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COMMENTARY

Artificial Intelligence and Pharmacometrics: Time to 
Embrace, Capitalize, and Advance?

Ayyappa Chaturvedula1,*, Stacie Calad-Thomson2, Chao Liu3, Mark Sale4, Nandu Gattu5 and Navin Goyal6

Artificial intelligence (AI) has been described as the ma-
chine for the fourth industrial revolution. Without exception, 
AI is predicted to change the face of every industry. In the 
field of drug development, AI is employed to enhance effi-
ciency. Pharmacometrics and systems pharmacology play a 
vital role in the drug- development decision process. Thus, it 
is important to recognize and embrace the efficiencies that 
AI can bring to the pharmacometrics community.

The Dartmouth summer research project (1955) of AI pro-
ceeded on the basis that every aspect of learning or any 
other feature of intelligence can be described so precisely 
that a machine can be created to simulate it.1 Deep learning 
(DL) and machine learning (ML) algorithms constitute the es-
sential building blocks of AI systems. DL represents learning 
using multiple processing layers, whereas ML techniques 
use learning algorithms that self- learn and improve efficiency 
for a period of time.2 There have already been significant 
contributions of AI in medicine, and some notable examples 
include the diagnosis of tuberculosis,3 metastasis of breast 
cancer,4 and retinal changes as a result of diabetes.5

AI/DL/ML methods have made their way into a handful 
of areas in drug development. Some of these inroads are 
described later and include pharmacometric modeling and 
drug repurposing. We believe that these methods, which 
have proven valuable in other fields, have the promise to 
make important contributions to a wide range of drug- 
development disciplines. This commentary describes some 
of the applications of AI/DL/ML in this space and calls for 
the examination of these methods in other areas.

ML METHODS FOR PHARMACOMETRICS

Model selection in pharmacometrics is often described as a 
linear process, starting with “structural” features and followed 
by random effects and covariate effects, each tested one at a 
time. In the optimization field, this is known as a “greedy” or 
local search algorithm. Similar to other greedy algorithms (such 
as the quasi- Newton used for parameter optimization), this al-
gorithm is at risk for arriving at local minima. A global search 
method called Genetic Algorithm (GA) can be proposed as a 
better alternative. GA creates a user- defined “search space” 

of candidate models representing all hypotheses to be tested 
(e.g., number of compartments, covariates, random effects). 
This set of possible hypotheses are then coded into a “ge-
nome” consisting of a string of 0s and 1s, with genes represent-
ing each hypothesis (Figure 1). GA then searches this space 
for the optimal combination of “features.” GA uses the mathe-
matics of “survival of the fittest” with mutation and cross- over 
for the optimal combination of “features” (e.g., compartment, 
random effect, covariate effects, initial parameter estimates) 
based on a user- provided function that describes the quality of 
the model, typically based on log- likelihood and a parsimony 
penalty. This user- provided function is known as the “fitness 
function” in GA. A prototype software has been developed to 
implement GA using NONMEM for the parameter estimation.6 
Initial experience suggests that GA consistently finds a better 
model (based on Akaike information criteria and a likelihood 
ratio test) than human pharmacometricians.7,8 Such an ap-
proach with a global search algorithm offers an objective and 
robust method for identifying optimal pharmacometric models.

DL FOR DRUG REPURPOSING EFFORTS

Hit identification is the first and a crucial step in identify-
ing a drug against a biological target of interest. Excelra 
has developed a multilayered AI- driven platform aimed at 
identifying novel chemical hits (Figure S1). This platform 
screens drug candidates by passing them through a se-
quential process of filtration using ML and DL techniques 
integrated with chemo- informatics. The filtered candidates 
are then passed through the target- based data points to 
define potential drug candidates. Below are several key 
components required to build such AI/ML models:

• An appropriate data set (including active and inactive 
compounds)

• An optimized set of target specific descriptors
• DL and ML algorithms
• Perfect match of algorithms and parameters
• Unbiased validation set to authenticate model performance

An optimized set of normalized chemical features (de-
scriptors) represents the crucial component for building ML 
and DL models. Five different statistical algorithms were used 
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to reduce noise and obtain a set of ~100 descriptors with no/
fewer outliers. This information was subsequently used to 
construct ML (using ~30 algorithms) and DL models with 
their hyper- parameterization, entailing an equal ratio of active 
(highly potent) and inactive compounds obtained from pro-
prietary and public databases. Of the 150 models created for 
each target, 5 different reduction methods and more than 30 
algorithms were employed to generate a performance score 
that was used to identify the “best model.” In addition, the 
multilayer ML and DL methods were integrated with tradi-
tional chemo- informatics and molecular- docking approaches 
to yield the best possible results. Finally, at the end of the 
pipeline, human intelligence is coupled with AI to achieve the 
best outcome using this multipronged approach. All mod-
els were validated using well- curated proprietary (GOSTAR) 
and public (ChEMBL and PubChem) libraries. For example, 
the pipeline for Bruton’s tyrosine kinase was built using this 
approach. A total of 52 randomly selected compounds were 
passed through the pipeline to assess its efficiency in differ-
entiating between actives and inactives. These compounds 
were subsequently tested in vitro using a specific Bruton’s 
tyrosine kinase activity assay. The pipeline was able to pre-
dict actives and inactives with an accuracy of 79%, with 80% 
sensitivity and 78% specificity (Table S1). Similarly, the mod-
els were built for two other targets with an accuracy ranging 
between 68%–87% (data not shown).

