucose. These structures 

explain why the enzymes require both a consensus sequence and a properly folded domain 

for modification to occur. Thus, unlike classical ER quality control systems that recognize 

unfolded proteins [58], both POFUT1 and POFUT2 recognize folded domains, modifying 

them with a fucose after folding. Both enzymes are also localized to the lumen of the ER 

[28,59], the folding compartment for the secretory pathway. POFUT1 is retained in the ER 

by a C-terminal KDEL-like ER-retention signal [59]. POFUT2 lacks such a sequence, but 

appears to be retained in the ER by interaction with other ER resident proteins [17]. 

B3GLCT is also localized in the ER by a C-terminal ER-retention signal [30], supporting a 

role for the glucose in quality control. In contrast, the Fringe enzymes are Golgi localized 

[60,61], consistent with these modifications being modulatory for receptor/ligand 

interactions.

A direct role for POFUT1 in quality control initially came from studies in flies which 

showed that knockdown of O-fut1 (Drosophila form of POFUT1) caused reduced cell-

surface expression and ER accumulation of NOTCH [62]. Surprisingly, cell-surface 

expression was partially rescued by an enzymatically inactive form of the enzyme (R240A 

mutant), suggesting O-fut1 has a fucosyltransferase-independent chaperone activity. 

Subsequent work has shown that a similar mutation in mouse Pofut1 destabilizes the enzyme 

[63], and it is not clear whether the R240A mutation has residual enzymatic activity [64], so 

the dependence of cell-surface expression of Notch proteins on the ability of POFUT1 to 

transfer fucose is still an open question. More recent results in flies reveal that elimination of 

O-fut1 causes a temperature-dependent defect in cell-surface expression of NOTCH, 

consistent with an effect of fucosylation on proper folding of the receptor [65]. Elimination 
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of Pofut1 in mice or in cell lines is reported to reduce cell-surface NOTCH1 in some 

contexts (e.g. somites [63], HEK293T cells [18], HSCs [66]), but less so in other contexts 

(e.g. mouse embryonic stem cells [67]), suggesting that the quality control effects of 

POFUT1 are cell-type specific. This variability has been proposed to be due to differential 

expression of other chaperones that could also assist in folding and surface expression of 

Notch proteins, or differences in environmental conditions that could affect protein folding.

A number of cell-based studies demonstrated that knockdown or elimination of POFUT2 in 

cells blocks secretion of all POFUT2 targets tested to date, including ADAMTS9 

[17,35,49,68]. The importance of POFUT2 for secretion of ADAMTS9 provides a potential 

explanation for the embryonic lethality observed in Pofut2 null mice. Moreover, the marked 

similarity between Pofut2- and Adamts9-null embryos suggests that ADAMTS9 is the major 

physiological target for POFUT2 during early embryogenesis [35]. Recent results have also 

shown that elimination of Pofut2 in Plasmodium falciparum decreased cell-surface 

expression of Thrombospondin-Related Anonymous Protein (TRAP), a major cell-surface 

POFUT2 target in those cells, and attenuated infection of mosquito and vertebrate hosts [6]. 

Eliminating Pofut2 in Toxoplasma gondii lead to defects in stability and localization of 

Microneme protein 2 (MIC2), a member of the TRAP family, and reduced parasite invasion 

of the host [7]. However, a similar study reported only a modest effect on MIC2 stability and 

slight effect on infectivity [8].

Knockdown or deletion of B3GLCT differentially affects secretion of POFUT2 targets [17], 

suggesting defects in PPS patients result from disruption of a subset of POFUT2 targets that 

are more sensitive to loss of B3GLCT. Notably, secretion of ADAMTSL2 [17] and 

ADAMTS17 [68] are significantly impaired by reduction of B3GLCT in secretion assays. 

Consistent with the prediction that reduced levels of these proteins contribute to 

abnormalities in PPS patients is the observation that human mutations in ADAMTSL2 and 

ADAMTS17 cause Geleophysic Dysplasia and Weill-Marchisani Syndromes, which are also 

characterized by eye abnormalities, short stature, and brachydactyly [69,70]. In contrast, 

B3GLCT is not required for secretion of ADAMTS13 [17]. Single gene defects in 

ADAMTS13 result in the clotting disorder Thrombotic Thrombocytopenic Purpura (TTP), 

but PPS patients do not display clotting defects [48].

