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ABSTRACT

Objective: Natural language processing (NLP) of symptoms from electronic health records (EHRs) could contrib-
ute to the advancement of symptom science. We aim to synthesize the literature on the use of NLP to process
or analyze symptom information documented in EHR free-text narratives.

Materials and Methods: Our search of 1964 records from PubMed and EMBASE was narrowed to 27 eligible
articles. Data related to the purpose, free-text corpus, patients, symptoms, NLP methodology, evaluation met-
rics, and quality indicators were extracted for each study.

Results: Symptom-related information was presented as a primary outcome in 14 studies. EHR narratives repre-
sented various inpatient and outpatient clinical specialties, with general, cardiology, and mental health occur-
ring most frequently. Studies encompassed a wide variety of symptoms, including shortness of breath, pain,
nausea, dizziness, disturbed sleep, constipation, and depressed mood. NLP approaches included previously de-
veloped NLP tools, classification methods, and manually curated rule-based processing. Only one-third (n=9)
of studies reported patient demographic characteristics.

Discussion: NLP is used to extract information from EHR free-text narratives written by a variety of healthcare
providers on an expansive range of symptoms across diverse clinical specialties. The current focus of this field
is on the development of methods to extract symptom information and the use of symptom information for dis-
ease classification tasks rather than the examination of symptoms themselves.

Conclusion: Future NLP studies should concentrate on the investigation of symptoms and symptom documen-
tation in EHR free-text narratives. Efforts should be undertaken to examine patient characteristics and make
symptom-related NLP algorithms or pipelines and vocabularies openly available.
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BACKGROUND AND SIGNIFICANCE

computation.”” NLP algorithms are used to perform syntactic proc-

Natural language processing (NLP) is currently the most widely essing (eg, tokenization, sentence detection), extract information (ie,
used “big data” analytical technique in healthcare,' and is defined convert unstructured text into a structured form), capture meaning
as “any computer-based algorithm that handles, augments, and (ie, assign a concept to a word or group of words), and detect rela-
transforms natural language so that it can be represented for tionships (ie, assign relationships between concepts) from natural
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language free text through the use of defined language rules and rel-
evant domain knowledge.”™ While both the ambiguity and com-
plexity of medical language makes the application of NLP
challenging, NLP has been used for a variety of healthcare-related
purposes, including identifying disease risk factors, evaluating effi-
ciency of care and costs, and extracting information from free-text
clinical narratives within electronic health records (EHRs).!

EHRs are longitudinal collections of electronic information related
to the health of or healthcare provided to an individual.” EHRs are
mainly comprised of 2 types of data, structured data (eg, billing diag-
noses, medications, laboratory test results) and unstructured free-text
narratives (eg, admission documents, discharge summaries, progress
notes, nursing notes, and primary care clinic encounter notes).® Much
of the rich, expressive clinical data captured in EHRs are documented
and stored within these unstructured free-text narratives.” This is true
for many patient-experienced or reported phenomena, especially
symptoms. Consequently, such free-text narratives have been the data
source for NLP “challenges” in the health NLP community.®™2

Symptoms are subjective indications of disease and include phe-
nomena such as pain, fatigue, disturbed sleep, depressed mood, anx-
iety, nausea, dyspnea, and pruritus. Symptoms are challenging to
manage and burden both the patient and healthcare system,'® so
much so that the National Institute of Nursing Research named
“symptom science” as 1 of its key themes with the objective of
“Iproviding] a better understanding of the symptoms of chronic ill-
ness and [improving] quality of life across diverse populations.” The
complexity and multidimensionality of symptoms pose a challenge
for research. The volume of longitudinal symptom data available in
free-text clinical narratives offers an unprecedented opportunity to
study the biological and behavioral foundations of symptom occur-
rence as well as symptom documentation practices. Development of
more effective symptom assessment and management strategies is es-
sential for improving the health-related quality of life of patients.

