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Abstract

Biological systems present particular challengers to model for the purposes of formulating 

predictions of generating biological insight. These systems are typically multi-scale, complex, and 

empirical observations are often sparse and subject to variability and uncertainty. This manuscript 

will review some of these specific challenges and introduce current methods used by modelers to 

construct meaningful solutions, in the context of preserving biological relevance. Opportunities to 

expand these methods are also discussed.

Introduction

Biological systems at all levels of organizations are modeled for the purposes of gaining 

insight, testing hypotheses, or formulating predictions on future states of these systems 

following their normal evolution, or consequent to some outside perturbation or experiment. 

Depending on the intent of the modeler, models are formulated with varying levels of 

complexity. Simulation refers to applying a model in order to extract predictions. Depending 

on the nature of the model, these predictions are associated with varying levels of certainty, 

which may be quantifiable with appropriate methodology. This is the forward problem [1]. 

Before a model can be used for offering predictions, it must be appropriately parameterized. 

The activity of parameterizing a model from empirical observations, which may involve 

various tasks depending on the precise mathematical formulation of this model, constitutes 

the inverse problem [2,3]. Depending on the particular biological system and its precise 

model representation, solving the inverse problem ranges from manageable, to impractical, 

to impossible. Solutions to the inverse problems present significant challenges for all but the 

most simple of biological systems. While most of the effort in systems biology has focused 

on the interface of complex biological networks and high-throughput data [4,5], biological 

problems at other scales of description and triangulated by much sparser empirical datasets 

have received relatively little attention [1].
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Posing the problem

Mathematical formulation

This manuscript will discuss solutions of biological problems that are mathematically 

represented by systems of difference or differential equations [6], or even more generally by 

sets of rules defining interactions such as present in rule-based or agent-based models [7,8]. 

With little loss of generality, let’s assume that a biological system is modeled using a system 

of ordinary differential equations:

Ẋ = f (X, p, t) + U(X, t) + N(t)
O = g(X)

Where Ẋ is the first time derivative a vector of model variables, O is a vector of observables 

on the biological system being modeled, U(X,t) a vector of external controls or influences on 

the system, p is a vector of parameters, N(t) are noise terms, the function f embodies the 

biology governing the interaction between the different variables on the system, and g is a 

map between system observables and model variables. For the model to be usable for 

prediction, additional data, typically in the form of a vector of initial conditions Xt=0, turning 

the forward problem into an initial value problem, need to be specified. In addition, a 

number of observations are made on the system across several experimental conditions E 
which systematically or randomly vary initial conditions, boundary conditions, or 

manipulate the temporal evolution of the system in some other way. In its simplest form, 

solving the inverse problem therefore involves the definition of a function Ψ(O, p, f, U) 

quantifying the error between model predictions and observations across all experiments, 

and identifying p, but occasionally also f or U that will minimize this function, resulting in a 

model that best matches all available data across experiments. The careful construction of Ψ 
and how its various components are combined and weighted when multiple objectives are 

pursued is of paramount importance in biological systems, involving layers of considerations 

beyond identifying local minima of the error.

Sources of uncertainty

Any quantitative scientist collaborating with biological or social scientists is awed by the 

character of the empirical data derived from apparently perfectly reproducible experiments. 

Biological systems are complex and noisy. Noise may appear to govern a lot of the observed 

dynamics, either because of actual random dynamics of the data generating processes or 

because a significant portion of what drives the dynamical evolution of the system is either 

not represented or implicit in the model. In addition, there is generally an observability 

problem, that is, the knowledge obtained from the available observation insufficiently 

constrains the inverse problem of identifying states and/or parameters. Sources of variability 

in the data can be grouped under three major categories: (1) the experiment is difficult to 

reproduce because a number of known factors cannot be easily controlled, (2) the 

measurement is difficult to reproduce because instruments and tests have intrinsic variability, 

and (3) there is residual variability stemming from a large number of unknown and possibly 

uncontrollable factors, including the highly variable makeup of biological organisms, which 

can oftentimes turn out to be the dominant source of variability overall. There are also 
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additional sources of variability that could be present in longitudinal data. Small animal 

experiments often require animal sacrifice at preset time points since the measurements 

cannot be performed while leaving the animal intact, so a given animal only provides data at 

a single time point. Many experiment in live animals may also result in death, caused by an 

