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Genetic predictors of weight loss in 
overweight and obese subjects
Itziar Lamiquiz-Moneo1, Rocío Mateo-Gallego1,2, Ana M. Bea1, Blanca Dehesa-García1, 
Sofía Pérez-Calahorra1, Victoria Marco-Benedí1, Lucía Baila-Rueda1, Martín Laclaustra1, 
Fernando Civeira   1,2 & Ana Cenarro1

The aim of our study was to investigate a large cohort of overweight subjects consuming a 
homogeneous diet to identify the genetic factors associated with weight loss that could be used as 
predictive markers in weight loss interventions. We retrospectively recruited subjects (N = 788) aged 
over 18 years with a Body Mass Index (BMI) between 25 and 40 kg/m2 who were treated at our lipid 
unit for at least one year from 2008 to 2016, and we also recruited a control group (168 patients) with 
normal BMIs. All participants received counselling from a nutritionist that included healthy diet and 
physical activity recommendations. We genotyped 25 single nucleotide variants (SNVs) in 25 genes 
that were previously associated with obesity and calculated genetic scores that were derived from 25 
SNVs. The risk allele in CADM2 showed a higher frequency in overweight and obese subjects than in 
controls (p = 0.007). The mean follow-up duration was 5.58 ± 2.68 years. Subjects with lower genetic 
scores showed greater weight loss during the follow-up period. The genetic score was the variable that 
best explained the variations in weight from the baseline. The genetic score explained 2.4% of weight 
change variance at one year and 1.6% of weight change variance at the end of the follow-up period after 
adjusting for baseline weight, sex, age and years of follow-up.

Obesity is one of the greatest public health problems that threatens both developed and non-developed countries. 
The European Health Survey indicates that in Spain, 18% of adults are obese and 37% are overweight, which is 
higher than the overall European obesity prevalence, which is estimated at 12%1. Obesity implies an excess of 
body fat and increases the risk of numerous comorbidities, such as cardiovascular disease (CVD), obstructive 
sleep apnoea, type 2 diabetes, different types of cancer and osteoarthritis, particularly in subjects with central 
deposition of adipose tissue2. It has been established that 4 million deaths worldwide can be attributed to over-
weight and obesity, and more than two-thirds of these deaths are due to CVD2. It is estimated that for each unit of 
increased body mass index (BMI), the risk of CVD increases by 8%3.

The therapeutic approach for overweight and obesity is based on lifestyle modification, prevention pro-
grammes, behavioural modification and, in extreme cases, the use of medication or bariatric surgery4. Life-style 
changes include the combination of diet modification, usually with a hypocaloric diet, and increased physical 
activity. However, there is a large interindividual variability in weight loss response, and not all subjects respond 
in the same way to the same intervention5,6. Although adherence is a major determinant in the response to a 
weight-loss intervention, a genetic component has also been recently demonstrated7,8. This is coherent consider-
ing that the development of obesity has a strong genetic component9 and that approximately 50–70% of variance 
in BMI is attributable to genetic differences10. The identification of genes that could determine the effectiveness 
of weight-loss strategies could lead to new approaches for the treatment and prevention of the rising pandemic 
of obesity.

Obesity is a heterogeneous and heritable disorder, which results from the combination among genetic sus-
ceptibility, epigenetics, metagenomics and environmental factors11. Monogenic syndromic forms of obesity, such 
as Alström syndrome, Bardet–Biedl syndrome and Cohen syndrome, have a very low frequency in the general 
population and are due to functional mutations in the ALMS1, BBS1 or BBS10 and COH1 genes, respectively12. 
Monogenic or oligogenic non-syndromic forms of obesity have been described in patients with homozygous 
or heterozygous compound loss-of-function mutations in genes that are part of the leptin melanocortin path-
way: LEP, LEPR, POMC, PCSK1 and MC4R13. Reinehr et al. reported children who carrier MC4R mutations, 
which although they were able to lose weight with a lifestyle intervention, they had much greater difficulties in 
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maintaining their weight loss. For instance, MC4R mutations led to reduced receptor function supporting the 
impact of these mutations on weight status14. However, in most cases, genetic susceptibility to obesity is due to 
polygenic component, which is produced by the concurrent presence of risk polymorphisms in various genes13. A 
recent genome-wide association study (GWAS) led to the discovery more than 940 independent single nucleotide 
variants (SNVs), which are associated with body mass index (BMI)15. Based on the results of all GWASs, the FTO 
gene is viewed as the main contributor to polygenic obesity in the European population13.