The structures of several EGF repeats and TSRs modified with O-fucose glycans (Figure 1) 

suggest a potential mechanism for how POFUT1 or POFUT2 mediated O-fucosylation 

ensures efficient secretion of target proteins. Unlike many carbohydrate modifications, the 

O-fucose glycans in crystal structures of EGF repeats and TSRs are remarkably visible, to 

the extent that they have been called “surrogate amino acids” because they display thermal 

mobility (based on B factors) similar to the underlying amino acids [52,55]. The fucose 

residues lay down on the surface of the EGF or TSR domains, with several contacts with 

underlying amino acids (Figure 1B, D). These contacts are proposed to stabilize the folded 

domains. Since the fucose is only added to the domains after they fold, this raises the 

possibility that addition of fucose drives the domain into an energy well where they are 

unlikely to move back into a folding equilibrium (Figure 3). Secretion defects in the absence 

of O-fucose addition would likely result from reentry of the domain into the “folding cycle”, 

ultimately slowing down the rate of folding. In the context of TSRs, the Glucoseβ1–3Fucose 
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disaccharide interacts directly with the C2-C6 disulfide bond of the TSR, suggesting that the 

disaccharide protects of the disulfide bond from the surrounding ER folding/unfolding 

environment (Figure 1D). This may explain how the addition of glucose provides additional 

stabilization of the TSR. The observation that only a subset of proteins requires B3GLCT for 

secretion suggests that amino acids located in proximity to the C2-C6 disulfide bond could 

influence whether the TSR requires the addition of glucose for efficient secretion.

Consistent with the prediction that the fucose stabilizes these domains, we observed that O-

fucosylated TSRs and EGF repeats unfold significantly slower in reductive unfolding assays 

compared to unmodified modules [17,18]. Moreover, for TSRs, addition of the glucose has 

an additional stabilizing effect [17]. Likewise, starting with an unfolded TSR, POFUT2 and 

GDP-fucose accelerate the in vitro rate of folding, whereas addition of POFUT2 alone has 

no effect on the rate of folding [17]. Combined, these results provide support for the concept 

that addition of O-fucose on a properly folded EGF repeat or TSR stabilizes that structure, 

keeping it from re-entering a folding cycle (Figure 3). This stabilization and acceleration of 

folding suggests that both POFUT1 and POFUT2 function in novel non-canonical quality 

control pathways designed for the efficient folding of proteins containing EGF repeats and 

TSRs, respectively, and provides a likely explanation for the reduced secretion of targets in 

the absence of these enzymes.

Future directions

While it is clear that O-fucosylation of EGF repeats and TSRs has major effects on the 

function of proteins, we are just beginning to understand the molecular mechanisms by 

which the glycans mediate these effects. The data suggesting O-fucose modifications of 

EGF8 and 12 on NOTCH1 are in direct contact with ligands is compelling, but does not 

explain what the other 15 O-fucose residues on the NOTCH1 extracellular domain are doing. 

The stabilizing effects of O-fucose on EGF repeats and importance of POFUT1 for cell-

surface expression of Notch receptors may provide part of the explanation for these multiple 

sites, but the fact that POFUT1 is not required for cell-surface expression in all contexts 

raises the question of what other mechanisms are used for EGF repeat stabilization. Little is 

known about how the Glucoseβ1,3Fucose disaccharide on TSRs affects intermolecular 

interactions. Notably TSRs are often localized within regions of target proteins that are 

implicated in protein/protein interactions, such as the ancillary domains of the ADAMTS 

family members [71]. Since defects in folding of EGF repeat or TSR containing proteins 

would likely lead to ER stress, it is possible that some of the phenotypes observed in Pofut1 
or Pofut2-null animals are due to enhancement of Unfolded Protein Response pathways. 

B3GLCT also appears to stabilize TSRs in an additive fashion and play a role in their 

folding, but Fringes do not affect cell-surface expression of Notch in cells [26], likely 

because they are not localized in the ER. Nonetheless, a recent report suggests that cell 

surface localization of Notch ligands (which also have EGF repeats that are modified by O-

fucose) is affected by Fringes in the intestinal epithelium of mice [72]. Answers to these and 

other questions will help us to better understand how O-fucose glycans affect the function of 

the proteins they modify.
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Highlights

• Protein O-fucosyltransferases 1 and 2 (POFUT1 and POFUT2) are ER-

localized and modify EGF repeats and TSRs.

• Both POFUT1 and POFUT2 are exquisitely selective for properly folded 

substrates.

• O-Fucose on Notch EGF repeats directly participates in intermolecular 

interactions with Notch ligands.

• O-Fucose glycans on both EGF repeats and TSRs interact with underlying 

amino acids, stabilizing the folded domains.