experimental manipulation or not. Data from late time points are therefore populated by 

animals that survived to that time point, and data may therefore be biased in favor of animals 

naturally more resistant. A separate source of uncertainty resides in lack of a full 

understanding of the exact relationships between observables and model variables. In 

biological systems, an identity relationship is often assumed, thereby further simplifying 

biology. Data sparsity is also a common source of uncertainty for the modelers. It is 

therefore centrally important that experimental data be obtained over the dynamic range of 

the biological response. This problem is particularly pernicious when dealing with 

observational studies or clinical data. An example of this is related to efforts to model the 

molecular response to severe infections in humans: most humans with severe infections are 

first encountered well into the disease process, and at different, and unknown, times along 

that process [9].

Some of these shortcomings in data can be alleviated with careful experimental design or 

more sophisticated statistical treatment. Yet most cannot be addressed effectively, especially 

in situations where the experimental and modeling groups do not work in close and bilateral 

collaboration, particularly when data has already been collected. Any attempt at solving 

inverse problems must address these shortcoming in such a way as to map data uncertainty 

into model uncertainty with minimal bias.

A satisfactory solution to the inverse problem

A more precise formulation of the inverse problem in the context of biological systems may 

thus be more appropriately stated along the following lines: given the data at hand and its 

limitation, and given prior knowledge of the system one is trying to model, what is the least 

biased model representation of this system that can be offered. Whether this representation is 

useful in the broader sense remains to be investigated and will generally depend on the 

nature of the mechanistic insight or predictions being sought. A vast class of models offer a 

linear representation of biological systems. Given sufficient data, the optimization problems 

arising from the corresponding inverse problems are convex, that is admit a single, global, 

optimal parametrization. One must realize that such representations are in fact a choice 

made by the modeler and that the actual system might only be approximately linear under 

very restricted biological operating conditions, a specific instance of the general fact that any 

mathematical representation of reality will involve simplifying assumptions. Such local 

linearization, performed explicitly or implicitly in the modeling process, is a useful tool as 

long as it is recognized that as soon as the system is perturbed away from the validity of this 

approximation, the model may lose any potential validity and thus usefulness, which will 

almost always be the case when studying biological systems under stress caused by 

environmental alterations, disease, etc..

More broadly, the modeler may also mandate or make the implicit assumption that, despite 

the existence of a large number of local optima, there exist among them a best one that 
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nature has somehow adopted. An example of such a situation is instantiated in the protein 

folding problem where generally, the best local optimum (lowest energy) is promoted to 

global optimum within a range of conformations of interest and predicted to be the three-

dimensional conformation of a sequence of amino acids. In this particular situation, folding 

is a process which is itself highly optimized requiring the presence of chaperon proteins at 

different steps of a growing primary sequence of amino-acids and thus the final product is 

“guided” to a local energy minimum. Therefore, approaching folding as a local optimization 

problem is sensible. Despite the knowledge of the existence of a large number of other 

minima, they are not favored by nature where function dictates structure. Such a 

conformation, although stable upon small perturbations representative of routine biological 

function, is not upon larger, biologically irrelevant perturbations such as heating beyond 

temperatures compatible with life.

Therefore, although methods for estimating convex or “almost” convex systems are 

plentiful, well understood and described and implemented in major software packages, they 

are of limited use and interest in estimating complex biological systems. Rather, we are 

interested in a class of problems where there are many, potentially infinitely many, solutions 

to the inverse problem, that is ill-posed problems, and where there is no clear biological 

indication as to which of those solutions are biologically implausible. Techniques have been 

developed to construct ensemble models, where each member of the ensemble is a parameter 

vector for a given a model structure [1,10–13]. Ensemble modeling, although 

computationally demanding, represents the most satisfactory solution to ill-posed inverse 

problems to date [14]. This suite of methods is undergoing active development in the context 

of complex biological systems and presents a number of open problems still to be addressed 

effectively (see below).

