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Abstract

Organismal adaptations to new environments often begin with plastic phenotypic changes followed by genetic pheno-
typic changes, but the relationship between the two types of changes is controversial. Contrary to the view that plastic
changes serve as steppingstones to genetic adaptations, recent transcriptome studies reported that genetic gene expres-
sion changes more often reverse than reinforce plastic expression changes in experimental evolution. However, it was
pointed out that this trend could be an artifact of the statistical nonindependence between the estimates of plastic and
genetic phenotypic changes, because both estimates rely on the phenotypic measure at the plastic stage. Using computer
simulation, we show that indeed the nonindependence can cause an apparent excess of expression reversion relative to
reinforcement. We propose a parametric bootstrap method and show by simulation that it removes the bias almost
entirely. Analyzing transcriptome data from a total of 34 parallel lines in 5 experimental evolution studies of Escherichia
coli, yeast, and guppies that are amenable to our method confirms that genetic expression changes tend to reverse plastic
changes. Thus, at least for gene expression traits, phenotypic plasticity does not generally facilitate genetic adaptation.
Several other comparisons of statistically nonindependent estimates are commonly performed in evolutionary genomics
such as that between cis- and trans-effects of mutations on gene expression and that between transcriptional and
translational effects on gene expression. It is important to validate previous results from such comparisons, and our
proposed statistical analyses can be useful for this purpose.
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Introduction
Organismal adaptations to new environments often follow a
two-phase process. The first phase is characterized by plastic
phenotypic changes induced by environmental shifts without
the involvement of mutations, whereas the second phase is
characterized by genetic phenotypic changes driven by
Darwinian selection. Discerning the relationship between
the two phases is critical to understanding adaptive evolution.
Recent years have seen a rise in the appreciation of the role of
phenotypic plasticity in evolution (West-Eberhard 2003;
Pigliucci et al. 2006; Pfennig et al. 2010; Levis and Pfennig
2016), especially by the school of extended evolutionary syn-
thesis (Laland et al. 2014, 2015). In particular, it has been
argued that, when organisms move to a new environment,
plasticity serves as a steppingstone, moving the organismal
phenotype closer to the optimum in the new environment
and hence easing the subsequent genetic adaptation (Price
et al. 2003). Although this model was supported by a few
studies of small numbers of traits (Suzuki and Nijhout 2006;
Ledon-Rettig et al. 2008), it was refuted by the analyses of
expression changes of thousands of genes in experimental

evolution (Fong et al. 2005; Sandberg et al. 2014;
Ghalambor et al. 2015; Rodriguez-Verdugo et al. 2016; Ho
and Zhang 2018). Specifically, these researchers measured
the expression level (i.e., relative mRNA concentration) of
each gene from the organisms in the original environment
(Lo, where the subscript stands for the original stage), imme-
diately after they move to the new environment (Lp, where
the subscript stands for the plastic stage), and after long-term
experimental evolution in the new environment (La, where
the subscript stands for the adapted stage). They then com-
puted the plastic change (PC) in gene expression level by Lp–
Lo and the genetic change (GC) in gene expression level by
La–Lp. They found that GC and PC are more often of opposite
signs than of the same sign, and therefore concluded that
plastic expression changes are generally reversed rather than
reinforced by genetic expression changes during environmen-
tal adaptations (Ho and Zhang 2018).

Nevertheless, it was recently pointed out that the reported
prevalence of expression reversion (RV) can be a statistical
artifact (Mallard et al. 2018). In particular, because of the
addition of Lp in estimating PC but deduction of Lp in
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estimating GC, any estimation error of Lp has antagonistic
effects on PC and GC, which could have generated the ob-
served preponderance of expression RVs. In the present work,
we first use computer simulation to examine the severity of
the bias caused by this statistical nonindependence between
PC and GC estimates. We then propose remedies of this
problem and examine their performance using simulation.
After confirming their performance, we apply them to the
actual transcriptome data previously analyzed. In addition to
discussing the implications of our results for the relationship
between plastic and genetic phenotypic changes in environ-
mental adaptations, we discuss the potential of applying our
proposed remedies in other common evolutionary genomic
analyses where nonindependent estimates are compared.

