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Abstract

The surge of public disease and drug-related data availability has facilitated the application of 

computational methodologies to transform drug discovery. In the current chapter, we outline and 

detail the various resources and tools one can leverage in order to perform such analyses. We 

further describe in depth the in silico workflows of two recent studies that have identified possible 

novel indications of existing drugs. Lastly, we delve into the caveats and considerations of this 

process to enable other researchers to perform rigorous computational drug discovery experiments 

of their own.
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1. Introduction

Preclinical drug discovery efforts are typically led by target-based or systems (phenotypic)-

based strategies. In target-based screenings, the underlying goal is development around 

certain target or pathway with a priori evidence for its role in a disease or phenotype. 

Systems-based screenings are typically performed in a high-throughput fashion without an 

initial hypothesis of the target. In these models, many drugs, with and without known 

pharmacology, are tested against an assay evaluating properties of the phenotype of interest. 
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From 1998 to 2006, 70% of first-in-class drugs discovered have been target-based, with only 

30% directed by systems-based approaches [1]. This traditional drug discovery framework is 

both costly and timely, with a relatively low overall average success rate of 9.6% across all 

diseases [2]. While the max average overall success rate is 26.1% for hematology, the lowest 

is a mere 5.1% for oncology.

Other issues with traditional clinical trial design revolve around biased trials and selective 

publishing [3] that affect both internal and external validity [4] and therefore the 

implications of studies. One study evaluated the diversity of race, ethnicity, age, and sex in 

participants of cancer trials [5]. They found large differences in representation in all these 

realms: for instance, lower enrollment fractions in Hispanic and African-American 

participants compared to Caucasian participants (p < 0.001 for both comparisons). They also 

found an inverse relationship between age and enrollment fraction across all racial and 

ethnic groups and significant differences for men and women depending on the disease (e.g., 

men had higher enrollment fractions for lung cancer; p < 0.001). These differences in 

representation also have serious implications in practice when, for instance, a treatment 

studied in one population is given to another. Making clinical decisions based on studies 

with these issues can lead to expensive, sub-optimal treatment rates or missed opportunities 

at best and harmful events at worst. There are plenty of examples of randomized controlled 

trials that were judged to be beneficial but shown to be harmful (e.g., fluoride treatment for 

osteoporosis) [6]. Another weakness of clinical trial design is the relaxing of inclusion 

criteria for disease group in order to bolster study numbers, which is especially problematic 

in heterogeneous diseases.

These issues, along with the vast resources required for these studies and overall low success 

rates, necessitate complementary approaches. The recent surge of biomedical information 

pertaining to molecular characterizations of diseases and chemical compounds has 

facilitated a new age of drug discovery through computational predictions [7, 8]. By 

analyzing FDA-approved compounds to discover novel indications, one can leverage the 

massive amount of research and effort that have already been completed and bypass many 

steps in the traditional drug development framework. While there are many innovative 

strategies to reduce cost and improve success rates during the traditional drug discovery 

process [9, 10], drug repurposing is a viable and growing discipline with documented 

advantages: for instance, traditional drug discovery pipelines take on average from 12 to 16 

years from inception to market and cost on average one to two billion dollars, while 

successful drug repurposing can be done in less than half the time (6 years on average) at a 

quarter of the cost (~$300 million) [11,12]. Incorporating drug repurposing strategies into 

workflows can drastically increase productivity for biopharmaceutical companies [13], and 

there are growing numbers of successful examples that prove its worth [14–17].

Thalidomide, for instance, was originally developed in Germany and England as a sedative 

and was prescribed to treat morning sickness in pregnant women. It soon became apparent 

that this treatment caused severe and devastating skeletal birth defects in thousands of babies 

born to mothers taking it during the first trimester of pregnancy. Years later, after the drug 

was banned for this purpose, it was serendipitously found to be effective for the treatment of 

erythema nodosum leprosum, a very serious complication ofleprosy. In a subsequent double-
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blind study of over 4500 patients with this condition, thalidomide treatment led to full 

remission in 2 weeks for 99% patients [18]. Not only is thalidomide the current (and only) 

standard of care for erythema nodosum leprosum, it has also proven beneficial in other 

disorders. Soon after, in fact, it was found to significantly improve survival in patients with 

multiple myeloma [19]. Celgene, the biopharmaceutical company responsible for driving the 

resurgence of thalidomide through these repurposed indications, derived 75% or more of its 

revenue in 2016 from this one drug, primarily for treating multiple myeloma [20].

This case, although extreme, illustrates the value and possibilities of drug repurposing even 

in the face of documented failure. There are countless avenues to explore for new indications 

of old drugs, which are not necessarily surveyed in traditional clinical trial design strategies. 

In the current chapter, we will outline and describe the tools and best-practice methodologies 

that can be used to successfully leverage big data for drug discovery by detailing the 

pipelines of two recent studies as templates. We further discuss limitations and important 

considerations of this process in Subheading 4. We expect that one can apply the approach to 

discover new therapeutics for other diseases ofinterest after reading this chapter.

2. Materials

In this section, we will cover an overview of the materials and tools that can be used to 

perform an in silico drug discovery experiment, along with how to go about accessing them. 

We also provide a visual guide for this process in Fig. 1. First, we will discuss recommended 

software and computational resources that can be used for this purpose. Next we describe 

the types of data that are typically used in these experiments along with ontological 

resources on how they can be effectively integrated. We then go into the specific databases 

that house disease and chemogenomic-related gene expression data. We conclude with 

specialized software and packages that can enhance figure making capabilities to visualize 

ensuing results.

2.1 Software and ComputationalResources

Drug discovery using big data resources is accomplished computationally. For the individual 

researcher, a modern computer is really the only hardware requirement. For software, 

essentially any programming language whether open-source (e.g., R [21], Python [22]) or 

closed and commercially licensed (e.g., SAS [SAS Institute Inc., Cary, NC]) can perform 

data organization, statistical analyses, and figure generation with the inclusion of freely 

available packages (e.g., SciPy [23] for Python) when needed. There exist numerous 

resources (e.g., edX; https://www.edx.org) that provide an introduction on using these 

programming languages for data science. For infrastructure, cloud computing (e.g., Amazon 

Web Services Cloud) enables managing large datasets and performing computationally 

intensive tasks without the need of building in-house clusters.

2.2. Ontologies and Reference Databases

The landscape of big data in biomedicine is expansive yet unsystematic: encompassing a 

tremendous amount of data points across a multitude of modalities. As such, there are clear 

hurdles in precise characterization and proper integration procedures. To address these 
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challenges, researchers have created tools and ontologies to map and normalize these 

disparate data types in order to facilitate data harmonization and reproducible 

methodologies. This is especially important for the purposes of leveraging big data for drug 

discovery, as many different data types have to be seamlessly and reproducibly integrated 

along the entire drug discovery pipeline. A more comprehensive list of these various 

resources can be found in other related reviews [24].