• Both POFUT1 and POFUT2 are proposed to participate in non-canonical ER 

quality control pathways for the folding of EGF repeats and TSRs, 

respectively.
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Figure 1. EGF repeats and TSRs are modified by O-fucose glycans A.
(left) Cartoon showing disulfide bonding pattern (green lines) in an EGF repeat. Beta strands 

are indicated by blue and orange arrows. Site of O-fucosylation and GlcNAc elongation are 

indicated by red triangle and blue square, respectively. (right) Consensus sequence for 

POFUT1 modification. C2 and C3 are the second and third conserved cysteine in the EGF 

repeat. Enzymes responsible for addition of each sugar are indicated in blue on the right 

with linkages in black on the left. Fucose, red triangle; GlcNAc, blue square; Galactose, 

yellow circle; Sialic Acid, purple diamond. B. Structure of NOTCH1 EGF12 modified with 
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a GlcNAcβ1–3Fucose disaccharide (from PDB ID 4D0E). Beta strands colored as in A. 

Fucose in red, GlcNAc in blue, disulfide bonds in green, oxygen atoms highlighted in red. 

Box shows zoomed in region highlighting interactions of the disaccharide with underlying 

amino acids identified by MolProbity [73,74] (van der Waals, solid lines). Structures 

rendered in PyMOL (Version 2.2.2). C. (left) Cartoons showing the two distinct disulfide 

bonding patterns for TSRs. Beta strands are indicated by blue and orange arrows. Position of 

O-fucosylation and elongation with glucose are indicated by red triangle and blue circle, 

respectively. (right) Consensus sequence for POFUT2 modification. The C’s can be C1 and 

C2 or C2 and C3 depending on whether the TSR is Group 1 or Group 2. Enzymes 

responsible for addition of each sugar are indicated in blue on the right with linkages in 

black on the left. Fucose, red triangle; Glucose, blue circle. D. Structure of ADAMTS13 

TSR1 modified with Glucoseβ1–3-Fucose disaccharide (from PDB ID 3GHM). The three 

strands (a, b, and c) of the TSRs are color coded the same in the cartoons (C) and the 

structure. Fucose in red, glucose in blue, disulfide bonds in green. Box shows zoomed in 

region highlighting interactions of the disaccharide with underlying amino acids identified 

by MolProbity [73,74] (H-bonds, dashed lines; van der Waals, solid lines). Structures 

rendered in PyMOL (Version 2.2.2).
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Figure 2. O-Fucose on EGF8 and EGF12 of NOTCH1 is in direct contact with ligands.
A. Domain map of mouse NOTCH1 EGF1–36 showing which EGF repeats are modified by 

O-fucose and elongated by LFNG (modified from [26]). MFNG elongates similarly, but 

RFNG only modifies O-fucose on EGF8, 12 and 26. Note that Fringe enzymes were 

overexpressed in a Fringe-deficient background in these studies. Down red arrows indicate 

sites where Fringe modification inhibits JAG1-NOTCH1 activation. Green up arrows 

indicate sites where Fringe modification enhances DLL1-NOTCH1 activation. Fucose, red 

triangle; GlcNAc, blue square; Galactose, yellow circle; Sialic Acid, purple diamond. B. Co-

crystal structure of NOTCH1 EGF11–13 (shades of magenta/purple) and DLL4 (N-terminus 

to EGF3, shades of blue/green) (modified from [52]). Inset shows direct interaction between 

O-fucose on NOTCH1 EGF12 with residues in DLL4. C. Co-crystal structure of NOTCH1 

EGF8–12 and JAG1 N-EGF3 (modified from [53]). Inset shows direct contacts between O-

fucose on EGF8 and EGF12 and residues in JAG1. Note that the structures in B and C were 

obtained after directed evolution of the ligands toward stronger affinities.
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Figure 3. O-Fucosylation stabilizes TSRs by interacting with underlying amino acids.
A. A hypothetical protein with 3 TSRs is being translated and is folding in the ER. TSR3 is 

in the folding cycle, with some correct and some incorrect disulfide bonds. TSR3 is not 

modified by O-fucose glycans. TSR2 is fully folded, stabilized by addition of fucose by 

POFUT2, and is no longer part of a folding cycle. TSR1 is further stabilized by addition of 

glucose by B3GLCT. Note that the folding pathway for a TSR is not known, so this pathway 

is hypothetical. B. Once all TSRs with a POFUT2 consensus sequence are modified with 

Glucoseβ1–3Fucose disaccharide and the protein is fully folded, the native protein exits the 

ER, transits the secretory system, and is either directed to the cell surface or secreted from 

the cell depending upon the target protein properties.
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