To illustrate the importance of extracting symptom information
from free-text clinical narratives and highlight the diversity of symptom
descriptions, Forbush et al'* manually reviewed and annotated 171
mental or social notes (ie, inpatient and outpatient psychiatry, psychol-
ogy, social work, and case management) and 579 primary or specialty
notes (ie, primary care clinic, specialty clinic, physical and occupational
therapy, and inpatient) for symptom terms (eg, depressed mood; mem-
ory dysfunction) and subjective symptom expressions (eg, “I'm good for
nothing anymore”; “Always forgetting where I put things”). They
reported a mean average (X) of 8.74 (range, 0-67) symptom terms per
note for the mental or social notes and x=6.14 (range, 0-69) for the pri-
mary or specialty notes, and x=1.25 (range, 0-16) symptom expressions
per note for the mental or social notes and x=0.57 (range, 0-35) for the
primary or specialty notes.'* Importantly, they found that if Interna-
tional Classification of Diseases—Ninth Revision—Clinical Modification
diagnosis codes were used alone to extract symptom information, only
36% of subjective symptom expressions would be captured.'*

Symptom information has historically been extracted from pa-
tient records via manual review by clinical experts. This approach
has clear limitations in scalability in addition to being time consum-
ing, labor intensive, and expensive. The increased availability of
EHRs for secondary data reuse has created an opportunity for NLP
to be used to harness the potential of free-text narratives to study
symptoms and symptom documentation. Systematic reviews related
to the automated extraction of information from medical text using
NLP and related methods have been published.'*™*? None of these
previous reviews focused on symptoms. Due to the (1) prevalence of
symptom-related patient and healthcare burden, (2) importance of

accurate extraction of symptom information for other applications
including disease classification and response to treatment, and (3)
potential ability of NLP to facilitate the advancement of symptom
science, we sought to review the body of literature and report the
state of the science on the use of NLP to process or analyze symptom
information from EHR free-text narratives.

OBJECTIVE

The purpose of the present study is to systematically review the liter-
ature on the use of NLP to process or analyze symptom information
from free-text narratives of EHRs. In particular, we aim to describe
and assess the following aspects of studies included in the review:
(1) purpose and data source; (2) target clinical population and pa-
tient information; (3) symptom extraction and analysis; (4) NLP
method, evaluation, and performance; and (5) indicators of quality.
We further synthesize and discuss current trends and gaps related to
this area and propose recommendations for future studies using
NLP to investigate symptoms in the free-text narratives of EHRs.

MATERIALS AND METHODS

Our review procedures were based on the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) recom-
mendations and carried out using Covidence (www.covidence.org), a
web-based tool designed to facilitate screening and data extraction re-
lated to systematic reviews. The review consisted of 3 stages: (1) arti-
cle retrieval, (2) study selection, and (3) data extraction and synthesis.

Article retrieval

We searched PubMed and EMBASE on February 5, 2018, to iden-
tify all potentially relevant abstracts related to NLP and symptoms.
Search terms capturing the concepts of natural language processing
and symptoms (Table 1) were derived from the Medical Subject
Headings vocabulary (U.S. National Library of Medicine) for the
database queries. The use of additional search terms for specific
symptoms was guided by inclusion of the symptom in National In-
stitute of Nursing Research common data element measures.
Queries were limited to English language, but not by date con-
straints. Searches returned 811 records from PubMed and 1742
records from EMBASE, of which 589 were duplicates (Figure 1).

Study selection

To be eligible for inclusion in the review, the primary requirement
was that the article needed to focus on the description, evaluation,
or use of a NLP algorithm or pipeline to process or analyze patient
symptom terms. We defined a symptom as a subjective indication of
disease. Example symptom terms include anxiety, depressed mood,
fatigue, disturbed sleep, impaired cognition, and nausea. Notably,
symptoms are distinct from signs (eg, elevated blood pressure, fever,
vomiting, rash, cough, hemoptysis, weight loss), which are objective
findings that can be directly observed or measured by a healthcare
provider. Due to the rigorous focus on symptoms, articles that used
NLP to extract more general “problem” terms (which include disor-
ders, procedures, signs, etc.) without specifically naming a symp-
tom(s) were excluded. Review articles as well as articles not
published in English or those without full text available were also
excluded. While our initial intent was to survey NLP and patient
symptoms across all types of free text, a corpus distinction between
EHRs and electronic patient authored text (eg, online health
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Table 1. Queries used to retrieve records

Database Search Terms

PubMed (natural language processing [mh] OR natural language
processing [tw] OR NLP [tw] OR text mining [tw])
AND (signs and symptoms [mh] OR symptom [tw] OR
nursing [mh] OR nurs* [tw] OR pain [mh] OR pain [tw]
OR anxiety [mh] OR anxi* [tw] OR cognition [mh] OR
cognit™ [tw] OR cognitive function [tw] OR attention
[tw] OR memory [tw] OR executive function [tw] OR
sleep [mh] OR dyssomnias [mh] OR sleep* [tw] OR fa-
tigue [mh] OR fatigue [tw] OR depression [mh] OR de-
press* [tw] OR affect [mh] OR affective symptoms [mh]
OR affect* [tw] OR mood [tw] OR well being [tw] OR
well-being [tw] OR nausea [mh] OR nausea [tw]) AND
english [la]