Parameter uncertainty and model identification

There exists good reviews on the topic of model identifiability [15]. Model identifiability is 

generally defined along an axis ranging from formal, or a priori global identifiability, to 

practical identifiability. A priori global identifiability or structural identifiability stipulates 

whether, given a model structure and a set of parameters and initial conditions, model 

parameters can always be uniquely identified assuming sufficient data. Several formal 

methods exist to resolve global and local structural identifiability, each having strength and 

weaknesses depending on the mathematical structure of the problem [16]. Generally, the 

more complex the system (e.g. presence of Hill or Michaelis-Menten kinetic terms) and the 

higher the number of parameters compared to observables, the more difficult it will be to 

resolve structural identifiability of a system. Formal methods based on differential algebra 

[17](e.g. ) have become popular recently. Software implementing differential algebra [18,19] 

(http://www.dei.unipd.it/~pia/), generating series [20], or a combination of approaches [21] 

have been developed to investigate a priori identifiability in systems with dynamics 

described by systems of equations and can be implemented successfully by non-experts, 

although software output typically requires critical interpretation [16].

Indeed, when a system is not identifiable, such methods can often identify algebraic 

relationships between parameters which are identifiable even when the parameters 
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themselves are not. A trivial and intuitive illustration would be: one attempts to model a 

cloud of points in a plane with a model of the form y = (a ⋅ b)x+b. The algebraic expression 

a ⋅ b is identifiable, but obviously not the individual parameters comprising this expression if 

the only empirical data available to estimate the system parameters are (x, y)pairs. Such 

methods have limited applicability to models of biological systems. More generally, there 

has been much literature on practical identifiability, the notion that even a structurally 

identifiable system cannot be practically identified if the number or quality of empirical 

observations on the system is insufficient. In the simple example above, if the uncertainty on 

y is such that one cannot say with certainty if the slope is positive or negative, then the 

model is of limited usefulness if the ultimate purpose on the model is to predict y given x.

Unfortunately, the situation with biological systems is slightly different. Observations are 

limited and uncertain, combined with the fact that even simplified models of these systems 

are typically a priori unidentifiable. Yet, even under these adverse conditions there might be 

sufficient residual identifiability to achieve meaningful predictions from even grossly over-

parameterized and poorly specified models. The focus shifts from the ability to robustly 

identify model parameters and their variance to the ability of the model to generate 

predictions, even in the absence on robust parametric estimates. This class of problems, 

referred to as sloppy problems, are encountered regularly in mathematical biology [4] and 

probably constitute the rule rather than the exception. As we will see below, there is a very 

real possibility that, depending on their intended use, sloppy models are good enough and 

useful for critical objectives. Indeed, poorly specified model may still be perfectly adequate 

for some practical applications, but not for others. Some examples come to mind. At a 

fundamental level, there still no definitive theory of gravitation. Yet, incrementally as 

theories have evolved and become more sophisticated, and observational data has become 

extremely accurate, the predictions of contemporary macroscopic gravitational physics, in 

spite of the fact that they completely lack any thus far accessible connection to the 

underlying microscopic quantum reality, have achieved outstanding precision, with no 

practical limitations in terms of its application in everyday human endeavors. Similarly, 

considering the human body as a complex system, contemporary physicians must estimate 

the macroscopic state of this system (diagnosis) such that proper corrective action is 

undertaken (therapy) given the estimated evolution of this state (prediction). Despite more 

accurate diagnostic methods, knowledge of the current microscopic state remains very 

partial under the best of circumstances, and complete knowledge may be utterly 

unattainable. Yet, arguably, corrective actions appropriately improve patients trajectories in 

a, surprisingly maybe, large proportion of instances, even if inference and prediction in 

clinical medicine today is, in most instances, not performed quantitatively using 

mathematical tools, as has been common practice in physics for centuries. This extreme case 

points out a valid, yet largely unresolved question with respect to modeling biological 

systems: how accurate must a model be to be effectively useful?

Model validation and selection

The concept of model validation can intuitively be stated as the process of verifying the 

ability of a model to provide sufficiently accurate predictions and is to be distinguished from 

the ability of the model to reproduce the data used to estimate this model, which is termed 
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goodness-of-fit. For statistical models, the broadest concept of validation is referred to as 

external validity, or generalizability: can the model accurately predict an outcome, or a time 

course in data not used to estimate the model? It is assumed that a valid statistical model has 

effectively learned the structure of a multi-dimensional joint distribution of outcomes and 

predictor variables, such that, if presented with a vector of predictions, outcomes are 

robustly inferred. For types of models that describe the evolution of interacting variables 

over time using mechanistic rules rather than statistical inference, the approach pioneered in 

physics, the concept of model validation differs essentially from statistical model validation. 

