Table 3.
Classification results for PIRC, QRDR and PIMEC with varying input image sizes on the primary validation set.
| Grading system | Input size | Macro-AUC | Accuracy | Quadratic-Weighted Kappa |
|---|---|---|---|---|
| PIRC | 256 | 0.901 | 0.751 | 0.772 |
| PIRC | 299 | 0.919 | 0.785 | 0.834 |
| PIRC | 512 | 0.951 | 0.838 | 0.894 |
| PIRC | 1024 | 0.961 | 0.870 | 0.915 |
| PIRC | 2095* | 0.962 | 0.869 | 0.910 |
| PIRC | 6 × 512a | 0.958 | 0.944 | 0.904 |
| QRDR | 256 | 0.977 | 0.912 | 0.901 |
| QRDR | 299 | 0.981 | 0.922 | 0.914 |
| QRDR | 512 | 0.989 | 0.937 | 0.930 |
| QRDR | 1024 | 0.991 | 0.938 | 0.932 |
| QRDR | 2095* | 0.991 | 0.925 | 0.914 |
| QRDR | 6 × 512a | 0.991 | 0.962 | 0.938 |
| PIMEC | 256 | 0.959 | 0.928 | 0.813 |
| PIMEC | 299 | 0.970 | 0.923 | 0.803 |
| PIMEC | 512 | 0.979 | 0.935 | 0.832 |
| PIMEC | 1024 | 0.978 | 0.937 | 0.846 |
| PIMEC | 2095* | 0.981 | 0.934 | 0.856 |
| PIMEC | 6 × 512a | 0.983 | 0.973 | 0.871 |
Macro-AUC refers to area under macro average of ROC for each class one-vs-all manner.
*Trained with model using instance normalization layers and an optimizer with accumulation of 15 mini-batches.
aEnsemble of six classifiers trained on same data with same input size.