(‘natural language processing’/exp OR ‘natural language
processing’: ab, ti, kw OR ‘nlp’: ab, ti, kw OR ‘text min-
ing’/exp OR ‘text mining’: ab, ti, kw) AND (‘symptom’/

EMBASE

exp OR ‘symptomatology’/exp OR ‘symptom*’: ab, ti,
kw OR ‘nursing’/exp OR ‘nurs*’: ab, ti, kw OR ‘pain’/
exp OR ‘pain’: ab, ti, kw OR ‘anxiety’/exp OR ‘anxi*’:
ab, ti, kw OR ‘cognition’/exp OR ‘cognit*’: ab, ti, kw
OR ‘cognitive function’: ab, ti, kw OR ‘sleep’/exp

OR “sleep disorder’/exp OR ‘sleep™’: ab, ti, kw

OR ‘“fatigue’/exp OR ‘fatigue’: ab, ti, kw

OR ‘depression’/exp OR ‘depress*’: ab, ti, kw OR ‘mood
disorder’/exp OR ‘mood’: ab, ti, kw OR ‘affect*’: ab, ti,
kw OR ‘wellbeing’/exp OR ‘well being’: ab, ti, kw

OR ‘well-being’: ab, ti, kw OR ‘nausea’/exp

OR ‘nausea’: ab, ti, kw) AND [english]/lim

communities, Twitter) became apparent during the review process;
thus, we pulled articles focused on electronic patient authored text
for a separate systematic review. EHRs are the focus of the current
review.

Two authors (CD, TAK) independently reviewed the title and
abstract for each retrieved record. Articles were labeled by potential

» »

relevancy as “yes,” “no,” or “maybe” based on eligibility criteria.
Disagreements and articles labeled as “maybe” were discussed to
reach a consensus. The same 2 authors (CD, TAK) then indepen-
dently reviewed the full text of 40 articles identified as potentially
relevant during title and abstract screening. Articles were labeled as
“include” in or “exclude” from the review. Disagreements were re-
solved through discussion. Thirteen articles were excluded during
the full-text review. Nine of these articles were not symptom focused

and 4 did not use NLP or a methodology of interest.

Data extraction and synthesis

Data were manually extracted by 1 of 2 authors (CD, TAK) from
the remaining 27 articles included in the systematic review (Ta-
ble 2).2°*¢ A formal quality assessment was not conducted, as rel-
evant reporting standards have not been established for NLP
articles. Instead, we developed a data extraction spreadsheet
guided by elements reported in previous NLP-focused systematic
reviews. %151 We included information related to the study pur-
pose, corpus (eg, data source, number of narratives, time period),
patients (eg, target population, number of distinct patients, demo-
graphic information), symptoms (eg, symptoms studied), NLP (eg,
methodology or tools used, evaluation measures and perfor-
mance), and study outcomes (eg, reported symptom-related
outcomes).

Records identified through Records identified through
PubMed search EMBASE search
(n=811) (n=1,742)

Y

Abstracts screened

(n=1,964)

after duplicates removed

Abstracts excluded (n=1,942)
including electronic
patient authored text

Y

Full text articles
assessed for eligibility
(n=40)

Full text articles excluded,
with reasons:

Y

Y

Not symptom focused (n=9)

Did not use NLP or

Articles included in the
systematic review
(n=27)

methodology of interest (n=4)

Figure 1. Flow diagram of included articles. NLP: natural language processing.
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RESULTS

Twenty-seven articles were included in the review. Years of publica-
tion ranged from 1999 to 2017 with more than 90% (n=235) of
articles published in the last 10 years.