Results

The Severity of the Statistical Problem Varies
Depending on Several Factors
To examine the impact of the interdependency between PC
and GC estimates on the observed preponderance of gene
expression RV relative to reinforcement (RI), we conducted a
computer simulation of M genes where the true expression
levels at the three stages for each gene are Ko¼ Kp¼ Ka¼ l.
Because the true PC¼ GC¼ 0, any observation of expression
RV or RI in the simulation is a false positive. Let l be the
expression level measurement for a gene from one replicate
at a particular stage. We assume that l is a Gaussian random
variable with a mean of l and a coefficient of variation of CV,
which equals the standard deviation of the random variable
divided by l. For any gene, let Lo, La, and Lp be the estimates of
Ko, Ka, Kp, based on no, np, and na independent measure-
ments, respectively. Lo is computed by averaging l across
the no replicates; Lp and La are similarly estimated. We fol-
lowed a previous study (Ho and Zhang 2018) in defining
expression RV and RI. Specifically, we focus on genes whose
absolute values of estimated PC and GC are both larger than
the cutoff (c) of 0.2Lo. A gene is then said to exhibit RI if the
estimated PC and GC have the same sign; otherwise, the gene
is said to exhibit RV. The proportion of all genes exhibiting RI
(CRI) and that exhibiting RV (CRV) are then estimated.

Under each set of simulation parameters, we investigated
M¼ 1,000 genes and repeated the simulation 100 times. We
found that the false positive rate of RV is generally greater
than that of RI (fig. 1). For example, when l¼ 100, CV¼ 0.2,
and no¼ np¼ na¼ 6, we found that CRV¼ 2 6 0.04% (mean
6 standard error) of genes exhibit RV, whereas CRI ¼
0.023 6 0.005% of genes exhibit RI; their difference d ¼
CRV � CRI ¼ 1.98 percentage points (fig. 1A). Therefore, ran-
dom estimation errors of expression levels can cause an ap-
parent excess of RV over RI. In other words, the comparison
between RV and RI is biased.

To investigate factors impacting the severity of the above
bias, we performed the same simulation using different com-
binations of l and CV. As expected, we did not see any
noticeable impact of l (l ¼ 10 in supplementary fig. S1,
Supplementary Material online, and l¼ 1,000 in supplemen-
tary fig. S2, Supplementary Material online) but found a

positive correlation between CV and both CRV and CRI.
Specifically, when CV decreases to 0.05, CRV and CRI reduce
to 0.005 6 0.002% and 0 6 0%, respectively (fig. 1A). When
CV ¼ 0.01, both CRV and CRI become 0. However, when CV
increases to 0.50, CRV and CRI respectively rise to 23 6 0.1%
and 3.9 6 0.06%, with d¼ 19 percentage points. The increase
of CV to 1.0 further enlarges d to 29 percentage points.
Clearly, the bias in the comparison between RV and RI is
negligible when CV is small (i.e., expression measures l’s are
precise) but becomes a severe problem when CV is large (i.e.,
l’s are imprecise).

It is also of interest to study how the experimental design
affects the severity of the bias. In particular, because the bias is
caused by the use of Lp in both PC and GC estimations, having
a precise Lp estimate is likely the most important. To confirm
this prediction, we respectively reduced no, np, and na to 1 in a
set of otherwise identical simulations. Indeed, when we re-
duced np to 1, CRV increases as long as CV � 0.05 (fig. 1B).
Furthermore, the impact of reducing np to 1 enlarges with CV.
For example, when CV ¼ 0.05, CRV¼ 3.4 6 0.05% and CRI ¼
0 6 0%, with d¼ 3.4 percentage points. But when CV¼ 1.00,
CRV ¼ 68 6 0.2% and CRI ¼ 6.5 6 0.08%, with d¼ 62 per-
centage points. As predicted, reducing no or na to 1 does not
have any noticeable impact (fig. 1C and D). Hence, to reduce
the bias in the comparison between RV and RI, one should
consider increasing np instead of no or na, especially when the
total number of replicates is constrained for example by the
research budget.

We used the cutoff c¼ 0.2Lo in all simulations so far. To
evaluate how the cutoff choice affects the bias in the com-
parison between RV and RI, we repeated the simulation using
either c¼ 0.5Lo or 0.05Lo as the cutoff while keeping other
parameters unchanged. As expected, using c¼ 0.5Lo substan-
tially lowers CRV and CRI (fig. 1E). Specifically, when CV� 0.20,
CRV ¼ CRI ¼ 0. Even when CV ¼ 1.0, d¼ 14 percentage
points, only one half that when c¼ 0.2Lo. Hence, raising the
cutoff can guard against the bias for RV. Of course, using too
high of a cutoff is expected to reduce the sensitivity in detect-
ing any potential difference between CRV and CRI. By contrast,
using c¼ 0.05Lo increases CRV and CRI (fig. 1F). For example,
even when CV ¼ 0.20, d becomes 3.4 percentage points.
Therefore, low cutoffs should be used with caution.