Although many studies have addressed the genetic component of obesity in the last decade, the genes associ-
ated with a differential therapeutic response to weight-loss interventions have been studied much less frequently. 
We aimed to explore the genetic factors that could predict weight loss by studying a large cohort of subjects with 
BMI >25 kg/m2 who were following a homogeneous dietary intervention and exercise programme and who were 
followed up for several years.

Materials and Methods
Subjects.  This retrospective cohort study involved subjects attending the Lipid Unit at Hospital Universitario 
Miguel Servet in Zaragoza (Spain).

All unrelated subjects aged ≥18 years, of either sex, with a BMI between 25 and 40 kg/m2, who were 
followed-up ≥1 year and who visited the Lipid Unit at the Hospital Miguel Servet of Zaragoza from January 
1st, 2008 to December 31st, 2016 were eligible for inclusion. The exclusion criteria included a personal history of 
malignancies, inflammatory bowel disease, bariatric surgery and taking anti-obesity drugs. Finally, 788 subjects 
with overweight or obesity were included (Fig. 1).

To study the SNVs associated with overweight and obesity, we randomly selected a control group of unrelated 
subjects with normal BMI (18.5–25 kg/m2) who attended the Lipid Clinic during the follow-up period. Finally, 
168 control subjects were included.

All subjects signed an informed consent for a protocol that was previously approved by our local ethics 
committee (Comité Ético de Investigación Clínica of Aragón, Zaragoza). All the methods were performed in 
accordance with the relevant guidelines and regulations, and they were previously approved by our local ethics 
committee (Comité Ético de Investigación Clínica of Aragón, Zaragoza).

Clinical, anthropometric, and biochemical measurements.  Baseline data were collected at the first 
visit to the unit. Weight, height, BMI and waist circumference were measured. We also assessed body composition 
by bioelectrical impedance (Tanita TBF 410 GS, Omron Corporation, Tokyo, Japan), as previously described16. 
Personal and family history of CVD and other comorbidities, such as hypertension and medication use, were 
recorded during the clinical interview. Plasma ethylenediaminetetraacetic acid and serum samples were collected 
from all participants after 6 weeks without lipid-lowering drugs and after at least 10 hours of fasting. Total choles-
terol and triglyceride levels were determined by standard enzymatic methods, and high-density lipoprotein cho-
lesterol levels were measured by the oxidase method (UniCel DxC 800; Beckman Coulter Inc., Brea, California, 
United States), as previously described17. LDL cholesterol was calculated using Friedewald’s formula. Serum glu-
cose levels were assessed by glucose-oxidase method.

A baseline dietary assessment was performed using a previously published validated food frequency question-
naire. Food and nutrient intakes were calculated as frequency x nutrient composition of particularized portion 
sizes, in which frequencies were divided in 9 categories (never, 1–3 times a month, 1 time a week, 2–4 times a 
week, 5–6 times a week, 1 time a day, 2–3 times a day, 4–6 times a day and >6 times a day) for each food item. 
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Figure 1.  Schematic representation of the retrospective flow chart of the selection of the population for this 
study. BMI: Body Mass Index.
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The total energy and nutrient intakes were calculated based on previously validated Spanish food composition 
Tables18.

Dietary intervention.  All subjects received general dietary counselling based on dietary recommendations 
for overweight and obesity19 and lipid profile management according to international guidelines20. The dietary 
advice focused on increasing the intake of fruit, vegetables, whole grains, nuts, polyunsaturated fatty acids, low-fat 
dairy products, lean meat and fish and decreasing the consumption of saturated fatty acids, red and processed 
meat, soft drinks, alcohol and other sweetened products. Participants were instigated to increase their physical 
activity levels in consideration of their physical condition. All recommendations were provided by two expert 
dietitians at baseline, and they were reinforced at each follow-up visit. Each participant’s caloric prescription was 
represented by a deficit of 300 kcal/day, which has been calculated from energy intakes estimated. The energy 
intakes were estimated by multiplying the activity factor (energy expenditure for various activities established by 
the WHO) by the resting energy expenditure calculated with the Harris-Benedict equation.