Study purpose and data sources
The main objectives of studies included in this review (Table 2) were

to capture or detect symptoms (n = 10)?%2327:30:31,35.37-39:42. 14qy.

tify, classify, or characterize disease (n = §)?1:2%242%:33:43.45.46, ¢, 4y

5)32:34,36,41,44 )29

adverse drug (n= or vaccine (n=1)"" events; and

identify or detect readmission (n=1),>° presence of a device
(n=1),?® or unplanned clinical encounters (n = 1).*> Approximately
52% (n=14) of studies presented symptom-related information as a
primary outcome.?%?327:39:31:3442 Gy hrom-related outcomes rele-
vant to this systematic review are described in Table 2. Free-text
narratives were primarily from EHRs
(n = 13)2022:2426.29.31,35,37,3841,424546  41d data  repositories
(n=12)21:23:25:27:28,32,33,36,39,40.43.4% Eree_text narratives used in
the 2 remaining studies were obtained from paper records converted

30 and Informatics for Integrating Biology &

into electronic free text
the Bedside Challenge datasets.>* Narratives represented both inpa-
tient (eg, admission documents, discharge summaries, emergency de-
partment documents, progress notes, nursing narratives) and
outpatient (eg, primary care and specialty clinic documents, mental
health encounters) settings and were written by various members of
the clinical care team (eg, physicians, nurses). The number of docu-
ments parsed as part of each study ranged from 504 to more than
3.3 million. However, approximately 25% (n=7) of studies did not

i 5,36-39
specify the number of documents processed.?!»>*+2%:36=3

Target clinical populations and patient information
Studies focused on 1 or more clinical specialties with general
(Il — 13)’21—23,25—28,34,35,37,41,43,44 cardiology (Il — 5)’2(),34,38,42,46 and

(n=4)32333%% occurring most frequently (Table 3).

mental health
The number of distinct patients varied greatly, ranging from 22 to
more than 50 000. Notably, the number of distinct patients from
which clinical free text was obtained was not reported in approxi-
mately 25% (n=7) of studies,>>>3:2%:32:35:43:44

(n=9) of studies reported any patient demographic characteris-
21,24,30,36-3

and only one-third

. 9,42,45 . -
tics. #5% In addition, only 1 study featured a pediatric
target population.*!

Symptom extraction and analysis

All studies mentioned at least 1 specific symptom processed or eval-
uated using NLP in the study methods, results, or discussion
sections. In approximately 37% of studies (n=10), symptoms were
referenced in general terms (eg, all signs and symptoms with concept
unique identifiers in the Unified Medical Language System)
rather than specifically naming symptoms of
interest,2223:2%:31,3440.4143.4446 1) these instances, we manually
extracted all symptoms mentioned in the methods, results, or discus-
sion sections of the article. The studies encompassed a wide range of
emotional state (eg, mood instability, depressed mood, anxiety), cir-
culatory and respiratory (eg, chest pain, shortness of breath), diges-
tive and abdomen (eg, nausea, constipation, abdominal pain),
cognition and perception (eg, cognitive impairment, memory dys-
function, paresthesia, blurred vision, tinnitus), pain (eg, pain, ache,
discomfort, headache), fatigue and sleep disturbance (eg, fatigue,
disturbed sleep, lethargy), nervous and musculoskeletal (eg, weak-

ness, stiffness, myalgia), general (eg, chills), skin and subcutaneous

tissue (eg, pruritus), and urinary (eg, dysuria, bladder discomfort)
symptoms. Figure 2 displays the symptoms of interest for each study
in this review. Symptoms featured in more than 5 studies included
shortness of breath,

(n=13)20:22:2425,29,31,35,37.40-44, a0 ache, or discomfort not spe-

21-23,26,30,31,34,35,40,41,44,
bl

dyspnea, or orthopnea

cific to the chest or abdomen (n=11)
(= 11)222%31,32,34-36,40,41,43,44,

nau-

sea chest pain, pressure,

discomfort, or distress or angina (n= 9)*>31:3433,37:38:40:43.44, 4;, /1
ness or vertigo (n= 9)>1723:2%31:32:41L43:44. {isturbed sleep, sleepless-

21,23,32,33,41,43,44,46,

ness, sleepy, or insomnia (n=3) ; abdominal or

stomach pain (n = 7)22:27:31:3435,40,44,

21,31,32,34,36,41,44,
(n=7) ;

constipation
and depressed mood
(n=7). 2133441434546 \yith the exception of the study by Heint-
zelman et al,*® which incorporated pain severity indicators into the
NLP algorithm, documentation occurrence or frequency of occur-
rence was used to evaluate symptoms.