An Improved Method for Comparing RV and RI
Our extensive simulation demonstrates that the current an-
alytical pipeline tends to yield an artificial excess of RV over RI.
One method to remedy this problem is to use one half of the
np replicates to estimate one Lp that is used to compute PC
and the other half of the np replicates to estimate another Lp

to compute GC. Although this method removes the interde-
pendency between PC and GC, it effectively uses only one half
of the np replicates in Lp estimation so the estimation is rel-
atively imprecise. We thus propose an alternative method
that is based on parametric bootstrap. Parametric bootstrap
assumes that the data come from a known distribution with
unknown parameters. One estimates the parameters from
the available data and then uses the estimated distributions
to simulate samples for statistical analysis. In our case, the
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mean expression level of a gene at stage o follows a Gaussian
distribution with the mean equal to the observed mean ex-
pression of the gene at stage o (i.e., Lo) and the standard
deviation equal to the estimated standard error of Lo. We
can thus draw a random variable from the above Gaussian
distribution to represent an observation of the mean expres-
sion level of the gene at stage o. We can similarly draw ran-
dom variables representing the mean expression level of the
gene at stage p and that at stage a, respectively. These three
random variables allow the computation of PC and GC and

the determination of RV, RI, or neither. This process is re-
peated 1,000 times. If at least 950 repeats show RV, this gene is
considered to exhibit RV. Similarly, if at least 950 repeats show
RI, the gene is considered to exhibit RI.

We used computer simulation to examine the perfor-
mance of this new method. When l ¼ 100, CV ¼ 0.2, and
no ¼ np ¼ na ¼ 6, CRV ¼ 0.01 6 0.003%, whereas CRI ¼
0 6 0% (fig. 2A). Even when CV rises to 1.0, CRV ¼
1.1 6 0.03%, whereas CRI ¼ 0.01 6 0.004%. Therefore, this
new method substantially decreases the false identification

FIG. 1. Rates of false identification of gene expression RV and RI estimated by computer simulation. The mean expression level (l) used¼ 100. The
CV used is marked on the top of each column. Each row has a different combination of the cutoff (c) and numbers of replicates at the original (no),
plastic (np), and adapted (na) stages. Results shown are means and standard errors estimated from 100 rounds of simulation, each containing 1,000
hypothetical genes with the same l and CV. See main text for definitions of RV and RI. (A) Simulation results under no¼ 6, np ¼ 6, na ¼ 6, and
c 5 0.2Lo, where Lo is the observed mean expression level at stage o. (B) Simulation results under no¼ 6, np¼ 1, na¼ 6, and c 5 0.2Lo. (C) Simulation
results under no¼ 1, np¼ 6, na¼ 6, and c 5 0.2Lo. (D) Simulation results under no¼ 6, np¼ 6, na¼ 1, and c 5 0.2Lo. (E) Simulation results under
no ¼ 6, np ¼ 6, na ¼ 6, and c 5 0.5Lo. (F) Simulation results under no ¼ 6, np ¼ 6, na ¼ 6, and c 5 0.05Lo.

Ho and Zhang . doi:10.1093/molbev/msz002 MBE

606



of RV and RI and reduces the bias. Even when np is as small as
3, the new method performs reasonably well (fig. 2B). For
instance, when CV ¼ 0.2, CRV and CRI are 0.1 6 0.01% and
0 6 0%, respectively. Even when CV ¼ 1.0, CRV and CRI are
3.3 6 0.005% and 0.009 6 0.003%, respectively. However, the
performance worsens when np ¼ 2, because CRV and CRI

respectively equal to 6.8 6 0.08% and 0.02 6 0.005% when
CV ¼ 1.0 (fig. 2C). When a higher cutoff (c¼ 0.5Lo) is used,
CRV and CRI are further reduced (fig. 2D). By contrast, using a
lower cutoff (c¼ 0.05Lo) can increase the bias (fig. 2E).