ACCELERATING THERAPEUTICS FOR 
OPPORTUNITIES IN MEDICINE (ATOM)—A 
MULTIDISCIPLINARY EFFORT FOR AI/ML/DL–BASED 
ACCELERATED DRUG DEVELOPMENT

The convergence of recent advances in data science and 
computing is primed for applications in the pharmaceutical 

industry, and a multidisciplinary approach to integrating 
these fields will enable the rapid acceleration of drug devel-
opment through applications of AI. Although pharmaceu-
tical companies and clinical centers are transforming their 
data infrastructure to enable more value to be derived from 
the information collected, there is also an incredible op-
portunity to deliver more value to patients by sharing data, 
models, and cross- industry expertise in AI.

ATOM is a public–private consortium formed to transform 
preclinical drug discovery into a rapid, parallel, patient- 
centric model through an in silico– first, precompetitive 
platform. The founding members of the consortium are 
the Department of Energy’s Lawrence Livermore National 
Laboratory, GlaxoSmithKline, the National Cancer Institute’s 
Fredrick National Laboratory for Cancer Research, and the 
University of California, San Francisco. The consortium is 
open to other partners and is actively seeking new members.

ATOM aims to develop, test, and validate a multidisci-
plinary approach to drug discovery in which modern science, 
technology and engineering, supercomputing simulations, 
data science, and AI are highly integrated into a single drug- 
discovery platform that can ultimately be shared with the 
drug- development community at large. The ATOM platform 
integrates an ensemble of algorithms, built on shared public 
and private data, to simultaneously evaluate candidate drug 
molecules for efficacy, safety, pharmacokinetics, and devel-
opability. The current data set includes information on 2 mil-
lion compounds from GlaxoSmithKline’s drug discovery and 
development programs and screening collections. To date, 
ATOM has built thousands of models on that data, with an 
initial focus on pharmacokinetics and safety parameters that 
feed into human physiologically based pharmacokinetics 
and systems toxicology models. The ATOM active learning 
workflow, highlighted in Figure 2, will drive the acquisition 

Figure  1 Coding of model options into a genome using Genetic Algorithm. CL- Clearance, BSA- Body surface area, K23 and  
K32- micro rate constants, Q- intercompartmental clearance, VSS- steady-state volume of distribution, V2-volume of distribution
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of additional experimental and computational data where 
needed to improve prediction performance. Ultimately, this 
integrated approach is expected to lower attrition, reduce 
unproductive preclinical experimentation, and improve clini-
cal translation that will result in better patient outcomes.

ML- BASED METHODS IN REGULATORY REVIEW

Applications of AI/DL/ML in the biomedical field are not lim-
ited to academia or industry. There are examples in which 
the US Food and Drug Administration has accelerated the 
approval of AI- based devices and algorithms for diagnos-
tic purposes, e.g., detecting diabetes- related retinopathy 
and wrist fractures.9 The potential for the application in 
regulatory reviews is also being explored.10 ML could serve 
as a powerful tool for pharmacometrics analysis with its 
 capacity to leverage high- dimensional data and describe 
nonlinear relationships. This was illustrated by a simu-
lation case study employing ML- based techniques in the 
 exposure–response analysis.

The case study was based on a simulation system in 
which both drug clearance and treatment outcome were 
described by highly nonlinear functions. In addition, drug 
clearance was designed to be independently associated 
with treatment response via confounders. The objective of 
this simulation was to assess whether ML- based techniques 
were able to estimate the causal relationships between drug 
exposure and treatment outcome, without bias, when data 
from only one dose level were available.

Two analysis strategies involving ML were evaluated. 
Strategy A was based on a marginal structural model with 
inverse probability weighting, in which ML was employed to 
improve model robustness. In strategy A, pseudo- subjects 
were grouped into five quintiles based on individual expo-
sure; the propensity scores for each subject were estimated. 
Here, the propensity score represents the probability of the 
subject being assigned to their observed exposure quintile 
given a set of covariates. An unbiased propensity score is 

required to correctly generate the inverse probability weight-
ing and assess the causal effects of exposure in marginal 
structural models. The simulation showed that, in a nonlin-
ear system, ML proved more robust than traditional multino-
mial logistic regression in estimating the propensity score, 
thus correctly recovering the exposure–response relation-
ship. Strategy B estimated the exposure–response relation-
ship by employing an artificial neural network as a universal 
function approximator to recover the data- generating mech-
anism without the requirement of accurately hand- crafting 
the whole simulation system. A fully connected “feed for-
ward” network was trained based on data simulated from 
one dose level. The results demonstrated that the trained 
network was able to correctly predict the treatment effects 
across a certain range of adjacent dose levels. In contrast, 
the traditional regression provided biased predictions even 
when all confounders were included in the model.

CONCLUSION

Given the Bayesian framework of pharmacometrics, it 
seems to be a natural evolution to embrace AI/DL/ML as 
additional tools and opportunities for collaboration. It is 
critical to actively expand our understanding of AI/ML/DL to 
appreciate their impact at various stages of drug develop-
ment. Failure to acknowledge or shying away from AI/DL/
ML may not be an option. On the contrary, pharmacometri-
cians are poised to be a natural fit to the AI/DL/ML space 
and advance this field to the next level.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Supplement: Figure S1 and Table S1.
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Figure 2 Multidisciplinary approach to the convergence of data science, drug discovery efforts, and translational modeling at the 
ATOM-Accelerating Therapeutics for Opportunities in Medicine Consortium. PK, pharmacokinetics.
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