Follow-up.  All subjects attended 3 follow-up visits during the first year and one follow-up annually thereafter. 
These follow-up visits included clinical, anthropometric, and lipid profile measurements and a reinforcement of 
the lifestyle recommendations. New diagnoses of malignancies, inflammatory bowel disease, or bariatric surgery 
were also exclusion criteria for the follow-up visits. Weight change was calculated using the next formula: the 
difference between the baseline weight and the final weight, divided by the baseline weight. Glucose change was 
calculated using the same formula: the difference between baseline glucose and final glucose, divided by baseline 
glucose. We classified the subjects into 3 categories according to weight loss: subjects who lost more than 2% of 
their body weight, subjects who gained more than 2% of their body weight and subjects who remained within 2% 
of their body weight. We chose these cut-off points to create groups with a relatively homogeneous sample size. 
Furthermore, we performed a subanalysis using 5% instead of 2% as a cut-off value, and this classification was 
used at the end of the first year and at the end of the follow-up period.

Genetic analysis.  Whole blood genomic DNA was isolated using standard methods. The SNV selection 
was based on previous associations with obesity in at least two independent GWASs21–33 and a greater than 5% 
frequency of the risk allele in the general population. These included the following loci: BDNF, CADM2, FANCL, 
FLJ35779, FTO, GNPDA2, HOXC13, KCTD15, LRP1B, LRRN6C, LY86, MAP2K5, NFE2L3, NRXN3, PRKD1, 
RBJ, RPL27A, RSPO3, SEC. 16B, SH2B1, TFAP2B, TMEM18, TNNI3K, VEGFA and ZNRF3-KREMEN1. SNVs 
were genotyped in all subjects at the same time with TaqMan probes (Thermo Fisher) using standard methods. 
The APOE genotype was determined by DNA sequencing of exon 4, as previously described34. We defined the 
risk allele as the allele that is associated with obesity according to the GWASs that were used for SNV selection.

Statistical analyses.  Analyses were performed using SPSS version 24.0 (Chicago, Illinois, United 
States). The level of significance was set at P < 0.05. The distribution of the variables was evaluated by the 
Kolmogorov-Smirnov test. Quantitative variables with a normal distribution are expressed as the mean ± stand-
ard deviation and were analysed by the Student t test. Qualitative variables are expressed as percentages and were 
analysed by the chi-squared test. To compare the genotype and allele frequency of the genetic variants between 
cases and controls, we used the chi-squared test. To compare the variations in BMI throughout the follow-up 
period we used the paired t-test. The association of weight change with SNVs and genetic score (see below) was 
analysed with a linear regression model that was adjusted for baseline weight, sex, age, follow-up time, smok-
ing status, alcohol consumption and daily consumption of vegetables, proteins, fruits, dairy products, olive oil, 
fish and sweets. To determine what type of model (additive, dominant or recessive) was the best, we calculated 
the Akaike information criterion (AIC = 2k + ln (L), where K is the number of parameters in the model and 
L is the likelihood) using a binary logistic regression models (yes/no) with weight loss during the follow-up 
as the dependent variable (Supplemental Table 1). Different regression models were used to test each inher-
itance. Genotypes were recorded as follows. The homozygotes for the risk allele (MM), heterozygotes (Mm), and 
homozygotes for the protective allele (mm) were coded to a continuous numeric variable for the genotype (as 0, 1 
and 2 respectively; additive model). A dominant model was defined as contrasting genotypic groups MM + Mm 
vs. mm, and the recessive model was defined as contrasting genotypic groups MM vs.Mm + mm.

The baseline excess body weight, the weight that is above a normal BMI ≤25 kg/m2, and loss of body weight 
were analysed according to quartiles by the weighted genetic score (see below) using the ANOVA test.

The association of glucose change with SNVs was analysed by a linear regression model using the glucose 
change throughout the follow-up period as a dependent variable and adjusting the model for weight change 
throughout the follow-up, years of follow-up, age, sex and all SNVs. This analysis was performed after excluding 
subjects with type 2 diabetes.