NLP approach, evaluation, and performance

A variety of different approaches were used to perform NLP and
evaluate the NLP algorithms and pipelines (Table 4). Approaches in-
cluded combinations of previously developed NLP tools, classifica-
tion methods, and manually curated rule-based processing. Of the
previously developed NLP tools, the Medical Language Extraction
and Encoding system,?->%27:31:43:44 TextHunter,>>>° Multithreaded
Clinical Vocabulary Server,”** and the v3NLP Framework?>*®
were used in more than 1 study. Almost half (n=13) of

studies incorporated manually curated
23,26,28-30,32,33,35-37,4045:46 The impl

rule-based process-
ing ementation of NLP was pri-
marily (n=23) for symptom extraction,*-*1-2373%35.37=45 N p
algorithms or pipelines were also used for a combination of extrac-
tion and pre- or postprocessing>*>®*® and preprocessing alone.*?
With the exception of 2 studies that did not evaluate perfor-
mance of the symptom-related NLP algorithm or pipeline,***" all
other studies reported 1 or more evaluation metrics such as sensitiv-
ity or recall, specificity, precision, accuracy, F-measure, kappa coef-
ficient, area under the receiver-operating characteristic curve, and
C-statistic. Of the 25 studies that reported evaluation metrics, 6 fea-
tured true comparative evaluation,?®?>2%323%3% comparing the
NLP algorithm or pipeline performance with that of other algo-
rithms either developed as part of the study or previously. The
remaining 19 studies compared the results of the NLP algorithm or
pipeline with manual chart review or a manually created reference
(n=13),25:27730:35:374146 5565 and  control subjects
(n=2),25** clinical practice guidelines (n=1),>! International Clas-

sification of Diseases—Ninth Revision—Clinical Modification codes

standard

(n=1),® “hold out” mentions (n=1),>* and with or without a ne-
gation algorithm (n=1).>* No trends in approach, evaluation, and
performance over time were noted.

Indicators of quality across studies

Table 5 summarizes and compares indicators of quality across stud-
ies by year of publication. Quality indicators include the clarity of
the study purpose statement, inclusion of symptoms as a primary
outcome, adequacy of the description of the study approach, and
presence of information related to the number of documents, num-
ber of patients, patient demographics, evaluation metrics, and com-
parative evaluation. All studies have at least 4 of the 8 quality
indicators. Nine studies have at least 7 quality indica-
20,27,30,31,34,38,39.41.92 (yith 1 study addressing all 8.>° No trends

among indicators of quality were identified over time.

tors,
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Table 3. Clinical focus and patient information

Number of  Demographic
Distinct Information
Study Clinical Specialty Target Population Patients Reported®
Byrd et al, 2014>° Cardiology Primary care patients diagnosed with heart failure 32407
Chase et al, 2017 General Adult patients diagnosed with multiple sclerosis 2999 v
Dara et al, 2008>* General Patients presenting with a chief complaint Not reported
Divita et al, 2017%3 General Veterans receiving inpatient or outpatient care Not reported
Elkin et al, 2012>* Immunology Patients diagnosed with influenza 2194 v
Friedman et al, 1999% General Patients diagnosed with community acquired 79
pneumonia
Greenwald et al, 2017%° General Hospitalized patients readmitted within 30 days of 29156
discharge
Gundlapalli et al, 2008>” General, gastroenterology Patients diagnosed with inflammatory bowel disease 15377
Gundlapalli et al, 2017%% General, genitourinary Hospitalized patients with an indwelling urinary 1222
catheter
Hazlehurst et al, 2009%° Immunology, gastroenterology Patients who had received an immunization Not reported
Heintzelman et al, 2012%° Oncology Adult men diagnosed with metastatic prostate cancer 33 v
Hyun et al, 2009 Oncology Patients receiving cancer-related inpatient care 22
Igbal et al, 2017%* Mental health Patients prescribed antipsychotic or antidepressant Not reported
medications
Jackson et al, 201733 Mental health Patients diagnosed with either severe or nonsevere men- 15 537
tal illness
Ling et al, 2015%* General, cardiology General inpatient and patients diagnosed with coronary 296"
artery disease
Matheny et al, 20123 General General inpatient and outpatient with at least 1 surgical Not reported
admission
Nunes et al, 2017°¢ Diabetes Adult injectable-naive patients diagnosed with type II 5849 v
diabetes mellitus who initiated either exenatide once
weekly or basal insulin
Pakhomov et al, 200737 Cardiology Adult patients with angina pectoris 871 v
Pakhomov et al, 20083® General Adult general ambulatory and hospitalized patients 1119 v
Patel et al, 20157 Mental health Adult patients diagnosed with a psychotic, affective, or 27 704 v
personality disorder
Tamang et al, 2015*° Oncology Patients with breast, gastrointestinal, or thoracic cancer 1263
who seek unplanned care
Tang et al, 2017* General Pediatric general inpatient and emergency 42995
Vijayakrishnan et al, 2014**  Cardiology Adult primary care patients who have and have not de- 51 625 v
veloped heart failure
Wang et al, 2008*3 General General inpatient Not reported
Wang et al, 2009** General General inpatient Not reported
Weissman et al, 2016*° Pulmonology Patients diagnosed with acute respiratory distress 815 v
syndrome
Zhou et al, 2015 Mental health, cardiology Hospitalized patients with a history of ischemic heart 1200
disease
Note:

?A checkmark indicates that the study reported demographic information;
"Ling et al** used clinical note datasets from the i2b2 workshop on NLP challenges from 2009 and 2014. The number of patients is reported for the 2014

dataset only.

DISCUSSION

One of the most revealing findings from this systematic review

In this systematic review on the use of NLP to process or analyze
symptom information from free-text narratives of patient EHRs, we
reviewed and narrowed over 1900 records to a final set of 27
articles. Overall, we found that previously developed NLP tools,
classification methods, and manually created rule-based algorithms
have been used to primarily extract information on an extensive
range of symptoms from EHR free-text narratives written by a vari-
ety of healthcare providers across a number of different clinical spe-
cialty settings.

was related to the study objectives; only half of the studies presented
symptom information as a primary outcome with approximately
30% of studies focusing on the use of symptoms to identify or clas-
sify disease. These results highlight how the state of the science on
the study of symptoms from EHR free-text narratives is on the de-
velopment of methods to extract symptom information and the use
of symptom information for disease classification tasks rather than
on the investigation of symptoms themselves. Considering the
pervasiveness of symptom related patient and healthcare burden,

there needs to be more investigations focused on symptoms and
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Figure 2. Chord diagram of symptoms by clinical category included in systematic review articles. Relationships between symptoms (color sectors and tracks) and
articles (black sectors) included in the systematic review are displayed. Individual symptoms are arranged via color by clinical category. Symptom sector size is
proportional to the number of unique articles that include a given symptom. Article sector size is proportional to the number of unique symptoms included in a
given study. Sample sizes in the legend correspond to the number of unique articles overall and in each clinical category. Shortness of breath includes dyspnea
and orthopnea. Pain includes pain, ache, or discomfort not specified as occurring in the chest or abdomen. The figure was generated using R statistical software

(R Foundation for Statistical Computing (R version 3.3.1), Vienna, Austria).*”

symptom documentation as well as symptom management as pri-
mary outcomes of interest from the free-text narratives of EHRs in
addition to studies on the use of symptom information to character-
ize disease or predict response to treatment.

The study of symptoms and symptom documentation from the
free-text narratives of EHRs could be facilitated through adherence
to the tenets of open science, which aim to increase overall transpar-
ency in research and remove barriers for data and resource shar-
ing.*®*° A strength of a number of studies in this review was the
inclusion of detailed information on the selection of symptoms or
creation of rules for NLP symptom extraction by clinical experts.
For instance, Matheny et al** provided the full set of detection rules
for each symptom included in their study in appendices. Likewise,
Igbal et al®* made their expert-developed dictionaries of adverse
drug event-related terms available in a GitHub (github.com), which
is commonly used to host open-source software projects, repository.
However, this was not the case for all studies utilizing expert-
developed rules and certainly not the case for the complete NLP
pipelines or algorithms. Although open sharing of actual EHR

free-text narratives may not be feasible due to the presence of pa-
tient protected health information (eg, name, birthdate), researchers
can continue to develop and use generalized, open-source EHR-
related NLP systems such as Apache ¢TAKES™ (ctakes.apa-
che.org),’° the clinical Text Analysis and Knowledge Extraction Sys-
tem, and make expert-developed rule-based NLP algorithms
available on platforms such as GitHub to support transparency and
replication of study findings and minimize duplicated efforts. More-
over, researchers can advance the symptom content in ontology-
based vocabularies such as SNOMED-CT (snomed.org), which
was used in multiple studies identified in this systematic review,
and contribute to evolving symptom ontologies such as the Open
Biological and Biomedical Foundry (obofoundry.org) adopted
Symptom Ontology. In addition to symptom-related content, an-
other future direction for NLP of symptom resource development is
the normalization of extracted symptom terms to controlled vocabu-
laries. Normalization is important, as many unique symptoms terms
(eg, discomfort, hurt, ache, tender) are frequently used to represent a
single symptom concept (ie, pain).
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Table 5. Indicators of quality across articles