The exponential growth of data entities with heterogeneous data types from multiple 

resources calls for developing ontologies to define entities and centralized reference 

databases. Meta-thesauruses, like the Unified Medical Language System (UMLS) [25], have 

been developed to organize, classify, standardize, and distribute key terminology in 

biomedical information systems and are invaluable for computational biology research. 

Essentially, each medical term (e.g., disease) has a Concept Unique Identifier (CUI) code 

that then can be referenced from other related ontologies. The Systematized Nomenclature 

of Medicine-Clinical Terms (SNOMED-CT; http://www.ihtsdo.org/snomed-ct/), for 

instance, is one of the largest healthcare-related ontologies and has over 300,000 medical 

concepts ranging from body structure to clinical findings. There are specific ontologies that 

aim to characterize the continually evolving representations of the phenotypic space. Many 

clinical datasets encode diseases using International Classification of Diseases (ICD) codes, 

for instance. The Disease Ontology (http://disease-ontology.org/) organizes and standardizes 

various aspects (e.g., synonyms, relationships, ICD codes) of disease-oriented clinical topics 

into representative terms. The Human Phenotype Ontology (http://human-phenotype-

ontology.github.io/) has a similar goal but expands to more broad aspects of human 

phenotypes, including abnormalities and side effects. There are many resources that organize 

information pertaining to various properties of genetic data, such as dbSNP (https://

www.ncbi.nlm.nih.gov/projects/SNP/), dbVar (https://www.ncbi.nlm.nih.gov/dbvar), 

RegulomeDB (information regarding regulatory elements; http://www.regulomedb.org/), and 

UniProt (protein sequence and functional information; http://www.uniprot.org/). The 1000 

Genomes Project (www.internationalgenome.org/) is a collection of thousands of whole 

genomes from populations across the globe. The Exome Aggregation Consortium (ExAC) is 

an accumulation of whole-exome data for over 60,000 unrelated individuals from multiple 

contributing projects at the time of this publication. There are also resources that are 

specifically focused on compiling information related to the associations of genotypes and 

phenotypes. The Online Mendelian Inheritance in Man (OMIM; https://www.omim.org/) is 

an online compendium of genotype/phenotype information focusing on Mendelian 

disorders. As of June 15, 2017, this resource has information on over 6000 phenotypes for 

which the molecular basis is known and over 3700 genes with gene-causing mutations. 

Other related resources include the Human Gene Mutation Database (HGMD; http://

www.hgmd.cf.ac.uk/) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/). The Mouse 

Genome Informatics (MGI; http://www.informatics.jax.org/) is a collection of data 

pertaining to various experiments performed on mice, including disease models with 

phenotype and genotype information.

In the drug space, medication and prescription data are often unsystematically organized due 

to issues like conflicting nomenclature or spellings (i.e., brand name vs. generic name, 

American vs. British terminology). Additionally, the same medication may be prescribed 
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with different dosages, minor formulation differences, and routes of administration. All the 

information is presented as free text in the medical records, requiring additional text mining 

effort to connect them to other modalities. RxNorm [26] was developed as an UMLS-based, 

standardized medication vocabulary that intersects with known clinical knowledge 

repositories like Micromedex (Micromedex Solutions, Truven Health Analytics, Inc. Ann 

Arbor, MI). Essentially, related complex drug name strings can be mapped to a common 

identifier. Linking medications to an RxNorm identifier facilities easy connection to other 

related resources that include other modalities of data, such as Sider [27] and Offsides/Two 

sides [28], which document known and predicted drug-drug interactions and connect 

medications to known clinical side effects. Through public databases like DrugBank [29], 

one can cross-reference drug targets, pharmacological properties, and clinical indications. 

Using RepurposeDB (http://repurposedb.dudleylab.org/) [30], one can explore the known 

drug repurposing space and explore various factors (e.g., chemical properties) that might 

underlie these successes. The US National Institutes of Health clinical trial repository 

(https://ClinicalTrials.gov) is a collection of clinical trial data from various diseases and 

treatments along with study outcomes and can open the door for accessing and reanalyzing 

clinical trial data [31], such as research into medication efficacy at various stages of clinical 

trials. PubChem (https://pubchem.ncbi.nlm.nih.gov/) is a reference database for information 

on the biological activities of small molecules, including compound structure and substance 

information.

2.3 Data Resources that Can Be Leveraged for Drug Discovery

A growing priority of increasing data accessibility through open-access efforts has 

considerably boosted computational-based drug discovery capabilities. In fact, Greene et al. 

created the Research Parasite Award, which honors researchers who perform rigorous 

secondary analyses on existing, open-access data to make novel insights independent from 

the original investigators [32]. These data exist in many forms, including clinical (i.e., 

disease comorbidities), genomic (e.g., genetic, transcriptomic), and proteomics.

Drug discovery is multifaceted at its core, at the very least involving some combination of 

chemical data in addition to those mentioned above. This is even more relevant for 

computational-based drug discovery, where complex intersections of many disparate data 

types are required. Fortunately, there are many public repositories that contain a plethora of 

data around these spheres, which can be connected utilizing the aforementioned ontologies 

and reference databases. We outline the various data sources in the current section and 

present two examples ofsuccessful drug discovery utilizations of these datasets in detail in 

Subheading 3.

2.3.1 Hospitals and Academic Health Centers—Due to regulatory requirements, 

almost all American medical centers and health systems store patient data collected during 

outpatient and hospital visits using software platforms such as those provided by EPIC (Epic 

Systems Corporation, Madison, WI) and Cerner (Cerner Corporation, Kansas City, MO). 

These electronic medical records (EMRs), or alternately electronic health records (EHRs), 

are composed of a number of data types such as disease diagnoses, medication prescriptions, 

lab test results, surgical procedures, and physician notes. Generally, data warehouse 
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administration takes responsibility for housing and creating an anonymized or de-identified 

version of the EMR. Affiliated faculty and researchers then apply for access to this resource 

through their Institutional Review Board (IRB). While the primary role of EMR is for 

institutional or administrative purposes, one important benefit of the digitization of health 

records is that they can be more easily adapted for powerful healthcare research purposes. 

For drug discovery, these data can be used for genotype-phenotype relationship discovery 

that could drive target selection or to analyze medication efficacy and side effects in a real-

world context [33]. The implications and impact of precise electronic phenotyping 

procedures for these types of analyses will be discussed in Subheading 4.

There are many hospital systems and affiliated medical centers that have successfully used 

their in-house EMR systems for important scientific and clinical discoveries [34–38]. The 

Mount Sinai Hospital and the Icahn School of Medicine at Mount Sinai organize and protect 

their EMR data (beginning in 2003) within the Mount Sinai Data Warehouse, which is 

comprised of over 7.5 million patients and 2 billion points of data, including disease 

diagnoses and lab test results. The University of California, San Francisco (UCSF) is leading 

a massive effort to coordinate EMR data from five UC medical centers. The University of 

California Research eXchange (UC ReX; https://myresearch.ucsf.edu/uc-rex) provides a 

framework for UC-affiliated researchers to query de-identified clinical and demographic 

data, providing a natural cross-validation opportunity to compare findings across these sites.