Genetic score.  The genetic score was calculated for each subject by using the sum of the presence (for domi-
nant or recessive model, as appropriate) of the risk genotypes in the 25 SNVs studied.

Results
This study was conducted with a cohort that included 788 overweight patients with BMI >25 kg/m2 who com-
pleted at least one year of follow-up and 168 controls with BMI <25 kg/m2. The overweight patients were older, 
included a higher percentage of men and had lower HDL cholesterol levels and a higher prevalence of diabetes 
and hypertension than the controls. No differences in total cholesterol, triglycerides, LDL cholesterol or APOE 
genotype were found between the groups (Table 1).

The frequency of the risk allele for obesity for each of the 25 SNVs was compared between the overweight 
patients and controls. The risk allele frequency of one SNV in CADM2 was significantly higher in the overweight 
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patients than in the controls (p = 0.007), and two risk alleles of SNVs in KCTD15 and LY86 genes were signifi-
cantly lower in the overweight patients than in the controls (p = 0.022 and p = 0.047, respectively). The risk allele 
frequency of one SNV in the GNPDA2 gene was significantly higher in the overweight patients than in the 1000 
Genomes Project database, and the risk allele frequency of one SNV in the RBJ gene was significantly lower 
in the overweight patients than in the 1000 Genomes Project database (p = 0.014 and p < 0.001, respectively) 
(Supplemental Table 2). Furthermore, the frequency of the risk allele for obesity for each of the 25 SNVs was 
compared between the overweight and obese subjects separately and the controls. The risk allele frequency of 
the SNV in the CADM2 gene was significantly higher in the obese and overweight subjects than in the controls 
(p = 0.014 and p = 0.001, respectively). The risk allele frequency of SNV in the KCTD15 gene was significantly 
lower in overweight subjects than in controls (p = 0.019).

The mean follow-up period was 5.58 ± 2.68 years (range 1.5–10 years). The dietary intervention resulted in a 
significant reduction of 0.68% of body weight during the follow-up (p = 0.003). Figure 2 indicates the body mass 
index values at baseline and during the follow-up in the entire population. The dietary intervention resulted in a 

Subjects with 
BMI < 25 kg/
m2 (N = 168)

Subjects with 
BMI > 25 kg/
m2 (n = 788) p

Age, years 48.1 ± 14.05 59.01 ± 11.64 <0.001

Men, n (%) 74 (48.7%) 470 (59.7%) 0.012

Total cholesterol, mg/dL 297 ± 47.3 294 ± 65.3 0.606

Triglycerides, mg/dL 232 ± 134 272 ± 321 0.208

LDL-cholesterol, mg/dL 205 ± 47.5 208 ± 60.4 0.228

HDL-cholesterol, mg/dL 53 ± 14.9 49.9 ± 19.6 0.008

Glucose, mg/dL 91.1 ± 25.2 98.8 ± 24.3 0.172

Diabetes, n (%) 8 (5.26%) 156 (19.8%) <0.001

Hypertension, n (%) 24 (15.8%) 298 (37.9%) <0.001

APOE genotype, 
n (%)

ɛ3/ɛ3 116 (70.7%) 504 (65.5%)

0.346

ɛ3/ɛ4 34 (20.7%) 159 (20.6%)

ɛ3/ɛ2 9 (5.5%) 70 (9.1%)

ɛ2/ɛ4 1 (0.6%) 10 (1.3%)

ɛ4/ɛ4 4 (2.4%) 16 (2.1%)

ɛ2/ɛ2 0 11 (1.4%)

