
Ascolani and Liò BMC Medical Genomics 2019, 12(Suppl 6):106
https://doi.org/10.1186/s12920-019-0541-4

RESEARCH Open Access

Modeling breast cancer progression to
bone: how driver mutation order and
metabolism matter
Gianluca Ascolani1,2*† and Pietro Liò1†

From VarI-COSI 2018: identification and annotation of genetic variants in the context of structure, function, and disease
Chicago, IL, USA. 08 July 2018

Abstract

Background: Not all the mutations are equally important for the development of metastasis. What about their
order? The survival of cancer cells from the primary tumour site to the secondary seeding sites depends on the
occurrence of very few driver mutations promoting oncogenic cell behaviours. Usually these driver mutations are
among the most effective clinically actionable target markers. The quantitative evaluation of the effects of a mutation
across primary and secondary sites is an important challenging problem that can lead to better predictability of
cancer progression trajectory.

Results: We introduce a quantitative model in the framework of Cellular Automata to investigate the effects of
metabolic mutations and mutation order on cancer stemness and tumour cell migration from breast, blood to bone
metastasised sites. Our approach models three types of mutations: driver, the order of which is relevant for the
dynamics, metabolic which support cancer growth and are estimated from existing databases, and non–driver
mutations. We integrate the model with bioinformatics analysis on a cancer mutation database that shows
metabolism-modifying alterations constitute an important class of key cancer mutations.

Conclusions: Our work provides a quantitative basis of how the order of driver mutations and the number of
mutations altering metabolic processis matter for different cancer clones through their progression in breast, blood
and bone compartments. This work is innovative because of multi compartment analysis and could impact
proliferation of therapy-resistant clonal populations and patient survival. Mathematical modelling of the order of
mutations is presented in terms of operators in an accessible way to the broad community of researchers in cancer
models so to inspire further developments of this useful (and underused in biomedical models) methodology. We
believe our results and the theoretical framework could also suggest experiments to measure the overall personalised
cancer mutational signature.
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Background
The development of tumours and the formation of metas-
tasis are caused by cells which due to mutations are
incapable of correctly sensing the external signalling of
the environment and the surrounding cells so to adjust
their metabolic and mitotic cycle activities. The purpose
of exchange of signals between the cell and the envi-
ronment is limiting their proliferation which, in the case
of development of the cancer disease, becomes uncon-
trolled. There are different ways the single cells and organ-
isms can defend against the development of tumour, for
example, DNA self-repair mechanisms, signals inducing
apoptosis in case of mechanical and biochemical instabil-
ities of a cell and a prompt immune response which is
capable of recognizing cancer cells. Mutations are accu-
mulated by cells during their life and passed as inher-
itance along different progenies. In absence of external
causes of mutations such as the exposition to radia-
tions or chemicals, errors in the DNA replication and
crossing over during the mitotic cycle are the major
sources of mutations. Nowak proposed a model of cancer
originating from propagation and accumulation of muta-
tions occurring since early age [1]. Nevertheless, cancer is
an ageing related disease as its development before the age
of 30 years is rare.

Mutations may generate disruptions of cell cycle pro-
liferation checkpoints, generate cytoskeleton instabilities
inducing cell death or metabolic pathway deregulations
increasing the cell proliferation, variation in the antigens
and receptors on the membrane which transduce exter-
nal signals (for example avoiding the immune response).
These mechanisms produce the spreading of the sub–
populations of cells (clones) with accumulated mutations.
The populations of cancer cells in the primary and sec-
ondary sites are characterized by a large number of
genes with altered gene expression due to mutations. The
tumour heterogeneity results in genotypic and phenotypic
(for example drug resistance) variance in the neoplas-
tic cell populations. The heterogeneity increases during
time as a consequence of new mutations acquired by
cells during subsequent proliferations. Comparing gene
expressions among cells in the primary site with those in
the metastatic sites, one can observe the heterogeneities
between different sites are not identical in variance, as well
as, in the type of mutations accumulated; furthermore,
looking at overlapping subsets of mutations between dif-
ferent tumour sites, it is possible to derive the time a
secondary site originated, and if it is due to an offspring
from the primary site or a nearby secondary metastasis.
If we consider cancer as an evolving disease in com-
petition for oxygen and energetic resources with other
healthy cells, mutational heterogeneity represents a strat-
egy initiated by an early small number of cancer stem
cells. Therefore, the increase of heterogeneity can be seen

as a diffusion process with a drift in the multidimen-
sional space of the cell state belonging to {0, 1}N where
N is the dimension of the space and represents the max-
imum number of genes affected by the disease during
all its evolution. We believe that in order to relate can-
cer evolution with patient’s survival we need to take into
account the characteristics of cancer stem cells, the classes
of mutations and for some classes, also the order of
mutations.

The work is structured in the following way. In the
next subsections, we discuss the role of cancer stem-
ness, and we define the type of mutations modelled and
their effects on cells. In the “Model limitations” section,
we introduce the concept of order of driver mutations,
and we present the corresponding mathematical formu-
lation. After which, we describe the set of rules driv-
ing the model dynamics from which we derive the
master equations in the physical time. We model the
effects of metabolic mutations on the cell cycle in terms
of waiting time distributions and compute the final
form of the master equation depending on the transi-
tion rates. The definition of the functional form of the
transition rates in terms of the cancer stemness fol-
lows. Further discussion on the order of mutations in
terms of ladder operators and the mathematical deriva-
tion of the effective driver mutations is addressed in
the last method subsection. In the “Results” section,
we present how simulations are carried out and the
analysis of data supporting both the metabolic and
driver mutations followed by the discussion and com-
parison of the three cases of interest numerically
simulated.

The role of Cancer Stemness
Stem cells are capable of both self-renewing and dif-
ferentiating [2]; this means they preserve themselves
during proliferation without undergoing extinction due
to differentiation, and they are a source for more com-
mitted cells [3]. The process of cell differentiation is
mainly caused by epigenetic changes, and it results in
the appearance of new cell phenotypes. These changes
in the cell state are induced by external signalling or by
internal variations of the cell dynamics like methylation
or segregation of factors during mitosis. Not all the
signals and changes involved in the differentiations are
persistent or permanent. The loss of the new acquired
phenotype is called de-differentiation. Nevertheless,
the restoration of the external niche preserving the
stemness or the circulation of factors inducing the cell
stem state might not suffice to re-establish the stem
condition in differentiated cells or in cells pro-
liferating in a stem-like favourable condition [4].
Therefore, differentiated cells tendentiously do not
de-differentiate.
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The renewal condition is met when a cell will always
undergo asymmetric division or undifferentiated sym-
metric proliferation. Stem cells are considered renewal
at the level of single cells, meaning after proliferating a
stem cell produces at least a daughter equal to itself. On
the other hand, the hypotheses advanced by Knoblich
and Morrison in [5, 6] imply that stem cells might sym-
metrically proliferate differentiated cells when the pool
of (neighbour) stem cells do not risk extinction or has
reached the maximum number the niche can sustain in
a stem state. This last statement makes the definition
of stem cell very close to the concept of population of
cells which is in a state of high fitness given that such
state is the one with more undifferentiated characteris-
tics when compared with its progenies. The stemness of
a cell is a behaviour which is not only present or absent,
but there are different degrees of stemness actuation.
A cell can lose its stemness when it cannot produce a
more differentiated progeny or it cannot indefinitely pro-
liferate; vice versa, a cell can increase its stemness by
de-differentiation.

In an elevated mutational rate condition, changes in
the DNA interfere or compete with the cell differentia-
tion process, and it may become the predominant source
of stemness variations [3]. Cancer stem cells are capable
of producing a heterogeneous population which presents
different phenotypes. The mutations will change the inter-
nal state of the cell affecting the transcription and trans-
lation processes. Cancer cells which will become more
unstable and less fit will disappear. Cancer cells with a high
fitness phenotype will survive if they proliferate asym-
metrically or they do not acquire too many degrading
mutations. Cancer stemness is the behaviour of cancer
cells to preserve their phenotype and generate a heteroge-
neous population, part of which can show more stem-like
behaviours [7].