Data analyses using EMRs can be enhanced with the inclusion of genetic data from 

biobanks or repositories of biological samples (e.g., blood) of recruited participants 

generally from a hospital setting. Many institutions have frameworks set up that facilitate 

this type of research, such as The Charles Bronfman Institute of Personalized Medicine 

BioMe biobank within the Mount Sinai Hospital system, BioVU from the Vanderbilt 

University Medical Center, and DiscovEHR, which is a collaboration between Regen-eron 

Genetics Center and the Geisinger Health System. Coupling clinical and genetic data has led 

to important findings in the area of drug and target discovery. Using the DiscovEHR 

resource, for instance, researchers recently characterized the distribution and clinical impact 

of rare, functional variants (i.e., deleterious) in whole-exome sequences for over 50,000 

individuals [39]. The associations they identified add insight to the current understanding of 

therapeutic targets and clinically actionable genes.

A limitation of these biobanks and EMR systems is that they are often restricted to 

researchers affiliated with the associated institution. There are a number of initiatives and 

resources that allow researchers to apply for access of these types of data. For instance, the 

Centers for Medicare & Medicaid Services offer relevant healthcare-related data dumps 

(https://data.medicare.gov/) for sites that accept Medicare including hospitals, nursing home, 

and hospices with information on various factors and outcomes (e.g., infection rates). The 

DREAM challenges (http/www.dreamchallenges.org), for instance, consist of various “open 

science” prediction challenges, some of which are disease-centric that incorporate real 

clinical datasets often coupled with other modalities of data (e.g., genetics). In the 

Alzheimer’s Disease Big Data DREAM Challenge #1 (Synapse ID: syn2290704; June–-

October 2014), challengers were tasked with developing the best performing machine 

learning model to predict disease progression, using actual genetic data (e.g., genotypes) and 
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clinical data (e.g., cognitive assessments) from patients with mild cognitive impairment, 

early Alzheimer’s disease, and elderly controls. The UK Biobank (http://

www.ukbiobank.ac.uk/) is an unprecedented health resource of over 500,000 recruited 

participants aged 40–69 with genetic (genotyping) and a wide variety of clinical data, 

including longitudinal follow-ups (original data collected from 2006 to 2010). These data 

include online questionnaires (e.g., about diet, cognitive function), EMR, blood 

biochemistry (e.g., hormone levels), and urinalysis, among others. Further, more specialized 

data is available for a subset of patients, including a 24-h activity monitoring for a week (n = 
100,000) and image scans (e.g., brain, heart, abdomen; n = 100,000).

What distinguishes the UK Biobank from other large-scale initiatives is that it is a “fair 

access” biobank [40], one that has infrastructure to facilitate collection, storage, protection, 

and distribution (with data update releases) to allow academic and industrial researchers to 

apply for access. As of July 2016, there have been around 100 publications featuring or 

involving data from the UK Biobank (http://www.ukbiobank.ac.uk/published-papers/; latest 

update), although this number is rapidly increasing. While these studies include major 

findings in the realm of genetics and phenotypes (e.g., diseases and health outcomes), very 

few are directed at drug discovery. Wain et al. have demonstrated the value of these data for 

the identification of potential drug targets, specifically for lung function and chronic 

obstructive pulmonary disease (COPD) [41]. The authors leveraged the large cohort size to 

select ~50,000 individuals at the extreme ends of lung function (e.g., forced expired volume 

in 1 s) for their analyses. From a GWAS, they identified 97 signals (43 reported as novel) 

and created a polygenic risk score from around six alleles that confers a 3.7-fold change in 

COPD risk between high- and low-risk scored individuals. The authors then analyzed these 

signals in the context of variant function (i.e., deleteriousness) that cause expression changes 

in other genes (eQTLs), resulting in 234 genes with potentially causal effects on lung 

function. Seven out of these 234 genes are already targets of approved or drugs currently in 

development. The remaining genes, along with others they identified by expanding their 

network via protein-protein interactions, represent potential novel targets for drug 

development.

2.3.2 Genomic Experimental Data Repositories—Each and every research study is 

crucial for furthering scientific knowledge, but sharing of the experimental data collected 

can additionally benefit other researchers in the field directly. The pooling of several sources 

of data can allow for meta-analyses and other types of research not possible in isolation, 

thereby facilitating further discoveries. There have been outstanding efforts to provide a 

framework for researchers to deposit and share data, with many high-impact journals even 

requiring it for publication. There are other reviews that go into detail about these resources, 

but we will describe a few here.

The Gene Expression Omnibus (GEO) is a public repository from NCBI that allows 

researchers to upload high-quality functional genomics data (e.g., microarray) that meet 

their guidelines [42]. GEO organizes, stores, and freely distributes these data to the research 

community. As of 2017, GEO already surpasses over two million samples. ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress/) [43] is an archive of functional genomics data (some 

overlap with GEO) comprised of over 70,000 experiments, 2.2. million assays, and 45 
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terabytes of data as of July 2017. The Immunology Database and Analysis Portal (ImmPort; 

www.immport.org) is a related resource focused on data from immunology studies of 

various types, focuses, and species that provides a framework to share and use genomic data 

of clinical samples.

The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/) from the NIH is a 

comprehensive resource that collects data relating to the genomic aspects in over 33 types of 

cancer. TCGA harmonizes clinical, sequencing, transcriptomic, and other data types from 

various studies in a user-friendly Genomic Data Commons Data Portal (https://

portal.gdc.cancer.gov/). As of Data Release 6.0 (May 9, 2017), TCGA encompasses around 

250,000 files from almost 15,000 patients with cancer in 29 primary sites (e.g., kidney). As 

the volume of the data from TCGA is both immense and complex, Firehose GDAC (https://

gdac.broadinstitute.org/) was developed to systematize analyses and pipelines using TCGA 

in order to facilitate smooth research efforts. The Cancer Cell Line Encyclopedia (CCLE; 

http://portals.broadinstitute.org/ccle/) is a public compendium of over 1000 cell lines that 

aims to characterize the genetic and pharmacologic aspects of human cancer models. The 

Genome-Tissue Expression (GTEx; https://gtexportal.org/home/) portal is a collection of 

genetic and gene expression data from the Broad Institute, with data for 544 healthy 

individuals in 53 tissues as of the V6p release. Using this resource, researchers have been 

able to delineate cis and trans expression quantitative trait loci (eQTL), a unique capability 

from having access to both genotype and gene expression data.