A valid model will in fact “understand” the system. A first level of validation resides in the a 
priori construct validity of the dynamical model: are the interactions included in the 

formulation of the model plausible representations of what is believed to be known about the 

biological system being modeled? Validity in the statistical sense is a consequence of a 

dynamical model “understanding” the biological system, while both the inability to fit the 

data and statistical invalidity, which can be present in spite of perfect ability to fit the data 

[22], falsify the combination of assumptions made in the formulation of a mechanistic model 

and may thus provide useful mechanistic insight. However, a well-fitting model that is valid 

in the statistical sense may or may not be valid under the more stringent requirement made 

of mechanistic models of dynamical systems: can a dynamical system predict the outcome 

of a new experiment, the data from which was unavailable when estimating the model? This 

step, along with the ability to incorporate pre-existing knowledge of a system’s structure in a 

principled way, is probably the single most important reason why mechanistic models have 

attracted the attention of biologists and clinicians. If one could use a valid mathematical 

model, one could predict the effect of a new drug, or of a new experiment, provided the 

system is modeled in sufficient detail to represent the biological effect of this new drug 

[23,24], or the proposed experimental manipulation.

Validation of a dynamical system should be conceived as an iterative process: erroneous or 

inaccurate predictions, provided general construct validity and good fit on prior experiments, 

begs the question as to why the model failed to “understand” this new experiment. This 

generally indicates an opportunity to reexamine finer details of construct validity: the 

experiment draws from mechanisms that the model fails to include or fails to understand, 

indicating that the model must be corrected. The specifics of the failure may well guide how 

models need to be adjusted.

Model selection comes into play when the task is to choose among a set of structurally 

distinct models, given some observational data along with methodology to solve the 

corresponding forward, and, if necessary, inverse problems. A plethora of quantitative 

statistical approaches has been proposed for this problem type [25–28], including the Bayes 

Information Criterion and the Akaike Information Criterion, and the Bayes factor. The 

fundamental idea behind the majority of these approaches is that, when choosing a model, a 

balance needs to be found between model complexity, typically quantified by the number of 

free parameters, and goodness-of-fit, since the goodness-of-fit will usually increase 

monotonically with the number of free parameters, at the expense of parsimonity and 

usually model identifiability. In a sense, model selection thus aims to quantitatively 

implement Occam’s razor. While the available formulaic model selection criteria may 

certainly contribute to informing the model development process, we suggest that in the 
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context of mechanistic models of biology, where the solution of the inverse problem is one 

of the major challenges on the path to obtaining useful predictions and also a major source 

of prediction uncertainty, model selection should preferentially be informed directly by 

quantifying the model’s predictive performance on real data given the available solution 

methodology.

Individual models and personalized medicine

In statistical regression model theory, there generally exists a single model structure which 

explains the relationship between predictors and outcome. Personalization is conveyed 

through the use of mixed-effect models. An individual, or a group of individuals, 

characterizes a random effect. This approach has been extended to dynamical models such 

as ordinary differential equations, where individual rate parameters ki are estimated. 

Depending on the estimation method, the individual rates can be estimated directly from 

individual data, or evaluated in several stages, where a mean population rate kp is first 

computed, to serve as prior guess for ki, with the advantage that individual with poor data 

quality can still benefit from a robust prior. Alternatively, and more in line with statistical 

mixed-effect modeling, individual deviations ki ≡ kp + Δki or ki ≡ kp
Δki can be computed, 

assuming kp has already been computed using data from a population of individuals. Much 

of these approaches have been developed and studied in the context of population 

pharmacokinetic models [29], where modelers can typically benefit from dense time series 

from individual patients and structurally simple models.

However, these methods can generate similar approaches, within the framework of ensemble 

models, to personalization. In this context, an ensemble of population parameters are 

computed from a naïve pool of data from the entire population, and in analogy with 

multistage Bayesian estimation of mixed effect models, patient or subgroup-specific 

ensembles are computed as a posterior distribution, using data from an individual, or pooled 

data from a homogeneous subgroup of individuals, and the population ensemble as prior 

distribution. Models for individuals (subgroups) with sparse data would resemble the 

population ensemble, while ensemble models for individuals (subgroups) with richer data 

could vary substantially from the population ensemble model.