Classes of mutations
Cancer mutations have been distinguished in drivers and
non–drivers (or passengers). The accumulation of evi-
dences of clonal heterogeneity and the observation of the
arise of drug resistance in clonal sub–populations, suggest
that mutations usually classified as non–drivers may have
an important role in the fitness of the cancer cell and in the
evolution and physiopathology of cancer. Similarly, muta-
tions that alter the metabolism may modify the fitness
of the cancer cell. The evolution of cancer clones in the
context of the driver and non–driver mutations has been
visualized as a braided river, with the capacity to diverge
and converge [8].

Recently 122 potential immune response drivers–
genetic regions in which mutations correlate with the
presence or absence of immune cells infiltrating the
tumours, have been reported. Current research into how

tumours hide focuses on the over-expression of so-called
checkpoint inhibitors in cancer cells [9, 10].

There are multiple levels of heterogeneity: inter-
patient, intra-patient and intra-tumour. Inter-patient
heterogeneity exists at the level where even within can-
cer of the same type, patients exhibit differences in terms
of both biology and prognosis. In breast cancer, based on
gene expression, patients can be classified into at least
four broad subtypes, namely basal (triple negative breast
cancer (TNBC)), HER2+, and luminal A and B subtypes.
Luminal A and B are estrogen positive cancers, with
luminal A having the best prognosis; HER2+ has overex-
pression of the HER2 growth-enhancing gene. These are
slow growing tumours that respond well to treatment. The
Basal or TNBC subtype is triple negative for estrogen,
progestin receptors and HER2. This is the most aggres-
sive subtype and is unresponsive to treatment. Extending
on this, intra-patient heterogeneity is defined by the dif-
ferences in the primary and the metastatic tumour sites;
these include morphological and genetic differences, and
differences in terms of tumour aggressiveness and pro-
liferation. Intratumour heterogeneity is then explained
by differences between regions within the same tumour
mass [11–17].

The probing of the mutational space represents an
advantage that cancer cell clonal populations have
adopted. Also, the temporal aspect of mutations is of great
importance in the evolution of the disease [18, 19].

In this work, we group the mutations in three main
categories: driver mutations, metabolic mutations and
non–driver mutations.

The driver mutations are mutations of specific genes
responsible for the deregulation of pathways involved in
the production of cytomembrane proteins which induce
new pro-oncogenic behaviours; they increase the capabil-
ity of cancer cells to self-renewal. Therefore, the driver
mutations increase the fitness of cancer cells in a tis-
sue and their capability of creating a progeny carrying
all the driver and non–driver mutations accumulated.
Hence, according to the definition in [20], driver muta-
tions increase the cancer cell stemness, even though it is
not possible to explicitly say a cell with a higher num-
ber of driver mutations corresponds to less uncommitted
cell phenotype as in the case of healthy stem cells. A rel-
evant aspect in the evolution of the disease is that the
most important driver mutationss are very few. Works
from A. Trumpp [21] show a number between 4 and 5
drivers mutations may be responsible for high correla-
tion with survival. Recent works have provided evidence,
at least in one cancer type, the order of the driver muta-
tions affects the cancer clone trajectories and the patient
survival [18, 19].

The role of non–driver mutations in cancer devel-
opment and evolution has been modelled in [22]. The
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authors consider two cases: 1) the neutral non–driver
mutations which do not affect the survival of cells and
2) the deleterious non–driver mutations as opposing to
the proliferative effects resulting from the pro-oncogenic
driver mutations, and consequently, causing a possible
melting down of the cancer cell sub–populations. The
non–driver mutations are those mutations which do not
promote the formation of cancer stem cells and do not
provide new oncogenic behaviours for the cells. Non–
driver mutations generally affect the genes which are not
related to the pathways promoting proliferation, migra-
tion, resistance to immune response and the formation
of colonies. Cancer cells acquiring non–driver mutations
become more unstable both in the cytoskeletric structure
and in their fitness.

The metabolic mutations include all the set of muta-
tions relative to the cell energetic needs and the con-
trols of cell proliferation [23]. We consider that cells
with accumulated metabolic mutations have an accel-
erated proliferation cycle because there is a sustained
availability of ATP, a reduced sensitivity to cell activ-
ity inhibiting signals, and many of the checking proce-
dures which are present during the various proliferation
phases are not activated. Consequently, a higher num-
ber of these mutations further speed up the cell pro-
liferation by reducing the time necessary to activate all
these processes and the costs in terms of resources and
energy.

Metabolic mutations differentiate from driver and non-
driver mutations in that they do not determine how often
the mitotic cycle of a cell is initiated or how frequent
an apoptotic signal is triggered in a population of cells,
but they affect how fast the clock of a cell runs. If each
cell acquires one mutation at a time, then cells with few
mutations are younger than cells with a large number of
mutations. Metabolic mutations increase the mixing of
groups of cells with different ages. In a heterogeneous
population of cancer cells, at any physical time, there are
cells that have different numbers of total mutations and
have completed their mitotic cycle a different number of
times based on their internal clock independently from
their fitness. A high number of metabolic mutations is
advantageous for those cells with a high fitness, but it
has a negative ageing effect on populations with negative
selective pressure.

Having considered the evolution of cancer cells in the
primary site into circulating tumour cells, we have con-
sidered driver mutations inducing apoptotic or prolif-
erative behaviours via transduction signalling. Instead,
mutations responsible for activating or deactivating cel-
lular processes prevalently involved with the internal
dynamics of the cells have been relegated to non–driver
and metabolic mutations. This choice takes into account
the known fact that mutations affecting the cellular

dynamics strongly related with the cytoplasm and nuclear
domains, especially at the initial stage of cancer develop-
ment, will dictate the fate of a cell and the occurrence
of consecutive mutations which are less directly linked
with extracellular domain interactions and the migratory
process.

Results
Modelling the order of driver mutations
Although the effects of mutations on cancer heterogene-
ity and phenotypic plasticity of cancer evolution has led
to interesting pure theoretical models (see for instance
[24]), and it has also been addressed by combining the-
oretical modelling, bioinformatics and experimental data
(see for instance [25–28] among others), there is a paucity
of models that take into account the effects of the order
of mutations. In [29], mutations are accumulated in a pre-
defined sequence, and all the cells, sooner or later, will
follow the same trajectory if they are not eliminated, or do
not die along the way. In other cases, the gene expression
of a sample of cancer cells are analysed at different times
[30, 31], or in various sites [32] in order to identify the
order in which the mutations occurred [33–35].

The fate of a cell is strongly related to the environ-
ment it is surrounded by. In our case, we consider that
the order of mutations is given only by the environ-
ment, and it is not related to the dynamic, or evolu-
tion of the cancer cells. Indeed, the mutation order does
not represent a tight preferential order of occurrence
of mutations. On the contrary, the mutation order does
not induce any constraint or bias on the occurrence of
mutations which is instead random. The driver mutations
affect the fitness of a tumoural mutated cell in a given
compartment.

Considering mutation processes for which the weight of
further mutations depends on their order of occurrence
would require following the complete mutation history
of a cell; therefore, in order to limit the set of values a
driver mutation can induce on the state and fitness of
a cell, we considered only phenotypical driver mutations
for which the selection pressure depends uniquely on the
environment.

In this work, the order among driver mutations is given
by the maximization of survival of cancer cells which
travel through a sequence of compartments from primary
tumour site to secondary cancer site. We define a path as
the sequence of tissues a hypothetical cancer cell will visit
during its migrations before forming a metastasis. Differ-
ent cancer cells can traverse different organs or tissues
defining different paths. All the paths begin at the primary
tumour site, and each of them ends in a site where cancer
cells can form a secondary colony. Nevertheless, due to
multiple metastasization sites, the final point of the paths
can differ. Generally, a path has a different probability of
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being traversed than others. This means that among the
total amount of cells forming the primary tumour only a
portion will travel through a specific path, and some of the
paths will be more common than others.