2.3.3 Chemogenomic Data Resources—The last crucial component to 

computational-based drug discovery is a resource that relates effects of chemical exposure 

on biological systems. The Connectivity Map (CMap; https://portals.broadinstitute.org/

cmap/) is a landmark repository that seeks to provide a systematic representation of the 

transcriptomic effects of cell lines being treated with various drugs. The current version 

(build 02) of CMap contains over 7000 drug-induced gene expression profiles for 1309 

compounds across five cell lines.

A spiritual successor of CMap, the Library of Integrated Cellular Signatures (LINCS; http://

www.lincsproject.org/) project is a large-scale collaboration from 12 institutions. As of the 

writing of this chapter, LINCS encompasses 350 datasets using 14 different methods (e.g., 

KINOMEscan) across six subject areas (e.g., binding, proteomics) and 11 biological 

processes (e.g., gene expression, cell proliferation). Alarge component of LINCS is L1000 

Connectivity Map - a collection of assays that measure transcriptomic profiles for a variety 

of pharmacological and genetic (knockdown and overexpression) perturbations across 

different cell lines. L1000 contains data for roughly 20,000 compounds across over 50 

different cell lines - a substantial increase from CMap. One large difference between these 

two resources, however, is that the L1000 assay directly measures only 978 “landmark” 

genes and uses imputation methods to gain information for others. Researchers can obtain 

these datasets through a convenient data portal (http://lincsportal.ccs.miami.edu/dcic-

portal/). As referenced above, there are countless successful research applications using 

these resources in the fields oftarget discovery, drug discovery, and drug repurposing along 

with many others.
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2.4 Visualization Tools and Software

Effective data visualization is pertinent for network-based target (e.g., key driver) discovery 

or data exploration in drug discovery. The programming languages mentioned before can 

produce high-quality figures of results. While the base graphical output style is often 

adequate, there are a number of packages that can be used to create superior and publication-

ready graphics, including ggplot2 [44] for R, matplotlib [45], PyX (http://

pyx.sourceforge.net/), and seaborn (http://seaborn.pydata.org/) for Python. D3 (https://

d3js.org/), a JavaScript library, can also create impressive static and interactive figures for 

feature on web sites. While these languages can generate network figures, such as 

NetworkX(http://networkx.github.io/) for Python, specialized software such as Cytoscape 

[46], Gephi [47], and igraph (http://http://igraph.org/) or online tools such as Plot.ly (http://

plot.ly/) may be preferred for this use case.

3 Methods

In the current section, we will describe a general workflow that leverages public data for 

drug discovery using, exemplified in two of our recent studies. We provide the general step-

by-step framework for performing such experiments in Fig. 2. While both studies are 

methodologically similar, they have disparate focuses, illustrating the wide variety of 

possibilities of this framework. In the first study, Li and Greene et al. sought to identify 

novel therapeutic options for chronic allograft damage, specifically to limit the progression 

of interstitial fibrosis and tubular atrophy (IF/TA) [48]. In the next study, Chen and Wei et al. 

discovered a novel, potentially therapeutic drug to treat hepatocellular carcinoma (HCC) 

revealing reduced growth of cancer cells in both in vitro and in vivo models [49].

3.1 Disease Signatures

A disease signature is the unique molecular state (i.e., RNA expression profile) of a 

phenotype (e.g., type 2 diabetes) that is altered from “wild-type” or healthy. Typically, these 

signatures can be characterized by multimodal biological data, including gene expression in 

tissues and protein composition in the microbiome. In the Li and Greene et al. study, they 

obtained kidney transplant microarray datasets from GEO in addition to an in-house dataset. 

They first restricted the possible datasets to those in humans with biopsy or peripheral blood 

samples, leaving five that were eligible. As is typical in these types of analyses, the 

phenotypic descriptors from the datasets did not directly coincide. As such, for each study, 

they selected data from specific biopsies that met their criteria for suitable comparison (i.e., 

“moderate” and “severe” IF/TA from one study, IF/TA “II” and “III” from another, etc.) 

including both case and control conditions. To rectify any possible conflicting probe 

annotations due to platform or versioning, they re-annotated all probes to the latest gene 

identifiers using AILUN [50]. In addition to ensuring consistent annotations, it is also 

important to account for potential discrepancies in expression measurements across studies 

and platforms. Accordingly, they standardized each dataset using quantile-quantile 

normalization to allow for more precise integration. The integrated dataset comprised 275 

samples in two tissues from three different microarray platforms.
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With the datasets normalized and integrated, a meta-analysis can be performed to create a 

consensus disease signature across multiple studies. There are many differing methodologies 

to perform meta-analysis on microarray data that we discuss in Subheading 4. Li and Greene 

et al. performed two meta-analysis techniques and included genes that had robust expression 

profiles significant in both, thus maximizing the methodological strengths of each. The first 

method involved evaluating the differential expression effect size for each. Specifically, 

these effect sizes were combined using a fixed-effect inverse-variance model by which the 

effect size from each study is weighted by the inverse of the intra-study variance resulting in 

a meta-effect size. From this approach, they identified 996 FDR-corrected significant genes 

measured in at least four studies and were concordantly expressed in the same direction 

(FDR < 0.05).

For the second method, they then utilized results from the significance analysis of 

microarrays (SAM) [51] of each study, classifying significant differentially expressed genes 

between IF/TA and non-IF/TA groups using q < 0.1 threshold. For the metaanalysis, they 

performed a Fisher’s exact test comparing the number of studies in which each gene was 

significantly differentially expressed by the hypergeometric distribution (p < 0.05). From 

this method, they identified 510 genes that were significant in at least three of the studies. 

With the two results from the meta-analyses in hand, they restricted their disease signature to 

genes that were significantly differentially expressed using both methods, resulting in 85 

genes used for drug signature comparison.

Chen and Wei et al. also leveraged public, external datasets to generate a signature for the 

disease of interest: HCC. The authors constructed a multitiered pipeline that utilized various 

open-source databases to build a high-confidence HCC disease signature that was evaluated 

at multiple stages. To build the HCC disease signature, they first obtained RNA sequence 

profiles for 200 HCC and 50 adjacent non-tumor samples from GDAC and their 

corresponding clinical labels from TCGA. For subsequent evaluation of this disease 

signature, they downloaded data from GEO by querying “hepatocellular carcinoma,” 

resulting in seven potential independent datasets that had at least three samples in both 

disease and control (i.e., non-tumor liver sample) groups. Like the other study, they 

converted all probes to the most recent build and collapsed them to the gene level by mean 

value and then performed quantile normalization. As mentioned above, datasets from public 

resources may not coincide with the current research question or focus. Like before, 

different methodologies have to be employed to make best use of the exploitable aspects of 

interest (see Subheading 4). For the current study, in order to ensure that gene expression 

data from these HCC samples were of high quality, robust enough, and related to the cell 

lines that were later used for experimental validation, they performed an initial assessment 

of the similarity of each expression profile to cancer cell lines that are already characterized 

in detail. For the background set, they downloaded gene expression data for 1019 cancer cell 