Clearly ~ Symptomsas Approach Number of Number of Patient demographic Evaluation Inclusion of

defined primary adequately documents patients information metrics comparative
Author® purpose® outcome® described!  specified®  specified reported® reported®’  evaluation®®
Friedman et al, 1999 v v/ v/ v/ v/
Pakhomov et al, 2007°® v/ v/ v/ v/ v/ v v
Dara et al, 2008%? v v/ v/ v/ v/
Gundlapalli et al, 2008>” v/ v/ v/ v v/ v/ v/
Pakhomov et al, 200837 v v/ v/ v/ v/ v
Wang et al, 2008* v v/ v v/ v/
Hazlehurst et al, 2009%° v/ v/ v/ v/ v/
Hyun et al, 2009°! v v/ v/ v v v/ v/
Wang et al, 2009** v v/ v v/ v/
Elkin et al, 2012>* v/ v/ v/ v/ v/ v/
Matheny et al, 20123 v/ v/ v/ v v v
Heintzelman et al, 2013%° v/ v v v v/ v v v
Byrd et al, 2014>° v/ v/ v/ v v/ v/ v/
Vijayakrishnan et al, 2014* v/ v/ v v/ v/ v v
Ling et al, 2015%* v v/ v/ v v/ v/ v/
Patel et al, 2015%° v/ v/ v/ v/ v v/ v/
Tamang et al, 2015*° v/ v/ v/ v v
Zhou et al, 2015% v v v v v v
Weissman et al, 2016*° v/ v v/ v v/ v/
Chase et al, 2017 v v/ v/ v v/ v/
Divita et al, 2017%° v v/ v/ v/ v/ v/
Greenwald et al, 20172° v v v v v
Gundlapalli et al, 2017%% v v/ v v/ v v
Igbal et al, 2017%* v v/ v v/ v/
Jackson et al, 201733 v v/ v v v/ v/
Nunes et al, 2017°¢ v/ v/ v/ v
Tang et al, 2017*! v/ v/ v/ v v v/ v/

Studies included in this table have been arranged in chronological order to assess trend of quality indicators over time;

A checkmark denotes reviewer judgement of clear statement of the study purpose;

A checkmark denotes inclusion of symptoms as a primary outcome;

9A checkmark denotes reviewer judgement of adequate description of the study approach;

A checkmark denotes the presence of information in the article;

fEvaluation metrics include accuracy, area under the curve, sensitivity, specificity, recall, or precision;

8Comparison includes another algorithm, held-out testing set, manual review or annotation, or a case-control design.

While our finding that almost half of the studies focused on gen-
eral inpatient or outpatient populations was in line with expecta-
tions, we were surprised that only about 11% (n=3) of studies
featured oncology as the clinical specialty of interest. This lack of
cancer- or cancer treatment—related symptoms being processed or
analyzed using NLP from EHR free-text narratives is in contrast to
what one would anticipate based on both the cancer symptom and
cancer NLP literature. Providing evidence for the focus on oncology
in the field of symptom science, Miaskowski et al*! reported that ap-
proximately 83% of n=158 articles surveyed for a review of co-
occurring symptoms in chronic conditions studied patients with can-
cer. Moreover, a PubMed search of the MeSH (Medical Subject
Headings) terms signs and symptoms and neoplasm returns almost
7000 articles from the past 10 years highlighting the clinical impor-
tance and, we would argue, the complexity of symptoms related to
detection, diagnosis, treatment, and management of cancer or can-
cer treatment. Likewise, a recent review by Jiang et al’? relayed that
the major disease concentration area for artificial intelligence (in-
cluding NLP as well as other computational techniques such as sup-
port vector machines and neural networks) in healthcare was cancer
followed by neurology and cardiology. A clear opportunity exists to

combine these fields and use NLP to study symptoms related to can-
cer or its treatments in the EHR.