Let us define the set of m compartments C =
{c1, c2, . . . , cm} where, for convenience, c1 represents the
primary site and the last s compartments {cm−s+1, . . . , cm}
are the secondary sites. Let us also introduce the transition
probability Tij from the compartment ci to another com-
partment cj for those cells which already have all possible
useful mutations to pass through all the compartments.
The transition matrix T is such that

∑
j Tij = 1, and all the

elements on the diagonal are one for all the secondary sites
and zero otherwise. For each compartment cj, we define
the cell density ρj(n) after n transitions. If σ(i) is a permu-
tation of the m compartments C visited by the cells, then
we say a path of length l is given by

PC(σ ) = {σ(1), σ(2), . . . , σ(l)}
and, after n ≤ l transitions, the population which has
followed the PC(σ ) path is:

ρσ(n) =
n−1∏

i=1
Tσ(i),σ(i+1)ρσ(1).

If at the beginning all the cells are in c1 so that ρj(n =
0) = δj,1, then we must impose that a path’ s initial
point is σ(1) = 1. Furthermore, a path ends when it
reaches for the first time one of the absorption points
meaning that, after l steps, cσ(l) corresponds to one of
the secondary sites (σ(l) > m − s). Many paths will have
a final population density ρ(l) = 0 because the tran-
sition Tij = 0 before reaching the end of the path. If
PC is the set of paths obtained by all possible permu-
tations of the compartments, then PC = maxρ(l)(PC)

are the most probable paths. For the sake of simplicity,
from here on, we restrict ourselves to the case PC con-
tains only one element representing the path with higher
probability of being traversed. Nevertheless, there are no
extra difficulties in considering multiple paths one at a
time, and then studying the jointly resultant dynamics.
Hence, the order we consider is given by the order of
the tissues (compartments) the cancer cell will visit dur-
ing its migration from the primary tumour site towards
the secondary metastatic sites. The reason for introduc-
ing this type of order is related to the fact that a cancer
cell migrating into a different compartment is a rare event
which is almost impossible if the cell does not develop
the right behaviours due to the occurrence of proper
mutations.

A similar explanation is valid in the case of the survival
(fitness landscape) of a cell while it remains for a period of
time in a compartment. In different tissues, the cells need
different membrane proteins to separate from the other

surrounding cells, to migrate, to access or exit a specific
compartment and to be recognized by the immune sys-
tem as self. All these behaviours are not necessary at the
same time, and in all the compartments, but only a few
of them at a time are required during the travel through
a compartment or in the transitions between compart-
ments. As a consequence of the concomitant facts that
a tumour cell needs specific driver mutations and that
mutations can not be counterbalanced, the originating
site and preferential way for a cell to reach the secondary
sites determine the right order of accumulation of driver
mutations. Therefore, if we order the compartments in
the sequential order the cancer cells will traverse them,
then we can establish the proper order of driver muta-
tions for a high fitness and a short permanence during the
development of metastases.

After we have specified the path P , let us introduce the
index k ∈ N identifying the compartments in the order
given by the path. In the case the cells need only one driver
mutation during each migratory transition between two
compartments the index k can also be associated to the
required driver mutations necessary to continue the travel
along the path. If dk is the driver mutation needed to go
from compartment k to compartment k + 1, then the cell
which follows the specific path defined as an increasing
value of k at each migratory transition till compartment
k = l, will also generate the sequence D = {d1, d2, . . . , dl}
which defines the right mutation order.

We can extend the previous case to situations where
the number of driver mutations for each compartment is
more than one. Hence, if C = {c1, . . . , cl} is the sequence
of compartment in the order visited by the cancer cells,
and, for any k, Sk is the set of driver mutations necessary
in the compartment ck to improve the fitness landscape
or to increase the probability of migrating in a different
compartment, then we can define two sequences of sets as
follow:

S′
k =

k⋃

j=1
Sj, 1 ≤ k ≤ l (1)

S′′
k = S′

k \ Sk−1, 1 ≤ k ≤ l (2)
S′′

0 = ∅. (3)

The k-th element in the sequence S ′ = {S′
1, . . . , S′

l} in
Eq. 1 is the cumulated mutations of cells following the
right order of mutations which have just entered in the
ck+1 compartment, while the k-th element in the sequence
S ′′ = {S′′

1 , . . . , S′′
l } in Eq. 2 describes all the mutations

for a cell following the right order of mutations that has
just entered in the ck compartment necessary in order to
pass in the k + 1-th compartment. If Si ∩ Sj = ∅ for any
1 ≤ i, j ≤ l, then S′′

k = Sk , but in general mutations in a set
S = {S1, . . . , Sl} can be necessary in other compartments.
The right order of mutations, hence, also represents the
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most fit and the fastest path in the mutation space. Any
deviation from the right order of mutations reduces to an
increased cancer cells apoptosis rate and a longer period
of time for cells in a given compartment.

The order of mutations determines many aspects of the
life of a cancer stem cell. In general, it is safe to say that the
mutational selection is a filter dynamically influenced by
the order of appearance of driver mutations. During the
loss of stemness and acquisition of different phenotypes,
a cancer cell experiences different environments, and in
each of them, it has a different value of fitness depend-
ing on the presence of specific mutations. These particular
mutations may have already occurred in the history of the
cancer clone so to assure the survival. We believe that
the fitness of a cancer cell is a complex function that is
modified by environmental factors such as immune sys-
tem, drugs and therapies. The introduction of the order of
driver mutations does not completely constraint the evo-
lution of the system; indeed, in terms of single cells, the
presence of this order does not at all affect the appear-
ance of a mutation and is absolutely not perceived by the
cells meaning that cells cannot use the right order of muta-
tions to make any present choice or forecast any future
state of the system. Therefore, single cells will continue to
acquire mutations randomly. The cells and their progenies
will explore the mutation space following different trajec-
tories not limited by a unique mutation order. Eventually,
the trajectory will feel the effects of the mutation order in
terms of dynamics.

The interactions between a cell and the surrounding
environment is what determines the dynamics of the cell
itself [2]. As approximation, in average, a compartment
is uniform and ready to interact with those cells which
present the right membrane proteins. On the other hand,
the cells, most of the time, are neutral to the environment
interactions similar to a neutral molecule in an electric
field.

We consider that driver mutations become effective
only if they are preceded by other specific driver muta-
tions. In other words, we introduce a unique sequen-
tial order of the driver mutations. If a driver mutation
is acquired in a different order from the one prede-
fined, it remains ineffective until all the driver mutations,
which should have been occurred before according to the
sequential order, are activated.

Data analysis supporting metabolism-related mutations
The Cosmic (http://cancer.sanger.ac.uk/) is the world’s
largest and most comprehensive database resource for
exploring the impact of somatic mutations. Other valuable
databases include The Gene Expression Omnibus (GEO,
www.ncpi.nlm.nih.gov/gds) among others. We have devel-
oped a R program that performs statistical analysis on the
Cosmic database, identifies and evaluates the functional

impact of each mutation by using a combination of path-
ways and gene ontology approaches. The functional anno-
tation and enrichment analysis allows to classify large
lists of genes into metabolism related groups. We have
then extracted useful statistical estimators that allows to
quantify the role of the metabolism-related mutations
in the context of driver and non–driver mutations and
the heterogeneity of proliferation rates among the cells.
We have analysed the mutations with different threshold
of FATHMM-MKL value which measures the impact
of a mutation . The FATHMM-MKL algorithm predicts
the functional, molecular and phenotypic consequences
of protein missense variants using hidden Markov
models [36].

This analysis shows the importance of the metabolic
mutations in the context of the mutation impact calcu-
lated with the FATHMM score (Table 1).