lines, including 25 that were HCC-specific, from CCLE, and represented each by their 

expression profiles of 5000 genes that varied the most across all samples. For the similarity 

assessment, they performed a ranked-based Spearman correlation of the CCLE set to both 

the TCGA and GEO samples of interest. They then performed a Mann-Whitney test to 

differentiate the correlation outcomes of the samples of interest to the HCC-specific cell 

lines against the non-specific ones. The resulting p value outcomes of the sets of interest 
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were compared to outcomes of 1000 random tissue samples (assessed via the same method) 

obtained from the Expression Project for Oncology (expO; GSE2109). From the original 

datasets of interest, samples were removed from consideration if their association was lower 

than 95% of the random samples based on the null distribution (p < 0.05). From this 

thorough assessment, eight tumor samples from TCGA and one dataset from GEO were 

removed from consideration. After restricting to high-quality TCGA data-sets (n = 192 

tumor and 50 non-tumor samples), the authors built the initial HCC disease signature model 

using DESeq (version 1) [52] to perform differential expression analysis across various log-

two fold change (FC) and significance thresholds.

To fine-tune and identify the best disease signatures, the authors evaluated them on the 1736 

patient samples from the six curated datasets from GEO. For each study, they removed non-

HCC genes from the gene expression data and then performed principal component analysis 

to build classifiers, with the first principal component representing the variation between 

tumor and non-tumor samples. They found that FC > 2.0 and p < 1E-20 thresholds led to the 

best separation of tumor and non-tumor samples (median AUC = 0.995) across all studies. 

Based on this best threshold, the integrated HCC signature consisted of 163 up-and 111 

downregulated genes. In order to use the LINCS L1000, a drug gene expression database 

with 978 genes profiled, they also created another reduced disease signature.

3.2. Drug Signatures

Drug signatures are similar in nature to disease signatures in that they represent the global 

perturbation of gene expression compared to vehicle control. In the case of drug signatures, 

the perturbation is treatment exposure instead of disease state. As mentioned in Subheading 

2, there are many databases that contain gene expression data for a variety of drugs across 

many different cell lines, tissues and organisms. In the Li and Greene et al. study, they 

collected all drug-induced transcriptional profiles for all drugs in CMap (n = 1309) across all 

experiments (n = 6100). They then created a consensus, representative profile for each drug, 

merging data from the associated studies using the prototype ranked list (PRL) method [53]. 

The PRL method works through a hierarchical majority-voting scheme for all ranked gene 

expression lists within a single compound where consistently over- or down-regulated genes 

are weighted toward the top of affiliated extremes. The various merging methodologies and 

their considerations will be discussed in the Notes.

Chen and Wei et al. utilized both CMap and LINCS data to generate drug signatures. For 

each drug of all CMap, they performed an initial quality control step keeping only instances 

(i.e., cell line experiment data) where its profile correlated ( p < 0.05) with at least one other 

profile (of the same drug), leaving 1329 high-quality instances. They gathered a high-quality 

list of data from LINCS by only including landmark genes (n = 978), restricting instances to 

HepG2 and Huh7 cell lines, and removing poor quality perturbations, resulting in 2816 

profiles. As the authors were interested in repurposing an already approved compound, they 

intersected drugs from both data sources to DrugBank, leaving 380 instances of 249 drugs. 

Out of these 249 drugs, 83 were common between the two sources.
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3.3 Integrating Disease and Drug Signatures: In Silico Methodologies for 
Therapeutic Predictions—The general methodology used to correlate drug-induced and 

disease-state gene expression profiles is well established and has been used successfully in a 

wide variety of studies. How well, and in what direction, drug and biological profiles 

correlate can direct drug discovery and repurposing efforts. The disease-state profile 

represents gene expression patterns that diverge from the norm. Accordingly, identifying a 

compound with an opposing (i.e., anticorrelated) profile can push biological expression 

patterns back to an unperturbed state. Typically, the signature matching is performed using a 

KS test [54]. As this type of analysis can produce many candidate predictions, we 

recommend additional refinement and filtration steps to prioritize drugs or targets with the 

highest confidence of success to move forward with testing.

In the Li and Greene et al. study, they compared the correlation for 1309 consensus 

compound signatures from CMap to their IF/TA disease signature using a modified KS test. 

The significance of these scores was calculated by comparing specific KS scores to those 

from a random permutation of 1000 drug signatures, producing a ranked list of potential 

treatments that were significantly anticorrelated to the disease signature (p ≤ 0.05). To 

further refine this list of candidates, they performed a literature review of the top hits and 

excluded drugs from their list of possibilities that would impede IF/TA improvement due to 

their side effect profile (i.e., those with negative neurological side effects). From this step, 

they decided to further pursue kaempferol and esculetin as candidate therapeutic drugs to 

treat renal fibrosis. To add further evidence to their findings, the authors performed a 

separate, additional in silico experiment to try to characterize potential immune-related 

effects of these two compounds through evaluating specific immune cell they may 

potentially influence during anti-fibrosis activity. As such, they first matched the 1309 drug 

expression profiles to 221 immune cell state profiles procured from immune-cell 

pharmacology map [55] to look for enrichments in specific immune cell subsets. This 

analysis predicted that esculetin and kaempferol would inhibit both active and innate 

immune cells (e.g., CD4 T cells) in IF/TA.

In the Chen and Wei et al. study, they were unable to use their best performing HCC 

signature profile of 274 genes as only 30 genes mapped to the landmark LINCS set. 

Accordingly, they relaxed the threshold (p < 0.001 and FC >2.0) to increase the power ofthe 

signature for this comparison task, producing a signature of 44 genes. The original signature 

was correlated to 1174 distinct drugs in CMap and the reduced signature was correlated to 

249 distinct drugs in LINCS. Similar to the previous study, the authors utilized a 

nonparametric, rank-based pattern methodology based on the KS statistic to identify 

compounds curated from both CMap and LINCS that are anticorrelated with the HCC 

signature. They also assessed significance of these predictions through random permutations 

and multiple testing correction (FDR <0.05): there were 302 drugs from CMap and 39 drugs 

from LINCS that were anticorrelated at this threshold, with 16 overlapping. Out of this high-

confidence intersected set, the top hit from ranking across both libraries was niclosamide. 

This drug had previously established antitumor properties in other cancers, but had not been 

assessed in HCC animal models. Therefore, it was selected as a candidate drug to undergo 

subsequent validation experiments.
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Like the previous study, Chen and Wei et al. developed an innovative, additional in silico 

approach to evaluate the global performance of the predictions from their pipeline. They 

hypothesized that their top predictions (i.e., anticorrelated drugs) should be enriched for gold 

standard, or established, treatments of HCC. Accordingly, they extracted data from 

clinicaltrials.gov querying the terms “hepatocellular carcinoma” and “liver cancer” and 

filtering from the results trials that studied tumors and cancer in general. From this list of 

960 trials, they extracted 76 drugs from the “interventions” column that appeared in more 

than one trial as their list of gold standard HCC drugs. When mapped to the che- mogenomic 

databases, there were 7 found in CMap and 16 in LINCS. Using ssGSEA from GSVA [56] 

with permutation testing (n = 10,000), a gene set enrichment package, they found that these 

gold standard drugs were more likely to reverse the HCC gene signature in both CMap (p = 
0.012) and LINCS (p = 0.018), increasing the confidence of testing other hits in the lab.

