
Total Synthesis of Clavosolide A via Asymmetric Alcohol-
Mediated Carbonyl Allylation: Beyond Protecting Groups or 
Chiral Auxiliaries in Polyketide Construction**

James M. CabreraMichael J. Krische*

University of Texas at Austin, Department of Chemistry 105 E 24th St. (A5300), Austin, TX 
78712-1167 (USA)

Graphical Abstract

Less is more. The 20-membered marine macrodiolide clavosolide A is prepared in 7 steps (LLS) 

in the absence of protecting groups or chiral auxiliaries via enantioselective alcohol-mediated 

carbonyl addition. In 9 prior total syntheses, 11-34 steps (LLS) were required.
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Polyketide natural products and their semisynthetic congeners are used more frequently in 

human medicine than any other class of secondary metabolites.[1,2] With one exception 

(eribulin®),[3] manufacturing routes to commercial polyketide drugs invariably rely on 

fermentation. These data suggest available methods for de novo polyketide construction do 

not adequately meet the challenges evoked by the synthesis of such stereochemically 

complex compounds. Carbonyl additions, in particular asymmetric aldol reactions[4] and 

allylmetallations,[5] figure prominently among methods for polyketide total synthesis, yet 

often require multi-step preparations of preformed enol(ate) or allylmetal reagents that 
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involve numerous sacrificial reagents. To address these limitations, our laboratory has 

developed a suite of metal-catalyzed carbonyl reductive couplings and related hydrogen 

auto-transfer processes that convert lower alcohols to higher alcohols.[6] The redox-economy 

of these processes and the ability to directly deploy feedstock pronucleophiles in a stereo- 

and site-selective manner has been shown to streamline polyketide construction, enabling 

total syntheses in significantly fewer manipulations than previously required.[7] The 

bidirectional asymmetric allylation of 1,3-diols[8] represents one especially valuable method 

of this type, as it directly assembles triketide substructures, and has no counterpart in 

classical carbonyl addition chemistry as the corresponding 1,3-dialdehydes are unstable. For 

example, a 7-step total synthesis of cyanolide A was completed via bidirectional asymmetric 

allylation of neopentyl glycol[9g] - the shortest among 8 other total syntheses ranging 

between 12-19 steps (Figure 1).[9] Clavosolide A is a structurally related but more complex 

macrodiolide, for which 9 total syntheses exist that range between 11-34 steps (LLS) (Figure 

1).[10,11] Here, we report a 7-step (LLS) total synthesis of clavosolide A in the absence of 

protecting groups[12] or chiral auxiliaries via bidirectional asymmetric allylation of 2-

methyl-1,3-propane diol.

Clavosolide A, a C2-symmetric 20-membered glycosidic macrodiolide, was isolated in trace 

quantities from the marine sponge Myriastra clavosa, which is found in the Philippines.[13] 

The structure initially proposed for clavosolide A was misassigned and later revised by total 

syntheses.[10a,14] While the biological properties of clavosolide A have yet to be determined, 

the structurally related natural product cyanolide A[9,15] displays potent molluscicidal 

activity (LC50 = 1.2 μM) against the water snail Biomphalaria glabrata, a vector of the 

human parasitic disease schistosomiasis. Additionally, in 2016, the closely related 

macrodiolide xylopyranoside was discovered, cocosolide (not shown), which exhibits 

immunosuppressive activity.[16] The structure of cocosolide was verified by total synthesis 

through a 17-step route (LLS).[16]

Retrosynthetically, clavosolide A was envisioned to arise through dimerization of the 

hydroxy acid 11, which is prepared from pyran 3 by glycosylation using the permethylated 

D-xylose trichloroacetimidate 4 and subsequent introduction of the cyclopropyl moiety 

using iodide 8 (Scheme 1). Pyran 3 is potentially accessible in only two steps via 

bidirectional asymmetric allylation of 2-methyl-1,3-propane diol[8a] 2 followed by Fenton-

Semmelhack alkoxypalladation-carbonylation of the resulting C2-symmetric diol 2.[17,18,19] 