Numerical results: cases study
To highlight the role of effective driver mutations and
the role of the order in which the driver mutations
occur, we look at the differences with the unordered
driver mutations dynamics in which cancer cells evolve
and migrate to different tissue depending only on the
number of driver mutations md and not on the speci-
ficity of the corresponding genes. We simulate the two
distinct cases and compare the recovering capabilities
of cancer cell populations after a drug targeting sub–
populations of cells within a specific range of the state
σ = {d, mn, mm, k} has been administered in one com-
partment. The effect of the drug is simulated by killing
all the cells which match a given signature at the time of
administration tdrug. Therefore, let us define a drug tar-
get signature σdrug = {ddrug, mn drug, mm drug, kdrug}, the
amount of driver mutations md drug and the vector of
driver mutations ddrug belonging to the same space of the
cell driver mutations {0, 1}md , so that all the cells immedi-
ately sent to apoptosis are those for which hold true both
the relations:

σdrug ◦ σ = σdrug ◦ σdrug, (4a)
md drug||d||1 = md drug

2 (4b)

where ◦ is the Hadamard product and || · ||1 is the
taxi cab norm of a vector. Then, we observe the recov-
ery of the populations after the perturbation induced
by the drug affecting the target cells is applied at the
same time in the ordered and unordered simulations. In
the simulations, we have considered the biological sig-
nificant case of breast cancer cells metastasising in the
bone. The process encompasses three different tissues.
The mammary ducts are the primary site where cells
develop malignant mutations and become tumourigenic.

http://cancer.sanger.ac.uk/
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Table 1 Go Ontologies ( from the top biological processes, molecular functions, cellular components ) of the mutations with the
highest FATHMM score > 0.9; the last section shows the relative enrichment of the mutations with the highest FATHMM with respect
to a background of low FATHMM score below 0.7

GO term Description P-value FDR q-value Enrichment (N,B, n, b)

process

GO:0090662 ATP hydrolysis coupled transmembrane
transport

7.30E-68 1.07E-63 14.24 (16103,65,1079,62)

GO:0099131 ATP hydrolysis coupled ion transmembrane
transport

5.08E-62 3.72E-58 14.18 (16103,60,1079,57)

GO:0044710 single-organism metabolic process 1.84E-56 8.97E-53 2.66 (16103,3086,507,258)

GO:0099132 ATP hydrolysis coupled cation transmem-
brane transport

5.61E-53 2.06E-49 14.61 (16103,48,1079,47)

GO:0044281 small molecule metabolic process 2.11E-47 6.20E-44 3.36 (16103,1526,549,175)

GO:0019752 carboxylic acid metabolic process 2.44E-42 5.95E-39 4.62 (16103,750,530,114)

GO:0006631 fatty acid metabolic process 3.57E-41 7.47E-38 15.96 (16103,262,181,47)

GO:0006637 acyl-CoA metabolic process 7.30E-40 1.34E-36 34.72 (16103,82,181,32)

GO:0035383 thioester metabolic process 7.30E-40 1.19E-36 34.72 (16103,82,181,32)

GO:0043436 oxoacid metabolic process 8.82E-39 1.29E-35 4.16 (16103,855,530,117)

GO:0006082 organic acid metabolic process 1.20E-38 1.59E-35 4.11 (16103,872,530,118)

GO:0032787 monocarboxylic acid metabolic process 2.28E-38 2.79E-35 5.85 (16103,437,529,84)

GO:0044255 cellular lipid metabolic process 7.30E-37 8.23E-34 4.11 (16103,873,507,113)

molecular

GO:0043492 ATPase activity, coupled to movement of
substances

1.30E-114 5.69E-111 14.04 (16121,111,1086,105)

GO:0016820 hydrolase activity, acting on acid anhydrides,
catalyzing transmembrane movement of
substances

6.49E-102 1.42E-98 14.18 (16121,98,1079,93)

GO:0042626 ATPase activity, coupled to transmembrane
movement of substances

1.51E-99 2.20E-96 14.16 (16121,96,1079,91)

GO:0015399 primary active transmembrane transporter
activity

3.07E-97 3.37E-94 13.87 (16121,98,1079,91)

component

GO:0044444 cytoplasmic part 1.16E-32 2.06E-29 1.33 (16121,7980,1311,866)

GO:0005581 collagen trimer 1.69E-26 1.50E-23 3.90 (16121,84,3100,63)

GO:0016469 proton-transporting two-sector ATPase
complex

5.20E-22 3.09E-19 13.20 (16121,25,1075,22)

GO:0005891 voltage-gated calcium channel complex 4.81E-20 2.14E-17 6.14 (16121,37,2201,31)

GO:0034704 calcium channel complex 3.39E-18 1.21E-15 4.93 (16121,54,2241,37)

GO:0005759 mitochondrial matrix 6.33E-18 1.88E-15 5.21 (16121,303,470,46)

GO:0098533 ATPase dependent transmembrane trans-
port complex

1.57E-17 4.00E-15 13.82 (16121,19,1044,17)

GO:1904949 ATPase complex 1.04E-16 2.31E-14 13.13 (16121,20,1044,17)

GO:0043190 ATP-binding cassette (ABC) transporter com-
plex

1.09E-16 2.15E-14 240.61 (16121,7,67,7)

drivers vs
non–drivers

GO:0044238 primary metabolic process 2.63E-12 5.94E-09 1.03 (10465,5247,9049,4658)

GO:0044237 cellular metabolic process 2.85E-12 5.53E-09 1.03 (10465,5305,9049,4708)

GO:0071704 organic substance metabolic process 4.81E-12 8.16E-09 1.03 (10465,5488,9049,4865)
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The second tissue is the circulatory system. Cancer cells
which undergo epithelial to mesenchymal transition will
initiate to migrate and, chemoattracted to regions with
higher concentration of oxygen and nutrients, eventually
they will intravasate through the proximal blood vessels.
There, the cancer cells, also named Circulating Tumour
Cells (CTC), will travel in the circulatory system. The
CTCs which are recognized as self by the immune sys-
tem will survive longer in the circulatory system, but only
the cells capable of extravasating while reach the sec-
ondary sites. The third tissue is the bone. Breast cancer
cells’ preferred metastasisation sites are regions enriched
in TGF–β , and bone tissue has one of the highest concen-
tration of TGF–β . Bone tissue represents the statistically
preferred secondary site for breast cancer cells. Nonethe-
less, not all cancer cells reaching the secondary site will
be enough tumourigenic to generate metastases, but only
those which undergo mesenchymal to epithelial transi-
tion show sufficient cancer stem-like behaviours with the
potentiality to form a secondary colony. Cell survival and
capability of migrating is due to specific membrane pro-
teins involved in breast cancer metastasising in the bone.
A small subset of four genes corresponding to membrane
proteins which positively correlate with the evolution of
the disease and the survival of the patients has been exper-
imentally found in [29] and are EPCAM, CD47, CD44
and MET. Mutations of these genes correspond to driver
mutations. The EPCAM is related to the cells’ connec-
tivity of the mammary duct lumen and plays a role in
the epithelial to mesenchymal transition [37]. The CD47
is responsible for the production of membrane proteins
increasing the survival of cancer cells by helping them
to evade macrophage phagocytosis. CD44 variant iso-
forms are highly expressed in carcinomas of epithelial
origin and relate to tumour progression and metastatic
potential of some cancers. The protein CD44 bound with
hyaluronic acid and sugar rich coating molecules is found
on the surface of endothelial cells and tumour cells. Dif-
ferent amounts of CD44 changes the arrangement of
the coating sugars causing the exposition of the embed-
ded adhesion mediated selectin and integrins favouring
cell extravasation [38]. The MET gene regulates mes-
enchymal to epithelial transition, and its overexpression
positively correlates with metastasis formation. The four
driver mutations present a sequential order given by
their respective functionality in the three tissues, hence
the order of the genes and their respective mutations
is {EPCAM, CD47, CD44, MET}. Using the definition in
Eq. 2, we derive Table 2 which puts in relation each com-
partment with a subset of mutations necessary to reach or
seed in the next compartment, hence, defining the right
order of driver mutations. In the circulatory system, CTCs
need two driver mutations to survive and reach the bone
tissue. The order of mutations between CD47 and CD44

Table 2 Ordered subsets of driver mutations

S′′
1 S′′

2 S′′
3

breast circulatory sys. bone

EPCAM CD47, CD44 MET

0-1 1-3 3-4

Rows from top to bottom, respectively, are: subset names, compartments, driver
mutations, and the ranges of effective driver mutations

is not important and both are considered effective drivers.
The last row of Table 2 shows the minimum and maxi-
mum number of effective driver mutations a cell can have
in each compartment.