Remarkably, <75% of articles reported the distinct number of
patients from which clinical free-text was obtained and only 33% of
articles reported any patient demographic characteristics. These
findings appear to be related to the objective of the study, specifi-
cally, whether the purpose of study was to develop an algorithm for
symptom identification versus to describe symptom related informa-
tion for a defined clinical population. For example, the purposes of
the articles by Igbal et al**> and Matheny et al,>> which do not report
the number of distinct patients or patient demographic information,
were to develop rule-based algorithms for the identification of ad-
verse drug events and infectious symptoms, respectively. In contrast,
the articles by Patel et al*” and Vijayakrishnan et al** aimed to study
the impact of symptoms on clinical outcomes and prevalence of
symptoms, respectively, in specific clinical populations; both of
these articles report the distinct number of patients and patient de-
mographic information, including, age, gender, and race. The inclu-
sion of information about the patients from whom clinical free-text
was obtained is important because symptom experience is known to
vary by common sociodemographic factors including age, sex or



378 Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 4

gender, race and ethnicity, and socioeconomic status.”> It is essential
for future NLP studies of symptoms documented in EHRSs to analyze
and report patient information for generalization of study findings,
ascertainment of potential assessment or documentation biases, and
development of tailored interventions.

While the studies in our review included a wide variety of symp-
toms, shortness of breath, dyspnea, or orthopnea; pain, ache, or dis-
comfort not specific to the chest or abdomen; nausea; and chest
pain, pressure, discomfort, or distress or angina were the most com-
mon symptoms mentioned in the methods, results, or discussion sec-
tions of included studies. These symptoms are consistent with the 10
leading principal reasons for emergency department visits, which in-
clude chest pain and related symptoms; shortness of breath; pain,
site not referable to a specific body system; and vomiting (ie, the
sign that typically accompanies nausea).’*

However, we would like to point out that many studies investi-
gated symptoms and signs concurrently, either not making the dis-
tinction between the 2 concepts or inaccurately classifying signs as
symptoms. As mentioned earlier in this review, symptoms are sub-
jective while signs are objective evidence of disease. The imprecision
is not unexpected because symptoms (eg, pruritus or itchy skin) and
signs (eg, rash) frequently occur simultaneously with signs often be-
ing termed “physical” symptoms. But this observation further high-
lights the focus of using symptom information from EHR free-text
narratives to characterize or classify disease rather than study the
symptoms themselves. Additionally, by and large, studies used docu-
mentation occurrence or frequency of occurrence to investigate
symptoms. Though many studies included negation algorithms (eg,
no shortness of breath) as part of NLP processing, only 1 study ex-
plicitly evaluated symptom severity.>® Heintzelman et al*® devel-
oped pain severity contextual rules to further categorize mentions of
pain as no pain, some pain, controlled pain, and severe pain. Incor-
poration of accurate extraction of severity as well as other contex-
tual factors such as symptom location or duration into EHR NLP
algorithms is of great interest for future work.

Finally, we found it challenging to assess the quality of the stud-
ies within this systematic review as relevant formal standards have
yet to be established for NLP articles. Instead, we focused on indica-
tors of quality of the included articles. A number of the recurrent
strengths and weaknesses of articles have already been discussed
throughout this section. Additional strengths include the incorpora-
tion of concept modifiers into NLP algorithms or pipelines, control
for covariates and confounders in analyses, and evaluation of NLP
algorithm or pipeline performance. Additional weaknesses include
small samples of patients or narratives, no incorporation of tempo-
rality, and lack of true comparative evaluation of the NLP algorithm
or pipeline used in the study to other methods.

CONCLUSION

In this systematic review, we synthesized data from 27 articles on
the use of NLP to process or analyze symptom information from
free-text narratives of patient EHRs. In summary, we found that
NLP tools, classification methods, and manually curated rule-based
processing are being used to extract information from EHR free-text
narratives written by a variety of healthcare providers on a wide
range of symptoms across diverse clinical specialties. The current fo-
cus of this field is on the development of methods to extract symp-
tom information and the use of symptom information for disease
classification tasks rather than on the investigation of symptoms
themselves. Considering the prevalence of symptom-related patient

and healthcare burden, future work should concentrate on the study
of specific symptoms and symptom documentation in free-text nar-
ratives of patient EHRs in addition to the use of symptoms to ac-
complish other tasks. The study of symptoms and symptom
documentation from EHRs using NLP would greatly benefit from
clear statement of the symptoms being evaluated as part of the
study, a detailed description of the clinical population from which
symptom information was extracted and analyzed, open sharing of
user-developed symptom-related NLP algorithms or pipelines and
vocabularies, and the establishment of formal reporting standards
for investigations using NLP methodologies.
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