3.4. Experimental Validation of Predictions

While the prediction methodology outlined above is powerful in its own right, it is often 

necessary to validate these findings in an experimental setting. Convincing validation of 

these predictions can be achieved in a multitude of ways in both in vitro and in vivo models. 

The considerations and criteria for this decision are discussed in Subheading 4. To 

investigate the utility of kaempferol and esculetin for fibrosis, Li and Greene et al. utilized 

human kidney 2 (KH2) in vitro cell line to determine perturbations in cellular pathways 

following drug exposure, specifically targeting biological aspects from their in silico-based 

hypotheses. As such, they showed kaempferol significantly reduced TGF-β1-mediated 

expression of SNAH (p = 0.014 for 15 μm exposure) and reversed CDH1 downregulation ( p 
= 0.045). They also found that esculetin treatment inhibits Wnt/β-catenin signaling in renal 

tubular cells: esculetin-treated cells caused a significant decrease in CCND1 protein levels 

after Wnt agonist stimulation ( p = 0.0054 for 60 μm exposure).

In addition to the encouraging in vitro results, they performed an additional experiment to 

assess the effects of kaempferol and esculetin on renal interstitial fibrosis in vivo. 

Specifically, they used a unilateral ureteric obstruction (UUO) mouse model to study gene 

expression, histological, immunohistochemistry (IHC) effects of treatment on renal 

fibrogenesis. Mice (Balb/c mice from Jackson Laboratory) were administered kaempferol (n 
= 5), esculetin (n = 5), or saline (n = 6) from 2 days prior to UUO surgery procedure until 

sample collection 7 days post-UUO. They found encouraging results supporting a beneficial 

role of these drugs in treating renal fibrosis: mice treated with both drugs had significantly 

lower amount of interstitial collagens and renal fibrosis in UUO kidneys by picrosirius red 

staining compared to controls (p = 0.0009 for kaempferol; p = 0.0011 for kaempferol). Their 

targeted analyses also allowed to assess their hypotheses of the mechanisms by which these 

drugs are effective in this system: for instance, kaempferol caused a significant reduction in 

the gene expression of Snail (p = 0.038), a key transcription factor in the TGF-β signaling 

pathway to confirm their in vitro analysis.

Like the first study, Chen and Wei et al. performed a series of both in vitro and in vivo 

experiments to systematically evaluate their prediction of niclosamide as a HCC drug 

candidate. Due to poor water solubility of niclosamide which could hamper its effectiveness, 
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they also performed these experiments using niclosamide ethanolamine salt (NEN), which is 

known to have better systemic bioavailability and could have a better chance of reaching the 

tumor site. As an initial evaluation, the authors performed a cell viability assay of these two 

drugs on HCC cells to calculate inhibitory concentrations. They found that niclosamide and 

NEN both reduced HCC cell viability, being over sevenfold more cytotoxic to HCC cells 

than primary hepatocytes. With these findings, the authors felt confident to assess the 

antitumor effects ofniclosamide and NEN in a mouse primary HCC model. Mice with 

induced HCC were treated with food containing niclosamide or NEN (cases) or with 

autoclaved food (control). At 12 weeks, the livers were extracted and analyzed 

histologically. The authors found that niclosamide and NEN both reduced the number of 

tumor nodules compared to controls, but the effect of NEN was much more pronounced. 

Furthermore, the NEN-treated mice had lower over-all liver weights compared to both 

control and niclosamide groups (p < 0.001 for both), but there was no significant difference 

between niclosamide and control groups. This provided early evidence that NEN might be 

the superior treatment candidate.

Moving closer in relevance for human treatment, they evaluated the effect of these drugs on 

mice bearing orthotopic patient- derived xenografts (PDX) derived from HCC tissue of 

resected livers from three patients with the disease. After implantation, these mice were 

separated into groups like before, being fed either regular food or food with NEN or 

niclosamide. Like in the results for the previous experiment, the NEN group had the most 

pronounced effects in inhibiting PDX growth based on both bioluminescence and tumor 

volume (p < 0.05 for both) and did not significantly lower body weight. Niclosamide 

treatment, however, did not significantly reduce tumor growth. At the end of this experiment, 

they found that levels of niclosamide were over 15 × greater in xenografts in the NEN group 

compared to the niclosamide group providing further evidence for the limited bioavailability 

of the latter.

As an adjunct to this experiment, the authors assessed how niclosamide and NEN compared 

to sorafenib, one standard of care for HCC, in this PDX model. In the PDX model, the 

combination of NEN and sorafenib resulted in decreased tumor volume compared to control 

group (p = 0.013), NEN only (p = 0.030), and sorafenib only (p = 0.024). Treatment with 

niclosamide and sorafenib, however, did not result in reduced tumor volumes compared to 

the other groups. These experiments further verified that NEN was the preferred candidate 

over niclosamide for HCC treatment.

Relating to the original computation-based predictions, the authors experimentally assessed 

the capacity for these drugs to reverse the HCC gene signature they defined. As a first step, 

they treated HepG2 cells for 6 h with 10 μm niclosamide, 10 μm NEN, or 10 μm dimethyl 

sulfoxide (control). As hypothesized, they found that both niclosamide (p = 1.1 × 10−7; 

Spearman correlation of–0.32) and NEN (p = 9.8 × 10−6; Spearman correlation of –0.26) 

significantly reduced the 274 HCC gene expression profile. Furthermore, they observed 

similar gene expression changes for both drugs compared to control (p < 2.2 × 10−16; 

Spearman correlation of 0.87). As a complement to the in vitro assessment of gene 

expression changes, the authors additionally assessed effects on gene expression within the 

PDX model. They found that the differential gene expression profile between NEN-treated 
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animals and controls was significantly anticorrelated with the HCC profile (p < 3.9 × 10−6; 

Spearman correlation of –0.25). Out of all the genes in the HCC profile, the authors 

observed that the anticorrelation signal was mostly driven by 20 upregulated and 29 

suppressed genes from both the in vitro and in vivo experiments (FDR <0.25).