We have simulated three distinct cases of drug targets.
The first two cases are less realistic, but are proposed to
show the effect of drugs acting on unordered driver muta-
tion systems, hence targeting cells with non specificity of
the mutated gene. While, the last case is a realistic exam-
ple of a drug affecting cells in a specific compartment
with specific driver mutations. The drug target signature
for the cases studied are:

All the components of the drug signature equal to zero
are disregarded. Consequently, cells can have any value
corresponding to each of the null components and still be
a drug target.

In case 1 of Table 3, all the circulating tumour cells
which have acquired a single driver mutation are killed
by the drug at time tdrug as shown in Fig. 1. On the
one hand, this means in the simulations with no ordered
driver mutations, the cells targeted in the circulatory sys-
tem could have acquired any of the four driver mutations
listed in Table 2. Considering that when the order of muta-
tions does not affect the dynamics, the cells which have
one of any of the driver mutations can already intravasate,
and, by entering in the circulatory system, they allow the
restoration of the number of CTCs with one driver consti-
tuting a reservoir for cells which later acquire a second and
a third driver mutation by asymmetrical division. Further-
more, the drug does not target sub–populations of cells
having two or more driver mutations. Indeed, the dynam-
ics of the sub–populations of cells having more than one

Table 3 Numerical values for different types of treatments

case 1:one driver case 2:two drivers case 3:specific drivers

ddrug {0, 0, 0, 0} {0, 0, 0, 0} {0, 1, 0, 0}
mn drug 0 0 0

mm drug 0 0 0

kdrug 2 2 2

md drug 1 2 0

All the parameters are factors which do not effect the system when they are equal
to zero
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Fig. 1 Plot of the number of cell populations in function of the time. The 3 tissues are shown in the columns ordered from left to right following the
cell traversing. All the combinations of ordered (w/ order) and unordered (w/o order) mutation dynamics together with drug (w/ drug) and without
drug (w/o drug) administration are considered and shown in rows. Each curve represents the sub–population of cells with a specific number of
driver mutations: md = 0 is red, md = 1 is green, md = 2 is pink, md = 3 is blue, and md = 4 is yellow. The event of the drug administration is at
time tdrug which is marked with a vertical line for easier comparison. The target of the drug, Eqs. 4a and 4b, and the compartment affected is shown
at the bottom

driver when the drug is administered are close to the
simulations with no drugs meaning they are mainly reser-
voirs of their own sub–populations due to symmetrical
proliferation.

On the other hand, in simulations with ordered driver
mutations, a drug targeting any cell with one driver (case
1) is more effective when compared with the simulations
with no order of driver mutations only in terms of total

number of CTCs. The reason for less CTCs is that the
minimum requirement to intravasate is having the muta-
tion of the EPCAM gene which is more restrictive when
compared to the unordered driver dynamics. Indeed, the
sub–population of cancer cells with two driver muta-
tions is close to the corresponding sub–population in the
simulations with no order. The sub–population of cells
exiting the mummary duct and entering the circulatory
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system is represented in both ordered and unordered
driver simulations by the sub–population with one driver
mutation referring to the EPCAM gene in the former and
to a generic driver in the latter. Case 1 highlights a set of
situations where perturbing sub–populations of cells in a
compartment with few driver mutations compared to the
total number of mutations necessary to change compart-
ment, hence which are upstream in respect to the local
progenies, does not affect sub–populations with more
driver mutations, and therefore, the role of asymmetric
proliferation is less relevant due to the loss of cancer
stemness.

In case 2 of Table 3, the drug targets cancer cells
in the second compartment with two driver mutations.
Cell sub–populations are plotted in Fig. 2. As in the
previous case, the results present different dynamics
and drug conditions in all three compartments. The
effect of the treatment is equal in both simulations with
order and without order of driver mutation respectively.
Indeed, the sub–population of circulating tumour cells
with two driver mutations are going to zero at time
tdrug. The differences between the two simulations is
given by the dynamics of recovering of the targeted
sub–populations and by the competition with the non
targeted ones.

Similarly to case 1, when no treatment is adminis-
tered, the number of CTCs with one driver mutation
is larger in the simulations with unordered dynamics
due to a less restrictive filter on the transition rates of
cancer cells to pass from the mammary duct into the
circulatory system than in the simulations with ordered
dynamics. On the contrary, sub–populations with two
driver mutations is larger in the ordered dynamics than
in the unordered one because there are larger reservoirs
of cancer cells in the mammary duct which have a null
transition rate as a consequence of the wrong order of
driver mutations. These reservoirs are composed of het-
erogeneous populations of cancer cells which go from
committed phenotypes to more stem-like phenotypes.
When the necessary mutations are acquired (in this spe-
cific case the required mutation is on the EPCAM gene)
by any of the cells in the reservoirs, their transition rate
becomes different from zero, and they contribute to the
sub–populations with higher numbers of driver muta-
tions shown in the last row of Table 2. Cells with more
stemness will have more chances to survive and divide
asymmetrically, while committed cells will have less pos-
sibility to contribute to the evolution of the disease.
Similarly, many CTCs are obliged to remain in circula-
tory system until they have all the required mutations
necessary for the extravasation. Hence, in the simula-
tions with order of driver mutations, there are CTCs with
more than two driver mutations, while in the simula-
tions without order, there is only a sub–population of

cells with two driver mutations which are already ready to
extravasate.

The evolution of sub–populations of cancer cells reach-
ing the bone compartment are similar in both ordered
and unordered types of simulations when the sys-
tem is not perturbed at all. Instead, when a pertur-
bation is applied at time tdrug, the simulations with
unordered dynamics show no sub–population of cells
capable of seeding and metastasise in the bone, while,
in the simulations with order of driver mutation dynam-
ics, the number of aggressive cancer cells capable of
reaching the bone tissue is even larger than in the
absence of perturbation. This major difference between
the two dynamics stems from the fact that in simu-
lations with ordered driver mutations there are CTCs
having high value of cancer-stemness which are missing
only few (in this case just the CD47 and CD44 genes)
driver mutations, but are constrained to remain in the
circulatory system. The lack of extravasating capabilities
make these sub–populations of cancer cells apparently
less aggressive, when instead they are a few mutational
steps away from the aggressive phenotype. Furthermore,
part of these cells acquired a large number of metabolic
mutations which contribute to the speed of the cell
cycle and their effective capability of forming secondary
colonies.

Case 3 of Table 3 differentiates from the former cases
for the specificity of the drug that targets only circu-
lating tumour cells with the CD47 gene mutated, see
Fig. 3. In the dynamics with ordered driver mutations, the
sub–populations affected are those with two and three
driver mutations, but the treatment leaves untouched
cells with only one driver mutation referring to the
EPCAM gene. In this case, we can see the corresponding
curves do not go to zero as in the former cases because
the respective sub–populations contain cells without the
CD47 mutation. In the unordered dynamics, the drug
also hit the sub–population of cells with one driver
mutation, and it is more effective compared with the
ordered dynamics. Precisely in terms of combinatorics,
the drug in the unordered dynamics targets 1/4 of all
the combinations of cells with one driver mutations, 1/2
of the combinations of cells with two driver mutations
and 3/4 of the combinations of cells with three driver
mutations. In the dynamics with ordered driver muta-
tions, the drug targets none of the cells with one driver
mutation, 1/3 of the combinations of cells with two drivers
and 2/3 of the combinations of cells with three driver
mutations.