A frequent misconception is that, in the process of computing a population ensemble from 

pooled data, a particular instance of a parameter set can be interpreted as representing a 

potential individual member of the population. This is an incorrect interpretation of the 

ensemble modeling methodology, unless it can ascertained that the ensemble is a 

representative sample of the population distribution, which, in general, is extremely 

challenging to achieve, see below. On the other hand, mining subgroup ensembles could 

provide an alternative way to statistical data mining in identifying mechanistically-based 

[30], meaningful phenotypes such as possible drug responders, or identifying groups of, as 

individuals that could potentially be harmed by a potential intervention [23].
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Unsolved problems in inverse problem theory

Evaluating fits of models to empirical data is a routine task of model development. The error 

between a model’s prediction and data is typically quantified as the sum of squared errors 

between prediction and data, where the sum ranges over all observables, all time points, and 

all experimental conditions. This is the error function we previously discussed. This 

deviation, termed the objective function, is then mapped to a likelihood of the model, given 

the data. This map is typically assumed to take the form of a Gibbs distribution, as this 

effectively implements the assumption that uncertainty in observations are normally 

distributed. Although, such a formulation allows easy computation of the relative likelihood 

of two parameter sets, this assumption if often not met in biological systems. . Thus, it 

remains unclear whether there are preferred means of constructing the objective function, 

given the biological system to be modeled, or the structure of the model representation of 

this system? In the absence of data on specific experiments of interest, there may still be 

knowledge of the overall behavior of a system, given some initial conditions or control 

conditions of interest. For example, biological constraints might limit the magnitude or 

dynamic rate of growth/decline of certain unobserved states, thus imposing restrictions on 

parameter values. How do modelers best include this general knowledge in the estimation 

process? Some have adopted the approach of mitigating against unlikely model behavior by 

imposing heuristic penalties within the objective function Ψ [31]. These may take a variety 

of forms, including Jacobian evaluation to ensure that a particular parameter set will provide 

asymptotically stable solutions, or the insertion of suitable weighed fictional data points 

implementing such heuristics. The construction of a meaningful objective function Ψ, and a 

likelihood based on Ψ, especially in the context of multiple objectives, or in the context of 

multiple experiments with differential reliability, remains an art more than a science at this 

point in time, although quantitative information about, e.g., measurement error distributions, 

if available, can and should of course be incorporated into Ψ in a principled way. In the 

process of pooling data from several individuals, there is typically a cross-correlation 

structure across the observed times series expressing the join distribution of observations in 

the population. Therefore, naïve pooling of the data, with the implicit assumption of 

uncorrelated errors between time-point of a single time-series and across time-series inflates 

actual variance in the data. Yet, methods that leverage the existing structure on this join 

distribution in the construction of Ψ are not widely implemented.

In Bayesian parameter estimation, prior knowledge about parameters and states, if 

expressible in the form of probability distributions, can naturally be incorporated into the 

inference process. However, the generic expression of the absence of prior knowledge is an 

open question. This is the problem of choosing a non-informative prior distribution. 

Although the common practice of setting wide bounds de facto constitutes a weak prior, 

more can be done depending on the structure of uncertainty on the data. There exists a broad 

literature on the choice of un-informative priors for Bayesian inference [32], providing the 

user with a choice of approaches supported by, among others, reparametrization invariance 

arguments, as is the case for Jeffrey’s prior. Given the relative sparsity of data characterizing 

many biological systems, the choice of prior is likely to weigh heavily on the posterior 

distribution and should be performed with care. Yet, without providing details here, it would 
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seem very important to explore this question theoretically on the basis of how the model 

structure maps volume elements of parameter space to data space and vice versa, given that 

these spaces are often of very different dimensionality [33].

Conclusion

Modeling complex biological systems is a difficult exercise, particularly when one intends to 

parameterize such models for generating actual predictions, suggesting experimental design, 

or for providing mechanistic insight. In this manuscript, we outline key obstacles to 

generating such models, some of which lie in the nature of biological data, and some of 

which lie in the theoretical and computational nature of the ill-posed estimation process. We 

also outline the importance of collaborative groups with strong data acquisition, modeling 

and computation expertise, where such models can be iterated and validated, e.g. [34].
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Highlights

• Estimation of computational models of biological systems poses formidable 

challenges

• Mechanistic inference usually require practical parameter identifiability

• Prediction of system evolution may not require parameter identifiability

• A satisfactory solution to the inverse problem awaits further theoretical 

progress
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