As a final piece to the puzzle, the authors sought to characterize by which biological 

mechanism NEN attenuates HCC. They focused their attention to chaperone proteins heat 

shock protein 90 (HSP90) and cell division cycle 37 (CDC37) that regulate kinases inhibited 

by NEN. They first confirmed that NEN inhibited the HSP90/CDC37 interaction and then 

assessed to which protein NEN binds. They found that NEN binds to CDC37 and also 

enhanced its thermal stability. To support this finding, they observed that CDC37 was 

overexpressed in 80% of HCC tissues compared to normal livers. To assess whether CDC37 

is, in fact, mediating the effects of NEN in treating HCC, they performed a final experiment 

in which RNA interference was used to knockdown CDC37 in HCC cells treated with NEN. 

As hypothesized, they found that HCC cells lacking CDC37 expression were less sensitive 

to NEN, supporting the notion that the antiproliferative effects of NEN in HCC are partly 

dependent on CDC37. With these exhaustive in vitro and in vivo experiments, the authors 

successfully provided a molecular context of how their computationally predicted treatment 

for HCC worked at multiple biological levels.

4. Notes

In this chapter, we have briefly detailed the vast amount of public resources that can enable 

computational-based drug discovery. The methods used by Li and Greene et al. and Chen 

and Wei et al. can hopefully serve as a guide on how to leverage big data for drug discovery 

from prediction to validation. It is important, however, to note the limitations and caveats 

ofvarious aspects ofthese pipelines and the special considerations that should be accounted 

for.

4.1. Computational Considerations

As software is continually updated and new versions of tools and packages released, there is 

a large issue with reproducibility in research, often due to incompatibility of computing 

environments [57]. This often leads to inconsistent results, even when using the same 

computational protocols. Beaulieu-Jones and Greene have recently proposed a system that, 

if adopted, could avoid these potential incompatibility issues [58]. They outline a pipeline 

that combines Docker, a container technology that is distinct from the native operating 

system environment, with software that continually reruns the pipeline whenever new 

updates are released for the data or underlying packages. We generally recommend using 

open-source programming frameworks and distributable notebooks, such as Jupyter 

Notebook (http://jupyter.org/) and RMarkDown (http://rmarkdown.rstudio.com/), and 

following the emerging best practices for reproducible research whenever possible in order 

to most easily facilitate data sharing and research reproduction. With this said, the most 

important step toward enabling reproducible research is a willingness to share the data and 

code in a public repository. GitHub (http://github.com/) and Bit-bucket (http://bitbucket.org/) 
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are two common code repos, and it is often encouraged to deposit large datasets in 

repositories like Synapse (http://www.synapse.org/).

Another issue plaguing biomedical research is the ever-changing nature of genome builds 

and identifiers, which can affect delineation of reference alleles, genomic coordinates, and 

probe annotations, among many others. As an early salutation to this phenomenon, Chen et 

al. built AILUN, a fully automated online tool that will re-annotate all microarray datasets to 

the latest annotations, allowing for compatible analyses across differing versions [50].

4.2. Robustness of Disease Signatures

The concept of a disease signature is continually evolving through the development of better 

methods to quantify health, the refinement of understanding roles of disease 

pathophysiology, and increase in both the availability and types of biological data collected. 

The extensive public repositories described above contain a wealth of data pertaining to a 

variety of diseases across many disease models, tissues, and conditions (i.e., exposures). To 

fully leverage these data and increase power, it is possible to collect and integrate multiple 

related datasets, but will require vigilant and methodological quality control for effective and 

accurate integration in both the phenotypic and genomic space. There are, however, potential 

critical issues to consider when performing a meta-analysis experiment of gene expression 

disease signatures, particularly in microarray experiments [59]. In addition to issues arising 

from experiments having mismatching platforms (described above), the disease 

characterization that is the basis of each experiment may differ, such as having different 

inclusion criteria or disease definitions. Population-level differences in racial, demographic, 

or environmental backgrounds of these studies can have a large effect on gene expression 

levels that are unrelated to disease and could lead to spurious associations if not properly 

controlled for [60]. One solution to deal with these and other potential unmodeled factors 

would be to utilize surrogate variable analysis to overcome gene expression heterogeneity 

within these studies [61].

One study assessed the robustness of disease signatures for over 8000 microarrays across 

over 400 experiments in GEO for a broad range of diseases and tissue types [62]. 

Fortunately, they concluded that the gene expression signatures within diseases are more 

concordant than tissue expression across diseases, lending further credibility to utilizing 

such data for meta-analysis studies. While this finding is encouraging, it may not always be 

true for new datasets or alternative public repositories. Another consideration is the type of 

statistical analysis performed to complete the meta-analysis. We have illustrated a few in 

experiments described within Subheading 3, but there are many other options. In fact, 

researchers have systematically compared eight different meta-analysis methods for 

combining multiple microarray experiments [63]. They found that these different approaches 

resulted in substantially different error rates in classifying the disease of interest when using 

the same datasets. As such, one must be conscientious of studies to be included and the 

method used in meta-analysis experiments.
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4.3. Drug Profile Variation

Many related studies, including the highlighted one by Li and Greene et al., performed a 

meta-analysis to integrate multiple drug profiles into a consensus signature. Not surprisingly, 

there are caveats of this process pertaining to varying biological contexts that can affect its 

validity and utility [64]. Researchers integrated gene expression data for 11,000 drugs from 

LINCS with their chemical structure and bioactivity data from PubChem to assess 

correlation between structure and expression [65]. Specifically, they systematically evaluated 

the effect of various biological conditions, namely, cell line, dose, and treatment duration, on 

this relationship. They found that compounds that are more structurally similar tend to have 

similar transcriptomic profiles as well, but it is dependent on cell line. For instance, PC3 and 

VCAP, both prostate-related cancer cell lines, generally have significantly different patterns 

of similarity between structure and gene expression. Separately, they also found an 

interesting relationship between structure and gene expression in the context of dose: drugs 

with high structure similarity have stronger gene expression concordance at higher than 

lower doses. Another research group merged profiles of 1302 drugs from CMap across doses 

and cell lines to create a drug network with the goal ofusing it to predict drug effect and 

mechanism of action [53]. They noted that creating a consensus signature for a drug that has 

inconsistent effects on different cell lines could dilute its unique biological effects. That 

being said, they found even across heterogeneous cell types, a consensus drug signature 

could still be well classified in their drug network given a sufficiently large collection of 

data. In any case, further understanding and characterization of relationship between 

compound and biological context will undoubtedly improve accuracy of computational 

predictions and thereby bolster rates of successful translation into the clinic.

4.4 Selection of Validation Model

With a candidate drug selected for a disease ofinterest, it is imperative to perform a series of 

coordinated experiments (e.g., PK/PD/ toxicity studies), in addition to legal considerations 

(e.g., IP protection) to gauge its eligibility. Further, these decisions may be particularly 

critical due to time and financial limitations, where setbacks, mistakes, or poor choices could 

halt future progress. Drug candidates often fail to successfully translate into the clinic due to 

two main reasons: improper safety and efficacy assessments, both possibly a direct result of 

poor early target validation and unreliable preclinical models [66].