Discussions
The order of driver mutations introduces a strong con-
straint in the migration of cancer cells from one compart-
ment to another compared to a cancer evolution driven
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Fig. 2 Plot of the number of cell populations in function of the time. The 3 tissues are shown in the columns ordered from left to right following the
cell traversing. All the combinations of ordered (w/ order) and unordered (w/o order) mutation dynamics together with drug (w/ drug) and without
drug (w/o drug) administration are considered and shown in rows. Each curve represents the sub–population of cells with a specific number of
driver mutations: md = 0 is red, md = 1 is green, md = 2 is pink, md = 3 is blue, and md = 4 is yellow. The event of the drug administration is at
time tdrug which is marked with a vertical line for easier comparison. The target of the drug, Eqs.4a and 4b, and the compartment affected is shown
at the bottom

by unordered dynamics, and the former limits the cell
heterogeneity much more than the latter. Even though
the ordered dynamics is slower as consequence of the
limits imposed on the transition rates by driver muta-
tions waiting to become effective driver mutations, the
ordered and unordered dynamics are comparable up to
opportune rescaling of parameters. Nevertheless, the two
dynamics are characterized by completely different types

of evolution of the disease after the same kind of drug
treatment. Simulations based on the unordered driver
mutations show a slower recovery of the cancer popula-
tions and a retardation in the appearance of highly tumori-
genic sub–populations, while simulations with ordered
driver mutations show a faster restoration of the targeted
cells and the anticipation of the appearance of aggressive
sub–populations.
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Fig. 3 Plot of the number of cell populations in function of the time. The 3 tissues are shown in the columns ordered from left to right following the
cell traversing. All the combinations of ordered (w/ order) and unordered (w/o order) mutation dynamics together with drug (w/ drug) and without
drug (w/o drug) administration are considered and shown in rows. Each curve represents the sub–population of cells with a specific number of
driver mutations: md = 0 is red, md = 1 is green, md = 2 is pink, md = 3 is blue, and md = 4 is yellow. The event of the drug administration is at
time tdrug which is marked with a vertical line for easier comparison. The target of the drug, Eqs. 4a and 4b, and the compartment affected is shown
at the bottom

The perturbation induced by the drug produces dif-
ferent results on the two dynamics by breaking the
symmetries between the heterogeneous cancer cell sub–
populations. In the examples shown on breast cancer
metastasizing in the bone, the restoration induced by
the ordered dynamics strongly affects the extravasating
cancer cells because, although the cells with mutation
in the CD47 gene are sent to apoptosis by the drug,

many other cells which present much less effective driver
mutations (in this specific case only one effective driver
mutation) survive, and some of these surviving cells are
mutationally a few steps away from becoming highly
tumorigenic.

Hence, drugs targeting the larger sub–populations
of cells just entering the compartment or the sub–
populations surviving longer when not treated are less
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effective in the long time regime because they elimi-
nate the cells with a high number of effective driver
mutations. However, they leave cells with an even higher
number of driver mutations with a non aggressive phe-
notype, but which are missing a few mutations to unlock
the complete sequence of the right order of muta-
tions and switch to an aggressive tumorigenic phenotype.
Furthermore, cells with few effective driver mutations
can posses high stem-like potentiality due to acquired
driver mutations which are not effective. These cells,
in the long time regime, represent a source for many
other cancer cells speeding up the restoration of cancer
sub–populations.

Conclusions
We investigated the role of heterogeneity in cancer cells
by embedding a new internal structure driving the devel-
opment of the disease in the dynamics of the mutation
process. Such internal structure is given by the order
of occurrence of mutations and the metabolic cell cycle
acceleration. The structure introduced in the dynamics
stems from a phenomenological derivation of the effects
of mutations which results in an increase/decrease of
the capability of cancer cells to survive, differentiate,
proliferate and metastasise. On one side, we have con-
sidered driver mutations responsible for the increase of
cancer cell stemness and their order relevant for the
development of oncogenic phenotypes involved in the
process of metastasization in a secondary site of the
cell and its progenies. On the other side, metabolic
mutations are related to the production and consump-
tion of ATP and are involved in the acceleration of the
mitotic rate.

The order of mutations and acceleration of the dynam-
ics have been considered relevant in some specific types
of cancers like melanomas, but their importance and
effects have been experimentally difficult to measure. To
understand their effects on cancer evolution, we intro-
duced an analytical description of the order of driver
mutations and the effects of metabolic mutations in
terms of operators, and we have included them in the
derivation of the master equations for the cancer cell
populations.

This model has been applied to the case of breast cancer
metastasising in the bone tissue for which we simulated
the evolution of cancer in presence and absence of the
order of driver mutations. To highlight the differences
between the two types of dynamics, we have compared
them before and after they are affected by an external
perturbation represented by the action of an anti-tumoral
drug. The numerical results show the order of muta-
tions introduce a slower dynamics of cancer cells reaching
the bone than in simulations with no order of driver
mutations . Nevertheless, for realistic drug perturbations

of the two dynamics, the recovery of aggressive cancer
sub-populations is faster in presence of order of driver
mutations than in the case of cancer cells non sensitive to
the mutation order.

This model pinpoints how the order of mutations and
metabolic mutations in cancer may be responsible for
the short time of relapse after drug treatments. Further-
more, this work helps us to understand the difficulties in
experimentally detecting the order of mutation in cancer,
their role in the dynamics and their response due to the
interactions of the system with drugs.

There is a growing number of algorithms and tools
to detect driver mutations, see for instance [39]. The
model proposed in this work is based on a large num-
ber of evidences on clonal evolutionary cancer trajectories
depending on mutation order. We cite here for instance
[40–43] among others. Note that in [42], the effect of
drugs (chemotherapy) is found important for the selection
on the order.

The details of our theoretical model have been
implemented in a software developed in Mathemat-
ica based on an Cellular Automata framework which
is highly adaptable and allows us to simulate differ-
ent hypothesis and evolution models under different
numerical parameters some of which as been shown in
this work.

Model limitations
In our model, metabolic mutations and driver muta-
tions are two disjoint sets of mutations. This decision
simplifies the derivation of the master equation driv-
ing the dynamics of cell populations. In some specific
cases, separate classes of mutations may represent an
unrealistic constraint for the underlying biological pro-
cess; nonetheless, such limitations can be easily solved
by adding specific transition and branching terms for the
occurrence of each mutation which at the same time,
is metabolic and driver. We proposed a model which
is Markovian even though it includes the order of driver
mutations. Markovianity is maintained by considering
the driver mutations effective or non effective due to
their order. In cases where the effect of each driver
mutation on the fitness of the cell is more complex
than just a stepwise binary state driven by the order,
the Markovian behaviour is lost, and the model com-
plexity increases with the number of mutations requir-
ing suitable numerical oriented approaches. The num-
ber of distinct cell populations is described by the cell
state, and in our final analyses, we grouped them by
the number of effective driver mutations to derive our
results. The type and dimensionality of the mutational
space represent a constraint on the variability of the
cell state and the processes which could be described.
A mutational space which discriminates only if specific
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mutations occurred is a simplification to the detriment of
heterogeneity.

Methods
Cancer dynamics and evolution
In order to mimic the tumour evolution, each cancer
cell will evolve following four types of actions depend-
ing on the internal state of the cell and the environment
constraints. The actions are asymmetric proliferation,
symmetric proliferation, apoptosis and migration. These
actions can be expressed in reaction form as follow:

C{d,mm,mn,k} → C{d+ui,mm+1,mn,k} + C{d,mm+1,mn,k}, (5a)

C{d,mm,mn,k} → C{d,mm+1,mn+1,k} + C{d,mm+1,mn,k}, (5b)

C{d,mm,mn,k} → C{d+ui,mm+1,mn,k}+C{d+ui,mm+1,mn,k}, (6a)

C{d,mm,mn,k} → C{d,mm+1,mn+1,k} + C{d,mm+1,mn+1,k}, (6b)

C{d,mm,mn,k} → 0, (7)

C{d,mm,mn,k} → C{d,mm,mn,k+1}, (8)

where C{d,mm,mn,k} is the cell having d specific driver
mutations, an amount of mm metabolic mutations, mn
non–driver mutations and being located inside the com-
partment k. The reactions Eqs. 5a, 5b, 6a, 6b, 7 and 8
indicate that the cells C on the left side of → undergo a
process which will end with their annihilation and the cre-
ation of new cells specified by the right side of →. The
states of the cells are expressed between the brackets {. . .}.