Table 1.  Baseline clinical and biochemical characteristics of subjects with BMI > 25 kg/m2 and subjects with 
BMI < 25 kg/m2. Quantitative variables are expressed as the means ± standard deviations. Qualitative variables 
are expressed as counts (percentages). The p values were calculated by Student’s t test and Chi-squared test, as 
appropriate.
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Figure 2.  BMI variation throughout the follow-up period. BMI: Body Mass Index. The p value was calculated 
by a paired t-test.
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significant reduction of 1.11% of the BMI on average during the first year of the intervention (p < 0.001). In the 
following years, the subjects progressively gained weight, and in the sixth year, they surpassed the baseline BMI. 
However, there were no significant differences in these increases in BMI, except for the interval from the second 
to the third year (p < 0.001) (Supplemental Table 3). Table 2 compares the baseline values and the variation in 
clinical and biochemical characteristics among the groups based on weight change during follow-up. Subjects 
who lost more than 2% of their body weight had higher baseline body weight, fat mass, abdominal visceral fat, 
and glucose and lower baseline cholesterol than subjects who gained more than 2% of their body weight. All 
subjects improved their lipid profiles during the follow-up due to lipid lowering drugs, without significant dif-
ferences among the weight-change groups, except for the difference in HDL cholesterol, which increased more 
in subjects who lost more than 2% of their body weight. Supplemental Table 4 shows the genotype frequencies of 
SNVs according to the weight-change groups. Only one SNV, r10150332 in the NRXN3 gene, showed significant 
differences between the groups (p = 0.037). Subjects who gained more than 2% weight were more frequently 
homozygous for the risk allele.

Subjects who lost 
more than 2% body 
weight (N = 258)

Subjects who varied 
by less than 2% body 
weight (N = 335)