The Excess of RV over RI Holds in the Absence of
Methodological Bias
We now apply this new method to empirical data. Because
the new method requires the information of the standard
error of the mean expression estimate of each gene, no, np,
and na must each be �2. Among the six data sets of exper-
imental evolution recently analyzed for the comparison be-
tween RV and RI (Ho and Zhang 2018), we reanalyzed the five
data sets that satisfy the above requirement. Three of them
have a relatively large np, including Escherichia coli adapting to
a glycerol medium from a glucose medium (no ¼ 3, np ¼ 5,
and na ¼ 3), E. coli adapting to a lactate medium from a

glucose medium (no ¼ 3, np ¼ 6, and na ¼ 3), and guppies
adapting to low-predation streams from high-predation
streams (no ¼ 5, np ¼ 5, and na ¼ 4). Furthermore, most
of the genes in these three data sets have CV < 1.0 (supple-
mentary fig. S3A–C, Supplementary Material online).
Therefore, according to our simulation results, d upon the
parametric bootstrap test should not exceed 1 percentage
point in these cases if the null hypothesis of CRV¼ CRI holds.
The other two cases, E. coli adapting to 42 �C from 37 �C (no

¼ 3, np ¼ 2, and na ¼ 2) and budding yeast adapting to a
xylulose medium from a glucose medium (no¼ 2, np¼ 2, and
na¼ 2), have a much smaller np and higher CV (supplemen-
tary fig. S3D and E, Supplementary Material online). Therefore,
d could be inflated in these two cases.

We start by investigating the first three cases. When ap-
plying the new method to the case of E. coli adapting to the
glycerol medium, we found a significant excess of CRV over CRI

in each of the seven parallel experiments (nominal P val-
ue< 0.05, two-tailed binomial test; fig. 3A). More impor-
tantly, d is between 5 and 26 percentage points, which
cannot be explained by the slight bias of the method. In
the seven parallel lines of E. coli adapting to the lactate me-
dium, six have a significantly positive d (nominal P val-
ue< 0.05, two-tailed binomial test; fig. 3B). Among the six,

FIG. 2. Rates of false identification of expression RV and RI when the newly proposed parametric bootstrap method is used. The mean expression
level (l) used ¼ 100. The CV used is marked on the top of each column. Each row has a different combination of the cutoff (c) and numbers of
replicates at the original (no), plastic (np), and adapted (na) stages. Results shown are means and standard errors estimated from 100 rounds of
simulation, each containing 1,000 hypothetical genes with the same l and CV. See main text for definitions of RV and RI. (A) Simulation results
under no¼ 6, np¼ 6, na¼ 6, and c 5 0.2Lo. (B) Simulation results under no¼ 6, np¼ 3, na¼ 6, and c 5 0.2Lo. (C) Simulation results under no¼ 6,
np¼ 2, na¼ 6, and c 5 0.2Lo. (D) Simulation results under no¼ 6, np¼ 6, na¼ 6, and c 5 0.5Lo. (E) Simulation results under no¼ 6, np¼ 6, na¼ 6,
and c 5 0.05Lo.
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five have a d between 2.2 and 3.2 percentage points, whereas
the “evolved line #1” has d¼ 0.69 percentage point. In the
two parallel lines of guppies adapting to low-predation
streams, both show a significantly positive d (nominal P

value< 0.05, two-tailed binomial test; fig. 3C), but the d val-
ues are small (0.09 and 0.14 percentage points).

Because some of the above observed d values are small, it is
important to assess whether they could be due to the

FIG. 3. Observed or simulated fractions of genes showing expression reversion (CRV) and reinforcement (CRI), respectively. (A) Observed CRV and CRI