The vector d has a dimension md and belongs to the
space {0, 1}md . Each component dj of the vector d takes
into account the state of the single driver mutation j ∈
[ 1, md], and dj = 1 if the mutation is present or dj =
0 otherwise. The set of vectors ui have all the compo-
nents equal to zero except the i-th component which is
equal to one. The number of the acquired and unordered
metabolic and non–driver mutations are represented by
the integer numbers mm and mn, respectively. In the
model proposed, we impose that each mutation can occur
at most one time independently on the type and sever-
ity of the mutation. This persistent accumulation effect on
the mutation space is more explicit for the driver muta-
tions. In fact, the initial state of the driver mutations for
any cells is given by the vector d = 0 having all the compo-
nents equal to zero, and after a driver mutation occurs, the
corresponding component become equal to one. In the
same way, a further mutation relative to the same gene is
excluded, meaning the component will never switch back
to zero, and that gene will never be chosen again among
the possible mutating genes, hence reducing the mutation
space. It is worth to remark the state of the system changes

only when there is a mutation corresponding to a single
gene, and its dynamic is sensible only to such mutations.
Despite the previous statements, the model can be easily
extended to include a set of genes for each driver muta-
tion. These sets do not need to be disjoint, but they can
share some common genes, and when a mutation for a
specific gene occurs, its state (or counting) is changed in
each set where the gene is included, see Additional file 1.
Adding the above model extension will allow us to trace
more precisely the diffusion in the metabolic mutation
space caused by each driver mutation and their temporal
order.

The reactions Eqs. 5a and 5b describe the proliferation
of cells principally characterized by stem-like behaviours,
hence following an asymmetric mytotic cycle. The two
reactions represent the cases when a driver and a non–
driver mutation occurs, respectively. The reactions Eqs. 6a
and 6b show the symmetric proliferation when a driver
and a non–driver mutation occurs, respectively. The reac-
tions Eqs. 6a and 6b are related to more differentiated cells
which show progenitor-like characteristics. The reaction
Eq. 7 represents cells undergoing apoptosis. Generally this
is the fate followed by cells with high instabilities or com-
mitted cells with low stem-like characteristics, which have
a reduced proliferation activities even when stimulated.
The last reaction, Eq. 8, takes into account the migra-
tion of cells which have developed mutations allowing
them to move and pass from an environment to another.
The migration process depends on the occurrence of
proper driver mutations which need to be developed in
the proper order given by the order of the environments,
k → k + 1.

We have assumed driver and non–driver mutations are
two disjoint classes of mutations, but both can be included
in the wider class of the metabolic mutations. Hence, in
Eqs. 5a, 5b, 6a and 6b at each occurrence of a driver
or non–driver mutation, there is an increase of one of
the number of metabolic mutations. The reasons for this
choice are that, on one side, the metabolic mutations mark
the advancing age of the cell in terms of how many muta-
tions steps it has acquired (see below for connections with
stemness and commitment), and on the other side, the
advantages and disadvantages produced by the mutations
can be considered independent from the speed of the cell
metabolic activity. In order to simplify the complex rep-
resentation of the underlying biological system, we do not
consider reactions which result in the increasing of only
metabolic mutations.

We have six reactions when indeed there are only four
distinct actions occurring in the system. The cause for
these over number of reactions is related to the choice
of representing the system as if there where multiple
classes of mutations, and each mutation can be definitely
tagged as belonging to one and only one of these classes.
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However, from a biological and experimental point of
view, probably, not all the mutations involved can be
marked with a distinct colour, but more like if they were a
mix of shades. Indeed, a gene (and the molecules derived
from its transcription and translation) can have a func-
tion in a compartment or at a given state and play another
role somewhere else. For the sake of simplicity, we have
grouped all the non–driver mutations in an integer vari-
able with the purpose of counting them and neglecting
the order of their occurrence. First, as we said above,
non–driver mutations are not strictly necessary for the
worsening and the progress of the disease, but are muta-
tions bringing small disadvantages to the cells when com-
pared with the large advantages of the driver mutations.
Second, the order of occurrence of the non-driver muta-
tions in respect to all the mutations is less important than
for the driver mutations, because they are weakly linked
to the driver mutations and to the environment fitness
constraints as well as compartment transition rates.

The rates of the reactions Eqs. 5a, 5b, 6a, 6b, 7 and
8 are not constant, but depend on the cancer stemness.
Therefore, each cell has specific probabilities of prolifer-
ating or undergoing apoptosis. If r ∈[ 1, 4] ⊂ N is the
index addressing one of the four reactions defined above,
then we can define the probability function Pr(s) that the
reaction r occurs as follow:

Pr : s ∈ S →[ 0, 1] , (9)
∑

r Pr(s) = 1∀s, (10)

where s is a real positive value in [ 0, 1] and it repre-
sents the cancer stemness of the cell. The stemness can be
generated by a random process.

The cancer stemness does not depend explicitly on the
gene expression, but only on the mutation state. There-
fore, on the complete mutational space, the cells proceed
along trajectories of cancer stemness which increases
or decreases due to acquisition of new driver and new
non–driver mutations, while the stemmness does not
depend directly on the number of metabolic mutations.
Eventually, if cells survive, they will be attracted toward
the asymptotic value given by s(max(me), max(mn)). The
amount of cells per compartment is limited by a carry-
ing capacity which determines the maximum number of
cells that can be stored in a given compartment. The max-
imum number of cells depends on the oxygen/energetic
needs and it changes in function of the type of the
metabolic activities. The cumulative energetic needs are
computed as:

E =
∑

j
e(j)N(j) (11)

where j is the number of driver mutations accumulated,
e is the energetic needs depending on the accumulated

driver mutations and N is the total number of cells in a
compartment with given j mutations.

Master equation of the mutation process
Let us consider the cell state σ = {d, mn, mm, k} with d
driver mutations, mn passenger mutations, mm metabolic
mutations and in the compartment k. the index total mm
represents also the age of the trajectory in the natural time
of the occurrence of the events mm = d · d + mn.

The rates of transition involved in each action depends
on the cancer cell stemness which is linked to the internal
state of the cell, σ = {d, mn, mm, k}, and to the number of
mutations, md and mn. Also the probabilities of acquiring
a driver or a passenger mutation depend on the number of
mutations already accumulated by the cells.

The conditional probability density ρ(d, mn, mm) that a
cell starting from the state σ0 = {0, 0, 0, k} arrives after
mm steps to the state d, mn, mm, k is:

ρ(d, mn, mm, k) =
⎡

⎣ 1
md

md∑

i=1
rasym(md−1, mn, k)rd(md − 1, mn, k)ρ(d − ui, mn, mm − 1, k)

+rasym(md, mn − 1, k)rn(md, mn − 1, k) ρ(d, mn − 1, mm − 1, k)

⎤

⎦

+ 2

⎡

⎣ 1
md

md∑

i=1
rsym(md−1, mn, k)rd(md−1, mn, k)ρ(d−ui, mn, mm−1, k)

+rsym(md, mn − 1, k)rn(md, mn − 1, k) ρ(d, mn − 1, mm − 1, k)

⎤

⎦

− rsym(md, mn, k) ρ(d, mn, mm, k) − rapop(md, mn, k)ρ(d, mn, mm, k)

+[
rpass(md, mn, k−1)ρ(d, mn, mm, k−1)−rpass(md, mn, k)ρ(d, mn, mm, k)

]

(12)

The first term enclosed in square brackets describes the
increase of number of cells in the state σ = {d, mn, mm, k}
due to asymmetric proliferation. The mutation occur-
ring during the asymmetric proliferation can be driver
or passenger; hence rd(σ ) + rn(σ ) = 1. The second
term enclosed in square brackets takes into account the
increase of cells due to symmetric proliferation, while the
third term express the fact that both the daughter cells
equally change their state and there is no self-renewal. The
fourth term is the decreasing of cells due to apoptosis, and
the last term is due to the change of compartment.