Subjects who gained 
more than 2% body 
weight (N = 194) p

Age, years 59.8 ± 11.9 59.4 ± 11.3 57.3 ± 11.7 0.055

Men, n (%) 145 (56.2%) 205 (61.2%) 121 (62.4%) 0.334

Baseline weight, kg 83.3 ± 13.1 79.4 ± 11.3 80.0 ± 12.8 <0.001

Baseline BMI, kg/m2 30.2 ± 3.37 28.4 ± 2.74 28.5 ± 2.73 <0.001

Baseline waist 
circumference, cm 104 ± 9.15 97.8 ± 8.75 98.7 ± 9.70 <0.001

Baseline fat mass, kg 27.3 ± 7.89 23.6 ± 6.30 24.1 ± 6.29 <0.001

Baseline muscle 
mass, kg 51.5 ± 10.9 50.4 ± 10.9 50.7 ± 11.5 0.736

Baseline bone mass, 
kg 2.73 ± 0.51 2.71 ± 0.49 2.71 ± 0.53 0.921

Baseline visceral fat 
level, % 11.9 ± 3.74 10.8 ± 3.52 10.8 ± 3.53 0.014

Baseline cholesterol, 
mg/dL 287 ± 62.1 293 ± 61.2 306 ± 74.9 0.014

Baseline 
triglycerides, mg/dL 281 ± 384 260 ± 271 282 ± 308 0.284

Baseline HDLc, 
mg/dL 49.6 ± 26.1 49.9 ± 13.7 50.1 ± 18.2 0.244

Baseline glucose, 
mg/dL 101 ± 27.3 96.9 ± 20.7 99.0 ± 25.7 0.007

Baseline energy 
consumption, Kcal/
day

2299,6 ± 632 2303 ± 615 2294 ± 635 0.996

Baseline 
carbohydrate 
consumption, g/day

259 ± 91.1 256 ± 87.3 258 ± 92.1 0.983

Baseline protein 
consumption, g/day 94.6 ± 23.2 92.8 ± 21.8 91.8 ± 23.0 0.713

Baseline fat 
consumption, g/day 88.5 ± 25.5 89.6 ± 25.7 88.7 ± 26.8 0.972

Weight change after 
one year, % −5.76 ± 4.06 −0.03 ± 1.14 4.60 ± 2.67 <0.001

Waist circumference 
change, cm −0.88 ± 9.26 2.60 ± 6.38 5.20 ± 7.40 <0.001

Change in fat mass, 
% −7.02 ± 18.1 3.65 ± 28.0 8.84 ± 20.9 <0.001

Change in muscle 
mass, % 0.07 ± 16.4 3.73 ± 20.3 4.52 ± 20.9 <0.001

Change in visceral fat 
level, % −1.09 ± 19.1 7.32 ± 16.6 11.8 ± 17.2 <0.001

Change in 
cholesterol, % −28.3 ± 19.2 −28.0 ± 22.3 −29.6 ± 21.9 0.605

Change in 
triglycerides, % −13.8 ± 51.2 −13.9 ± 46.5 −5.59 ± 69.3 0.442

Change in HDLc, % 18.0 ± 132 8.99 ± 23.4 7.17 ± 27.5 0.037

Change in glucose, % 11.4 ± 77.2 8.13 ± 62.4 7.40 ± 20.4 0.241

Table 2.  Baseline values and variation in clinical and biochemical characteristics comparing groups based on 
the weight change that the subjects experienced during the follow-up. Quantitative variables are expressed as 
the means ± standard deviations. The p values were calculated by the ANOVA test or the Kruskal-Wallis test, as 
appropriate.
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The association between weight change and each SNV was analysed by a linear regression analysis. We catego-
rized each SNV for recessive and dominant models for the risk allele. Five SNVs (rs7359397, rs2112347, rs29941, 
rs10150332, rs4929949) were significantly associated with weight change. The first one (rs7359397) was compat-
ible with a dominant model and the rest were compatible with recessive models based on their effects. The SNVs 
rs2112347 and rs10150332 were significantly associated with weight change in the first year, and the other 3 SNVs 
were significantly associated with weight change at the end of the follow-up.

In addition, we studied the impact of all 25 SNVs included in the genetic score on weight change in the first 
year and during the follow-up. The percentage of weight change explained by baseline weight and the genetic 
score adjusted for age, gender and smoking habit was 10.1%. The genetic score explained 2.4% of weight variation, 
making the genetic score the variable that best explains the weight variation after baseline weight (Table 3). The 
percentage of weight change at the end of follow-up explained by baseline weight and genetic score adjusted for 
age, sex, smoking status, and follow-up duration was 8.8%. In this case, the genetic score explained 1.6% of the 
weight variation (Table 4). In addition, according to the U-shape relationship between time of intervention and 
weight loss, shown in Fig. 2, we studied the impact of the genetic score on weight loss after the first four years of 
the intervention. The percentage of weight change during the first four years explained by baseline weight, genetic 
score, and smoking status adjusted for age and sex was 12.2%. The genetic score explained 2.1% of the weight 
variation (Supplemental Table 5). The genetic score was significantly higher in subjects who gained more than 2% 
weight at the end of the follow-up than subjects who lost more than 2% weight (p < 0.001). To further investigate 
the value of the weighted genetic score, we selected subjects with changes in body weight >5%. This selection fur-
ther amplified the differences in the weighted genetic score in subjects who gained over 5% of their body weight 
vs subjects who lost more than 5% of their body weight (scores: 18.36 vs 22.28, respectively, p < 0.001) (Table 5).

To analyse the change in excess weight body independently of SNVs, we studied the body weight loss accord-
ing to genetic score quartiles. There was no significant difference between the baseline excess body weight based 
on the genetic score quartile (p = 0.262). However, there were significant differences in the loss of excess body 
weight, in which the subjects in the lower quartile had a significantly greater loss of excess weight (p < 0.001) 
(Table 6).

Considering the close relationship between weight and glucose, we studied the impact of the studied SNVs on 
glucose changes at the end of follow-up. We calculated the glucose change associated with each SNV with univar-
iate linear regression models adjusted for age, weight change, follow-up duration, and sex. Two SNVs, rs9491696 
in a recessive model and rs7359397 in a dominant model for their risk alleles, showed a statistically significant 
association with glucose change (p = 0.042 and p = 0.040). Weight change during the follow-up, together with 

β coefficient 95% CI P
Cumulative 
corrected R2

Baseline weight −0.001
−0.002 
to 
−0.001

<0.001 0.077

Genetic score 0.002 0.000 to 
0.004 0.026 0.101

Sex −0.015 −0.030 
to 0.000 0.048 0.101

Age −0.023 −0.037 
to 0.010 0.713 0.101

Smoking status 0.027 −0.025 
to 0.040 0.675 0.101

Table 3.  Linear regression analysis of clinical, biochemical and genetic scores with weight change during the 
first year.