In terms of preclinical testing, the large number of avenues and models can be 

overwhelming, especially in light of variable reliability. While the accessibility to massive 

quantities of biological big data has been transformative in the field of drug discovery, not 

all experiments are of equal utility. In studying HCC, for example, researchers recently 

found that half of public HCC cell lines do not resemble actual HCC tumors in terms of gene 

expression patterns [67]. Interestingly, another group found that rarely used ovarian cancer 

cell lines actually have higher genetic similarity to ovarian tumors than more commonly 

used ones [68]. Due to phenomena like these, we recommend performing rigorous 

examinations like those above and leveraging knowledge from existing evaluations of these 

data when possible before usage. The nuances of subsequent steps of the validation process 

are beyond the scope of this chapter, but there are countless resources that delve into 

specifics regarding proper procedures for each stage [69–72].
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4.5. Drug Discovery Using EMR Data

EMR systems contain a great deal of disease- and phenotype-related information that can be 

leveraged for drug discovery as “real-world data.” The multifaceted data that are collected in 

EMR facilitate flexibility in devising research questions that may be beyond the scope or 

focus of the original experiment. As such, unanticipated connections may be formed to 

biological aspects that would not be collected in traditional prospective study designs. 

Additionally, the large sample sizes and natural collection of longitudinal, follow-up 

information relating to patient outcomes from treatment are invaluable advantages over 

traditional randomized clinical trials [73].

As mentioned, EMR frameworks are primarily designed for infrastructural support and to 

facilitate billing. Like other research datasets, the raw data is often messy, incomplete, and 

subject to biases. Therefore, certain aspects may not be as reliable as unbiased collection 

measures. Despite better refined structuring, ICD codebased disease classification overall is 

often insufficient to accurately capture disease status [74]. In this notable example, clinicians 

manually reviewed the charts of 325 patients that had been recorded with the ICD-9 code for 

chronic kidney disease stage 3 (585.3). They found that 47% of these patients did not have 

any clinical indicators for the disease. Including other types of data, like medications, in 

phenotyping criteria often leads to better accuracy. For instance, researchers found that 

electronic phenotyping algorithms that require at least two ICD-9 diagnoses, prescription of 

antirheumatic medication, and participation of a rheumatologist resulted in the highest 

positive predictive value to identify rheumatoid arthritis [75]. In fact, a recent study analyzed 

ten common diseases (e.g., Parkinson’s disease) in an EMR system and compared the 

accuracy of classification through ICD codes, medications (i.e., those primarily prescribed 

for disease treatment), or clinician notes (i.e., if the disease was mentioned in the visit 

report) [76]. The “true” disease classification was determined by a physician’s manual chart 

review. It is clear that certain diseases are more often and better classified by certain 

modalities, such as clinician notes for Atrial Fibrillation or ICD codes for Parkinson’s 

disease, but combinations of all three lead generally to highest predictive power and lower 

rates of error. Fortunately, notable efforts by groups such as the electronic medical records 

and genomics (eMERGE) consortium (https://emerge.mc.vanderbilt.edu/) have led to 

rigorous, standardized electronic phenotyping algorithms that identify case and control 

cohorts utilizing multiple dimensions of EMR data to establish inclusion and exclusion 

criteria. The Phenotype KnowledgeBase (PheKB; https://phekb.org/) is a collaborative effort 

to collect, validate, and publish such algorithms for transportability and reproducibility for 

use in any medical system’s EMR With this in mind, researchers must understand these 

caveats and take much care as when incorporating public expression data.

Strict data access stipulations and possible disparate EMR system frameworks oftentimes 

make cross-institution replication efforts difficult. To address this issue, there are resources 

that release public software and analytical tools for healthcare-related research, like i2b2 

(https://www.i2b2.org/). OHDSI (https://www.ohdsi.org/) is a community of researchers 

who collaborate to solve biomedical problems across multiple disciplines, enabling 

reproducibility of research through a large-scaled, open-source workflow using 

observational health data [77]. Although EMR-based studies require stringent IRB approval, 
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there is a growing concern for patient privacy and confidentiality, especially as this type of 

research, and those with access to these data, continues to expand [78]. On the other side of 

this issue, the stringency of data access makes reproducibility difficult. These types of multi-

hospital EMR studies both facilitate cross validation for any findings and isolate any 

potential role of geographic environment.

Despite these challenges, EMR-based research will continue to evolve to produce even more 

outstanding insights that may direct drug discovery. Open platforms like the UK Biobank 

will be essential to allow more researchers to perform this type ofresearch. With 

nomenclature standardization practices improving and resources growing, integration with 

developing resources of other biological and environmental modalities (e.g., pollution data) 

and sensor- based data collection [79] will allow for a multi-scale understanding of findings. 

The integration of these types of data with state-of-the-art machine learning approaches, 

such as deep learning, can push predictive power well beyond the current success rates. 

Hopefully, we will continue to see findings from these works to continue to transform 

clinical care, leading to more cost-effective and efficient drug development along with better 

patient outcomes and satisfaction.
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Fig. 1. 
Full generic workflow for enabling drug discovery through big data resources. We start by 

illustrating the mechanism behind disease and drug gene expression signatures and 

highlighting a few public repositories where they can be found. Based on research focus, it 

is often recommended to harmonize these disparate sources of data through use of 

ontologies. Multiple signatures per disease or drug can be integrated through rigorous meta-

analysis procedures. Chemogenomic association testing assesses similarity between drug 

and disease signatures and can be performed using procedures like the Kolmogorov-Smirnov 
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(KS) test. These drug signatures can then be ranked according to their correlation, or 

anticorrelation, to the disease signature of interest. Drug signatures that are highly 

anticorrelated to the disease signature are potential treatment candidates. Drug candidates 

that are selected for follow-up need further validation, in the form of in silico (e.g., other 

external datasets or electronic medical records), in vitro, and/or in vivo experiments
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Fig. 2. 
Step-by-step process for performing in silico drug discovery starting from a disease of 

interest. Researchers can go to the GEO online portal and search for their disease of interest, 

which will result in experiments and microarray datasets that other scientists have generated 

and uploaded. Having identified all datasets of interest, the data can be downloaded 

individually or via a tool, such as GEOquery [80] for R. Case and control data will have to 

be identified either manually or through regular expressions from the name strings. Next, 

disease signatures can be derived through various tools that perform differential expression 

analysis, such as edgeR [81] for RNA-Seq and RankProd and SAM for microarray data [82]. 

Drug libraries, such as CMap and LINCS, provide RNA expression data for a large number 

of compounds across different cell lines. Next, a correlation analysis can be performed 

comparing the disease signature and all drug signatures producing a reversal score for each 

drug. Significant scores can be ranked from the top most correlated signatures to the most 

anticorrelated signatures. These hits can then be used to select a candidate drug based on 
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study goals, such as prioritizing candidates that would reverse disease signature (i.e., top 

anticorrelated hits)
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