In order to compare the dynamics with the biological
process, we need to switch from the natural time of the
events to the physical time [44], meaning the time is mea-
sured with a macroscopic clock advancing with a regular
periodic step. We do so by using the waiting time distribu-
tion ψ(i, t) that the i-th mutational event occurs exactly at
time t.
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To take into account the effect of acceleration due to
metabolic mutations, we introduce an exponential wait-
ing time which depends on the number of metabolic
mutations mm:

ψ(mm, t) = α(r + mm)e−αrte−αmmt , (13)

where 1
αr is the cell cycle mean time of cells with no muta-

tions, and α is the increase of the cell cycle rate caused by
each metabolic mutation.

After substituting Eq. 13 into Eq. 12 and applying
some mathematical transformations to ρ(d, mn, mm, k)

(see the Additional file 2 for further details), we obtain the
final form of master equation for the probability density
p(d, mn, mm, k, t) of finding a cell with σ = {d, mn, mm, k}
mutations at time t with any possible order of the occur-
rence of d:

d
dt

p(d, mn, mm, k, t) = α(r + mm − 1)

⎧
⎨

⎩

⎡

⎣ 1
md

md∑

i=1
rasym rdp(d − ui, mn, mm − 1, k, t)

+rasym rn p(d, mn, mm − 1, k, t)

⎤

⎦

+ 2
[

1
md

mm∑

i=1
rsym rdp(d − ui, mn, mm − 1, k, t)

+rsym rn p(d, mn, mm − 1, k, t)
]}

+ α(r + mm)

{ −rsym p(d, mn, mm, k, s) − rapop p(d, mn, mm, k, t)
+ [

rpass p(d, mn, mm, k − 1, t) − rpass p(d, mn, mm, k, t)
]}

.
(14)

Equations and range of parameters
To completely describe the evolution of cancer cells’ prob-
ability densities given in Eq. 14, we need to define the
transition rates for each type of action which depend on
the mutational state of the cells in such a way to mimic
the effects of the cancer stemness and the order of driver
mutations. Therefore, we introduce a sufficiently generic
form valid for all 4 type of actions described in Eqs. 5a,
5b, 6a, 6b, 7 and 8 which includes an explicit dependency
on the cancer stemness s and on the amount of effective
driver mutations me:

ract = 1
N

Aact χact(s) kact(me, k). (15)

The rates are given by the product of a constant rate
amplitude Aact modulated by a support function χact(s)
depending only on the stemness of a cell multiplied by
a filter function kact(me, k) which is a function of the

number of effective driver mutations and the compart-
ment k divide by the normalization factor N. Each of the
terms in the rate are action type dependent. The ampli-
tude Aact determines how much more recurrent is the
specific action in a given compartment. The support func-
tion χact ∈[ 0, 1] has the purpose of determining which
actions are active for a specific value of the stemness cs.
The filter kact ∈ {0, 1} selects the subgroup of cell states
which present specific properties to perform an action.
For each cell state, the normalization factor is defined as:

N =
∑

act
ract.

Because the cancer stemness plays a role in the sur-
vival and proliferation capability of the cells and is less
important in the transition from one tissue to another,
we consider χpass = 1. Vice versa the effective driver
mutations are mainly relevant for the migration of cells
from one compartment to another, hence kasym = ksym =
kapop = 1. For the remaining modulating functions, if
the actions are allowed only for one contiguous compact
interval of the cancer stemness s, then a valid choice for
the support is:

χact(s) = 	(s − w/2 + cact) 	(w/2 − s − +cact),

where 	 is a step function, and w is the extension of the
support centred around cact.

The former condition can be relaxed and more phe-
nomenological derived functional forms, which do not
present discontinuities and are derivable, can be chosen
as support functions. Nevertheless, the product of Heavi-
side functions makes the problem simpler and allow us to
describe a large variety of relevant cases.

To obtain the effect of asymmetric division for more
stem-like cells and apoptotic tendency for more commit-
ted cells, then:

casym < csym < capop < s.

These non-holonomic constraints, do not imply the
support functions belong to disjoint range of the cancer
stemness domain. Indeed, they can overlap so to mimic
more realistic biological cases where for the same value of
cancer stemness corresponds to multiple possible actions.
On the other hand, for disjoint support functions, the
cancer stemness strictly dictates the cell behaviour.

The filter function kpass(me, k) is a simple step function
which is zero if the cell does not have all the necessary
driver mutations Sk defined in Eq. 2, and it is 1 if me ≥ Sk .
It is worth to remark that effective driver mutations can
be derived from the vector of driver mutations d by apply-
ing ladder operators similar to those used in quantum
mechanics for describing the energetic state of a harmonic
oscillator the order of driver mutations (for more details
see Additional file 1).
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The cancer stemness is a positive real value function
in [ 0, s] defined on the sub-space of driver and non–
driver mutations. As discussed in “The role of Cancer
Stemness” section, the cancer stemness is related to the
population of cancer cells due to their fitness. While the
driver mutations (and the respective gene expressions) are
responsible for the production of proteins and receptors
on the surface of the cell membrane, the non–driver muta-
tions are responsible for the cell instabilities related to
the cytoskeleton. Hence a possible choice for the cancer
stemness is s(md, mn) = s md√

1+mn
. The surface produced

by s is a strictly monotonically increasing function of the
driver mutations md and a strictly monotonically decreas-
ing function of the non–driver mutation mn, while it does
not depend on the metabolic mutations mm. The variation
of the cancer stemness for each cell is a random pro-
cess driven by the acquisition of mutations. If we regard
the md and mn as continuous parameters is it possible
to define isocurves of cancer stemness. Cells whose tra-
jectories remain on the same isocurve while acquiring
mutations will not change their (average) behavior, while
cells crossing the isocurves will become more stem–like
if going toward higher levels or more committed if going
toward lower levels.

Simulations
The simulations are done in the framework of CA where
each unit represents a cancer cell having a position σ =
{d, mn, mm, k} in the cell state space composed by the
mutation space and the tissue space. A simulation consists
in a set of cells beginning with specific initial conditions
and evolving together with the advancing of time. At each
time, each cell continues to occupy the same position
until an event occurs after which the corresponding cell
moves to a new position in the state space. The evolution
of cells, the creation of new others and their annihila-
tion are given by stochastic events following the rules
in Eqs. 5a, 5b, 6a, 6b, 7 and 8. There are two types of
constraints for the cells. One is due to the limited exten-
sion of the cell state space given by the ranges {0, 1}md ,
{0, . . . , mn}, {0, . . . , mm} and {1, . . . , k} which are already
included in the master equation. The second constraint is
a volume exclusion limit which impose a maximum capac-
ity of cells having the same number of driver mutations.
The update of the system during the simulations is based
on the asynchronous self-clocked time scheme where each
cell has an independent timer. When a cell undergoes a
specific action all the resulting cells from the product of
the reaction set their timers to a random period given
by the waiting time distribution Eq. 13 which depends
on the cell state. Hence, the waiting times for the new
events are chosen randomly after an event occurs and
are based on the actual new cell state. This interval of

time remains constant independently from other events
occurring meanwhile. The type of action performed at the
end of a time period is randomly chosen with probabil-
ities given in Eq. 15 which depend only on the internal
state of the cell. Because the state of a cell does not
change between events, we are in a case of non compe-
tition between the reactions; therefore the type of action
performed by a cell at the end of the time period can be
tossed and decided at the beginning of the time period.
At the end of the time period, the cell checks all the con-
straints and if the limits are not reached, the reaction is
performed,otherwise it is put back. Simulations with the
same initial conditions and parameters are repeated mul-
tiple times. At each time, the number of cells in the same
cell state are averaged over the ensemble of simulations.
Eventually, the mean trajectories and the deviations from
the mean are computed. In some cases the trajectories
of the cells are projected into a sub–space of the entire
cell state and then averaged so to reduce the number of
degrees of freedom and highlight the main characteristics
of the systems corresponding to the observables which are
experimentally detected. Our software is available upon
request from the first author.
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