β coefficient 95% CI P
Cumulative 
corrected R2

Baseline weight −0.002
−0.003 
to 
−0.001

<0.001 0.061

Genetic score −0.004
−0.007 
to 
−0.001

0.016 0.077

Age 0.000 −0.001 
to 0.001 0.801 0.088

Sex −0.013 −0.037 
to 0.012 0.295 0.088

Years of follow-
up −0.001 −0.011 

to 0.008 0.822 0.088

Smoking status 0.008 −0.004 
to 0.021 0.188 0.088

Table 4.  Linear regression analysis of clinical, biochemical and genetic score with weight change during the 
follow-up period. 95% CI, 95% confidence interval.
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follow-up duration, sex, age and these SNPs, explained up to 2.9% of the variance in fasting glucose change. Both 
SNVs explained 0.8% of the variance in fasting glucose change (Supplemental Table 6).

Discussion
Obesity is a multifactorial disorder that has a genetic component but is also influenced by many environmental 
factors. The first genetic studies on obesity involved monogenic and extreme obesity syndromes, and the research-
ers focused their attention on the dysfunction of the leptin-hypothalamus pathway35. More recently, GWAS have 
allowed for the identification of many loci involved in interindividual weight variation that are associated with the 
most common expressions of obesity15. These association studies have contributed to the identification of new 
genes that are mechanistically involved in the pathophysiology of obesity36. In this study, we found an association 
between short- and long-term weight loss and genetic predisposition in a Spanish cohort. Our findings showed 
that subjects with higher genetic scores calculated from selected SNVs had greater weight gain, both in the short 
and long term, than subjects with lower genetic scores.

Among the 25 SNVs that we analysed that were previously associated with obesity, the allele frequencies 
of three of them, rs13078807 in the CADM2 gene, rs29941 in the KCTD15 gene, and rs1294421 in the LY86 
gene, were significantly different at baseline between the overweight patients and the controls. However, only 
rs13078807 in the CADM2 gene showed a significantly higher prevalence of the risk allele in the overweight 
patients than in the controls. CADM2 is a gene that encodes a mediator of synaptic signalling that is enriched in 
the brain, and CADM2 appears to be associated with BMI in GWASs37,38. A previous study showed that the risk 
allele variant rs13078960 is associated with increased CADM2 expression in the human hypothalamus. Deletion 
of Cadm2 in obese mice reduce the adiposity tissue, fasting glucose levels and improved insulin sensitivity. 
Therefore, CADM2 plays a role as a potent regulator of systemic energy homeostasis39.

Among the 5 common genetic variants that were significantly associated with weight change, 2 of them, 
rs2112347 in the FLJ35779 gene and rs10150332 in the NRXN3 gene, were associated with weight change in 
the first year. At present, there is no information on the putative mechanism associating the FLJ35779 gene with 
obesity27. In contrast, the NRXN3 gene encodes NRXN proteins, which are located in presynaptic space and 
are proposed to interact with postsynaptic neuroligins. The NRXN3 gene has been previously associated with 
central nervous system disorders and obesity, so its role in obesity could be a result of alterations to the nervous 
system23,40. The SNV rs29941 in the KCTD15 gene, rs4929949 in the RPL27A gene and rs7359397 in the SH2B1 
gene showed an association with weight modification during the follow-up period. The SH2B1 gene encodes an 
adaptor protein which increases signalling in the Janus kinase signal transducer and activator (JAK-STAT) path-
way downstream of the leptin receptor27. Previous studies have demonstrated that natural loss-of-function muta-
tions in the SH2B1 gene in humans lead to both elevated food intake and severe obesity associated with leptin 
resistance27. KCTD15 is associated with TFAP2B, and both of them genes have been linked to obesity in GWASs, 
indicating a possible physical interaction in vivo. Previous studies have suggested that KCTD15 and TFAP2B 
could play a role in the pathophysiology of obesity due to the deregulation of glucose and increased peripheral 
resistance to insulin41. RPL27A encodes the ribosomal protein L27A, which has been related with the obesity in 
humans, although the molecular pathway remains unknown41.