The feasibility of assembling pyran 3 in this manner was rendered uncertain due to the 

presence of the methyl-bearing chirotopic nonstereogenic center at C4. However, in related 

halocyclizations of olefinic alcohols, highly stereoselective desymmetrization is achieved 

owing to the preference of the latent methyl-bearing stereocenter to reside equatorially in the 

nascent pyran.[8b,20]

The synthesis of pyran 3 begins with the bidirectional allylation of 2-methyl-1,3-propane 

diol (Scheme 2). The reported procedure involves generation of the cyclometallated catalyst 

in situ and utilizes (S)-Cl,MeO-BIPHEP as ligand.[8a] To improve scalability, an effort was 

made to optimize the reaction using the inexpensive ligand (S)-BINAP. Ultimately, it was 

found that using the preformed π-allyl-C,O-benzoate complex modified by (S)-BINAP, (S)-

Ir-BINAP (10 mol%), and 4-cyano-3-nitrobenzoic acid (20 mol%) as an additive, the desired 
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C2-symmetric diol 2 could be obtained in 53% yield on 10 mmol scale, which is roughly 

equivalent to the yield previously obtained using (S)-Cl,MeO-BIPHEP. Notably, an earlier 

synthesis of the corresponding desmethyl diol required a 7-step sequence involving three 

protecting group manipulations, two separate alcohol oxidations and two separate carbonyl 

asymmetric allylborations was required.[21] Initial attempts at Fenton-Semmelhack 

alkoxypalladation/carbonylation[17,18,19] of the C2-symmetric diol 2 using Pd(OAc)2/CuCl2 

in acetonitrile-methanol solvent provided the desired pyran 3, but with poor levels of 

diastereocontrol at the C4 methyl-bearing chirotopic nonstereogenic center. Improved 

stereocontrol (6:1 dr) was achieved upon slow addition of diol 2 (over 10 min) and use of 

benzonitrile as cosolvent. Lower diastereoselectivity was observed using other Pd catalysts 

(PdCl2, PdI2, Pd(dppf)Cl2, Pd(PPh3)2Cl2).

In prior syntheses of clavosolide A,[10] direct formation of the trimethyl xylopyranoside 

moiety suffered from poor levels of β-selectivity. Specifically, in Schmidt-type 

glycosylations of trichloroacetimidates promoted by BF3•OEt2 or TMSOTf, a 1:1 ratio of α- 

vs β-anomers was observed.[10a,b,d,f] Aggarwal’s synthesis exploited neighbouring group 

participation in a tribenzoyl-protected xylopyranosyl donor to guide β-anomer formation,
[10i] however, this approach incurred two additional chemical manipulations to transform the 

tribenzoate into permethylated xylopyranoside. A recent report from the Fairbanks group 

showed that chiral phosphoric acids catalyze β-selective Schmidt-type glycosylations of 

trichloroacetimidates.[22] Inspired by this work, glycosylation of pyran 3 catalyzed by (R)- 

and (S)-PA-I and PA-II were attempted in dichloromethane and toluene solvent using the 

trimethyl xylopyranoside trichloroacetimidate 4 (Scheme 3).[10a] Reactions catalyzed by the 

parent BINOL phosphoric acids (R)- and (S)-PA-I were inefficient and did not significantly 

influence β-selectivity. However, in accord with Fairbanks’ report, glycosylations catalyzed 

by (R)-PA-II displayed good levels of β-diastereoselectivity, with reactions conducted in 

toluene displaying slightly higher yields. The structure of β-xylopyranoside 5 was 

corroborated by single crystal X-ray diffraction analysis.