in seven parallel experiments of Escherichia coli undergoing laboratory evolution in a glycerol medium. The equality in the percentage of RI and RV
genes in each adaptation is tested by a two-tailed binomial test. *, P< 0.05; **, P< 10�10; ***, P< 10�100. (B) Observed CRV and CRI in seven parallel
experiments of E. coli undergoing laboratory evolution in a lactate medium. (C) Observed CRV and CRI in two parallel experiments of guppies
undergoing evolution in low-predation streams. (D) Observed CRV and CRI in six parallel experiments of E. coli undergoing laboratory evolution in
42 �C. (E) Observed CRV and CRI in 12 parallel experiments of yeast undergoing laboratory evolution in a xylulose medium. (F) Observed CRV�CRI in
E. coli adaptations to a glycerol medium, compared with the expected values under the null hypothesis of no gene expression changes. The
observed values from 7 parallel experiments are indicated by triangles, whereas the expected values estimated by 100 simulations are presented as
frequency distributions using bars. The simulations use the distributions of mean (l) and CV estimated from the actual data. Two dashed lines
depict the 2.5th and 97.5th percentiles in the distribution. (G) Observed CRV� CRI in E. coli adaptations to a lactate medium, compared with the
expected values under the null hypothesis of no gene expression changes. (H) Observed CRV� CRI in guppy adaptations to low-predation streams,
compared with the expected values under the null hypothesis of no gene expression changes. (I) Observed CRV� CRI in E. coli adaptations to 42 �C,
compared with the expected values under the null hypothesis of no gene expression changes. (J) Observed CRV � CRI in yeast adaptations to a
xylulose medium, compared with the expected values under the null hypothesis of no gene expression changes.
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remaining minor bias of the new method. To this end, we
performed additional simulations using the observed distri-
butions of CV (supplementary fig. S3, Supplementary Material
online) and l (supplementary fig. S4, Supplementary Material
online) specific to each data set. In each simulation, the num-
ber of replicates (no, np, and na) and the number of genes also
follow the actual numbers in each data set. Again, we as-
sumed no difference in true expression level among the three
stages in the simulation. We found that d is mostly <1 per-
centage point in the simulation (fig. 3F–H). More importantly,
compared with the distribution of d from the simulation, d
from all seven parallel experimental evolution lines of E. coli in
the glycerol medium (fig. 3F), five of the seven parallel exper-
imental evolution lines of E. coli in the lactate medium
(fig. 3G), and one of the two parallel experimental evolution
lines of guppies in low-predation streams (fig. 3H) are signif-
icantly larger (in the right 2.5% of the distribution of d result-
ing from the simulation). Therefore, the observed
preponderance of transcriptomic RV in these three data
sets is largely genuine.

In the two data sets where np¼ 2, it is even more critical to
perform simulations using the observed distributions of CV
(supplementary fig. S3, Supplementary Material online) and l
(supplementary fig. S4, Supplementary Material online) to
guard against potential inflations of d. In the six lines of E.
coli adapting to 42 �C, each shows a significantly positive d
(nominal P value< 0.05, two-tailed binomial test; fig. 3D).
More importantly, each has a d larger than 21 percentage
points, which is larger than any d observed in the 100 simu-
lations (fig. 3I). In the 12 lines of budding yeast adapting to the
xylulose medium, all have a significantly positive d (nominal P
value< 0.05, two-tailed binomial test; fig. 3E). In addition,
nine of them have d values significantly larger than what
the simulation under the null hypothesis shows (fig. 3J).
Therefore, the prevalence of RV in these two data sets is
also mostly genuine.

Because using higher cutoffs can minimize the bias, we
repeated the analysis of these five data sets using c¼ 0.5Lo

instead of 0.2Lo. We found all 34 cases in the five data sets
show significantly positive d values (nominal P value< 0.05,
two-tailed binomial test; fig. 4A–E). Furthermore, 32 of 34
observed d’s are in the right 2.5% of the corresponding dis-
tribution of simulated d’s (fig. 4F–J). These results further
establish that the observed preponderance of transcriptomic
RV in these data sets is not statistical artifacts.

Discussion
Using computer simulation, we confirmed that previous tran-
scriptomic studies of PC and GC are biased such that expres-
sion RV tends to be observed more often than RI artificially.
The severity of the bias depends on several factors. In general,
the bias is stronger when the expression measures are less
precise (i.e., higher CV), the number of measurements per
gene at stage p is smaller (i.e., lower np), and the cutoff for
calling PC and GC is lower (i.e., lower c). In our simulation, we
assumed that the expression levels of a gene are the same at
stages o, p, and a, rendering all observed RV and RI cases false

positives. In reality, the expression levels at the three stages
are unlikely to be the same for most genes. Consequently,
only some of the observed RV and/or RI events may be false.
That is, our simulation tends to overestimate the bias in the
comparison between RV and RI. Considering this fact and the
simulation results under realistic parameters, the bias is gen-
erally minor.