Subjects who 
lost more than 
5% body weight 
(N = 141)

Subjects who 
varied by less than 
5% body weight 
(N = 528)

Subjects who 
gained more than 
5% body weight 
(N = 148) p1 p2

Genetic score 18.36 ± 2.68 19.41 ± 3.18 22.28 ± 3.04 <0.001 <0.001

Subjects who 
lost more than 
2% body weight 
(N = 258)

Subjects who 
varied by less than 
2% body weight 
(N = 335)

Subjects who 
gained more than 
2% body weight 
(N = 194)

p1 p2

Genetic score 18.95 ± 2.77 19.31 ± 3.21 20.81 ± 3.56 <0.001 <0.001

Table 5.  Genetic scores of the groups based on the weight change that the subjects experienced during the 
follow-up. Quantitative variables are expressed as the means ± standard deviations. p1 value calculated with the 
ANOVA test. p2 value calculated with Student’s t-test comparing the extreme groups.

First quartile 
(N = 173)

Second quartile 
(N = 185)

Third quartile 
(N = 275)

Fourth quartile 
(N = 155) p

Baseline 
excess body 
weight (kg)

8.70 ± 10.02 8.07 ± 9.12 9.34 ± 10.78 7.68 ± 9.66 0.262

Loss of excess 
body weight 
(kg)

−1.47 ± 4.06 −0.90 ± 5.73 −0.77 ± 4.35 2.15 ± 4.66 <0.001

Table 6.  Baseline excess body weight and loss of excess body weight according to the genetic score. Excess body 
weight indicates the weight that is above a normal BMI > 25 kg/m2. Quantitative variables are expressed as the 
mean ± standard deviation. p values were calculated by ANOVA.
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The genetic score that we calculated from the sum of the 25 SNVs that were previously associated with obe-
sity was significantly higher in patients with greater weight gain, although the weight variation explained by the 
score was small (2.4%). These percentage are similar to those provided by scores developed in other studies, in 
which the authors indicated that all BMI-associated variants combined explained 2.7% of the variation in BMI38. 
However, our genetic score is based on 25 SNVs; in contrast, the genetic score developed by Locke et al. was based 
on 97 SNVs38. Nevertheless, these percentages are far from the 70% of the inter-individual differences in body 
weight that are attributable to genetic differences between individuals42. Unknown genes involved in obesity, 
non-genetic familial influences and/or the interactions of genetic and environmental factors are probably impor-
tant factors to explain this discrepancy.

Finally, we found two SNVs, rs9491696 in the RSPO3 gene and rs7359397 in the SH2B1 gene, that were asso-
ciated with fasting glucose changes during the follow-up period. Both SNVs explained 2% of the glucose change 
when assessed together with weight change during the follow-up period. The expression of SH2B1 occurs mostly 
in the pancreas as well as the liver, skeletal muscle and adipose tissue. Besides, SH2B1 plays a major role in insulin 
signalling, as might be expected given that the JAK-STAT signalling pathway is also an intracellular signalling 
pathway used by the insulin receptor27. However, RSPO3 has only been previously associated with BMI, and its 
molecular pathway remains unknown43.

Our study has some limitations: the dietary intervention, including general counselling, was not very intense 
and the follow-up period included only one visit per year. However, the aim of our study was not to achieve 
great reductions in body weight but to study the genetic influences in subjects with overweight or obesity who 
were following the same dietary recommendations. The overweight and obese participants were recruited from 
a lipid clinic, which could be a bias in the estimation of the epidemiological or genetic influences in our study44. 
However, lifestyle is especially important in these patients, and new studies on this topic in the general popula-
tion would be necessary to extrapolate our results to a healthy population. We genotyped 25 SNVs, and there are 
at least 940 known SNVs that are associated with BMI. However, we observe that the variance explained by our 
score is similar to that explained by Locke et al. with their score based on all 97 SNVs.

In conclusion, the genotyping of 25 SNVs that were previously associated with obesity in a grand cohort of 
subjects with overweight and obesity allowed for the development of a genetic score that explained 2.4% of weight 
change during the follow-up period. In addition, subjects with lower genetic scores showed increased weight loss 
during the follow-up period. However, these percentages must increase to use this genetic score as a predictive 
marker of weight loss. Further research is needed to fully understand the role of genetics and epigenetics in obe-
sity, which could lead to better management and prevention of this pandemic.
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