With xylopyranoside 5 in hand, a carbonyl addition strategy for stereoselective introduction 

of the cyclopropane moiety spanning C10-C13 was undertaken, which necessitated 

preparation of cyclopropyl iodide 8 (Scheme 4). To this end, allyl alcohol 6 was subjected to 

Charette’s enantioselective iodocyclopropanation mediated by the indicated commercially 

available boronate ester.[23] The resulting cyclopropylcarbinyl alcohol 7 was converted to the 

tosylate and exposed to LiBH4 in ether solvent to furnish cyclopropyl iodide 8. Cyclopropyl 

iodides participate in lithium-halogen exchange and may be captured by diverse 

electrophiles with complete retention of configuration.[23b,24] Conversion of 8 to the 

corresponding cyclopropyl lithium followed by treatment with aldehyde 9 (prepared via 

DIBAL reduction of xylopyranoside 5) delivered the desired carbonyl addition product 10, 

but as an equimolar mixture of C9 epimers across a range of solvents. Based on chelation 

control or the Cram-Reetz model, additions to β-alkoxy aldehydes are anticipated to favor 

the undesired 1,3-anti-diastereomer.[25] Hence, the observed lack of diastereoselectivity was 

actually encouraging as it suggested the feasibility of utilizing a chirally modified 

cyclopropyl lithium reagent to bias formation of the desired 1,3-syn-diastereomer. Indeed, 

after screening a range of chiral diamines, including (1S,2S)-N1,N1,N2,N2-
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tetramethylcyclohexane-1,2-diamine[26] and (1S,2S)-N1,N1,N2,N2-tetramethyl-1,2-

diphenylethane-1,2-diamine,[27] it was found that aldehyde addition in the presence of (−)-

sparteine[28] enabled formation of cyclopropylcarbinyl alcohol 10 in a 4:1 diastereomeric 

ratio. The major and minor diastereomers could be separated by column chromatography on 

basic alumina. Exposure of 10 to KMnO4/NaIO4 affected chemoselective alkene oxidative 

cleavage to form carboxylic acid 11 without oxidation of the C9 alcohol.[29] Finally, mixed 

anhydride-mediated esterification-macrolactonization delivered clavosolide A in 7 steps 

(LLS).[30]

To summarize, through bidirectional asymmetric diol allylation, a 7-step (LLS) total 

synthesis of the 20-membered marine macrodiolide clavosolide A has been achieved in the 

absence of protecting groups or chiral auxiliaries. In the longest linear sequence, 5 of 7 

reactions represent skeletal construction events, 3 of which are stereoselective catalytic 

processes. The remarkably concise nature of this route is underscored by the fact that in 9 

previously reported total syntheses 11-34 (LLS) were required. Future studies will focus on 

the development of related metal-catalyzed C-C bond formations that streamline polyketide 

construction by directly transforming lower alcohols to higher alcohols using abundant π-

unsaturated pronucleophiles.[30]
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Figure 1. 
Summary of prior total and formal syntheses of cyanolide A and clavosolide A. For 

graphical summaries of total syntheses, see Supporting Information. Longest Linear 

Sequence (LLS), Total Steps (TS).
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Scheme 1. 
Retrosynthetic analysis of clavosolide A via bidirectional allylation of 2-methyl-1,3-propane 

diol.
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Scheme 2. 
Enantioselective synthesis of pyran 3.
aYields are of material isolated by silica gel chromatography. Diastereoselectivities were 

determined by 1H NMR analysis of crude reaction mixtures. Enantioselectivities were 

determined by chiral stationary phase HPLC analysis. See Supporting Information for 

further experimental details.
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Scheme 3. 
Chiral phosphoric acid-catalyzed Schmidt glycosylation of pyran 3 to form trimethyl 

xylopyranoside 5.a

aYields are of material isolated by silica gel chromatography. Diastereoselectivities were 

determined by 1H NMR analysis of crude reaction mixtures. See Supporting Information for 

further experimental details.
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Scheme 4. 
Enantioselective synthesis of iodide 8.
aYields are of material isolated by silica gel chromatography. Diastereoselectivities were 

determined by 1H NMR analysis. Enantioselectivities were determined by chiral stationary 

phase HPLC analysis. See Supporting Information for further experimental details.
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Scheme 5. 
Total synthesis of clavosolide A.
aYields are of material isolated by silica gel chromatography. Diastereoselectivities were 

determined by 1H NMR analysis of crude reaction mixtures. See Supporting Information for 

further experimental details.
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