Statistical artifacts owing to nonindependence between
variables have long been known (Pearson 1897). Historically,
population biologists proposed the use of permutation to
address this problem (Jackson and Somers 1991), and permu-
tation tests were performed in Ghalambor et al. (2015) and
Rodriguez-Verdugo et al. (2016). Specifically, they first mea-
sured the linear or rank correlation between PC and GC
among genes. They then randomized the stage labels (o, p,
or a) among all replicate measurements of each gene before
recomputing Lo, Lp, and La and reestimating PC and GC. This
randomization was performed for all genes and the correla-
tion between PC and GC among genes was reestimated after
the randomizations. This was repeated many times to derive a
null distribution of the correlation. The authors found that
the observed negative correlations are significant when com-
pared with their null distributions, so concluded that the
negative correlations between PC and GC are genuine.
Although Mallard et al. (2018) challenged the suitability of
the permutation test in Ghalambor et al. (2015) and claimed
that permutation is sometimes insufficient for removing sta-
tistical artifacts, this criticism was rejected by Ghalambor and
coworkers (Ghalambor et al. 2018; Hoke et al. 2018) because
they found Mallard et al.’s simulated data rarely matched the
criteria required in the original analysis (Ghalambor et al.
2015). We note that, even if the permutation test can guard
against the artificial correlation, as what appears to be the
case here, this test does not allow estimating d or accurately
identifying the genes that show RV or RI. Instead, we pro-
posed in this work a parametric bootstrap method to com-
pare PC and GC and demonstrated by computer simulation
that its bias is minimal. Thus, to estimate d and identify genes
exhibiting RV or RI, the parametric bootstrap method is pre-
ferred. This said, the difference in focal statistics between the
parametric bootstrap method and the permutation method
makes it difficult to compare their performances directly.

Using the parametric bootstrap method, we reanalyzed a
total of 34 cases of 5 evolutionary experiments of E. coli, yeast,
and guppies. Under a high cutoff of c¼ 0.5Lp, d, the difference
between the percentage of genes showing RV and that show-
ing RI, is significantly positive in all cases and significantly
greater than the expected bias in 32 cases. These results con-
firm the previous finding that genetic adaptations to new
environments more often reverse than reinforce plastic
gene expression changes.

In addition to gene expression changes, we recently stud-
ied metabolic flux changes in E. coli’s environmental adapta-
tions, using computational metabolic analysis including flux
balance analysis (FBA) and minimization of metabolic adjust-
ment (MOMA) (Ho and Zhang 2018). We showed that the
metabolic flux changes also exhibit an excess of RV over RI,
regardless of whether the same computational method
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(MOMA) or different computational methods (FBA and
MOMA) are used to predict fluxes at the three stages.
Although computational flux predictions are certainly not
error free, the type of error is fundamentally different from
the random error in gene expression measurement studied

here. It is likely that the potential error of a computational
flux prediction arises mainly from mismatches between the
reality and the assumed metabolic model. Because a similar
mismatch occurs in each of the three stages, the effect of the
mismatch is probably canceled out when the flux differences

FIG. 4. Observed or simulated fractions of genes showing expression reversion (CRV) and reinforcement (CRI), respectively, under a more stringent
cutoff (c¼ 0.5Lo). (A) Observed CRV and CRI in seven parallel experiments of Escherichia coli undergoing laboratory evolution in a glycerol medium.
The equality in the percentage of RI and RV genes in each adaptation is tested by a two-tailed binomial test. *, P< 0.05; **, P< 10�10; ***, P< 10�100.
(B) Observed CRV and CRI in seven parallel experiments of E. coli undergoing laboratory evolution in a lactate medium. (C) Observed CRV and CRI in
two parallel experiments of guppies undergoing evolution in low-predation streams. (D) Observed CRV and CRI in six parallel experiments of E. coli
undergoing laboratory evolution in 42 �C. (E) Observed CRV and CRI in 12 parallel experiments of yeast undergoing laboratory evolution in a xylulose
medium. (F) Observed CRV�CRI in E. coli adaptations to a glycerol medium, compared with the expected values under the null hypothesis of no gene
expression changes. The observed values from seven parallel experiments are indicated by triangles, whereas the expected values estimated by 100
simulations are presented as frequency distributions using bars. The simulations use the distributions of mean (l) and CV estimated from the actual
data. Two dashed lines depict the 2.5th and 97.5th percentiles in the distribution. (G) Observed CRV� CRI in E. coli adaptations to a lactate medium,
compared with the expected values under the null hypothesis of no gene expression changes. (H) Observed CRV� CRI in guppy adaptations to low-
predation streams, compared with the expected values under the null hypothesis of no gene expression changes. (I) Observed CRV� CRI in E. coli
adaptations to 42 �C, compared with the expected values under the null hypothesis of no gene expression changes. (J) Observed CRV� CRI in yeast
adaptations to a xylulose medium, compared with the expected values under the null hypothesis of no gene expression changes.
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between stages o and p and those between stages p and a are
computed to obtain PC and GC, respectively. We thus believe
that the previous finding of an excess of metabolic flux RV
over RI would probably hold if such mismatches are mini-
mized. Future experimental fluxomic analysis is needed to
confirm this prediction. Note that our simulation results
can guide the design of future fluxomic studies and our
new method can be deployed to deal with the nonindepend-
ence between the experimentally measured plastic and ge-
netic flux changes. Notwithstanding, phenotypic traits of
different levels of the biological organization (e.g., organismal,
cellular, and molecular traits) may have different evolutionary
patterns (Zhang 2018). Whether the predominance of RV
over RI revealed at the transcriptomic and fluxomic levels
hold at other phenotypic levels awaits future exploration.

Regarding the biological reason why RV is more prevalent
than RI, previous metabolic flux analysis revealed that, even in
the presence of plasticity, organismal fitness drops substan-
tially after an environmental shift but largely recovers through
subsequent adaptive evolution (Ho and Zhang 2018). Thus,
the overall physiological state of the organism may be quite
similar between the adapted stages in the original and new
environments but is much different in the low-fitness plastic
stage right after the environmental shift. Such disturbances
and subsequent recoveries in overall physiology and fitness
explain why plastic phenotypic changes are mostly genetically
compensated rather than strengthened. In short, PCs in gene
expression and metabolic flux represent emergency stress
responses that may be important for organismal survival in
new environments but are otherwise not steppingstones for
genetic adaptations. In the case of guppies adapting from a
high- to a low-predation environment, the new environment
appears less stressful than the original one. It has been sug-
gested that RV would still be more prevalent than RI in this
case because a trait with a plastic phenotypic change away
from the new optimum is presumably under a stronger di-
rectional selection than a trait with a plastic phenotypic
change toward the new optimum (Price et al. 2003;
Ghalambor et al. 2015).

We found that d varies substantially among the five data
sets of experimental evolution. Why some environmental
adaptations show a higher excess of RV over RI than others
is unclear. In theory, a higher d may result when the new
environment is more stressful. This said, how stressful a new
environment is depends not only on the environment per se
but also on the evolutionary history of the population, be-
cause adaptive plasticity may exist if the population experi-
enced similar environments as the new environment in the
past. That d is exceptionally low in guppies may be simply
because their new environment is not stressful or because
animals differ from microbes in the relative abundances of RV
and RI. To find the exact cause requires further investigations.

Although our study is designed and conducted to address
the nonindependence between the estimates of PCs and GCs
in gene expression, the lessons learned and methods devel-
oped are useful for dealing with other comparisons of non-
independent estimates, which are common in evolutionary

genomics. Below, we highlight two such examples in the study
of gene expression evolution. The first involves the compar-
ison between the contributions of cis- and trans-regulatory
mutations to gene expression evolution. The standard ap-
proach (Wittkopp et al. 2004) is to first measure the expres-
sion levels of a gene in two strains or closely related species
that can be crossed. The observed expression difference is
referred to as the total difference, which is the sum of cis-
and trans-regulatory differences. One then measures the ex-
pression levels of the two alleles in the hybrid of the two
strains/species. Because the two alleles in the hybrid have
the same trans-regulatory environment, their expression dif-
ference must be due to the cis-regulatory difference. One can
then estimate the trans-regulatory difference by subtracting
the cis-regulatory difference from the total difference. It was
reported that when both cis- and trans-regulatory differences
exist for the same gene, they more often have effects in op-
posite directions than in the same direction, which could
mean widespread compensatory changes underlying the evo-
lution of gene expression (Coolon et al. 2014; Metzger et al.
2017). But because one estimates the trans-regulatory differ-
ence by subtracting the cis-regulatory difference from the
total difference, the above result could be a statistical artifact
of the nonindependence between the estimates of cis- and
trans-regulatory differences. Another example is the compar-
ison between transcriptional and translational differences un-
derlying gene expression differences between strains or
species. The transcriptional activity of a gene is typically ap-
proximated by the mRNA concentration measured by RNA
sequencing, whereas the translational activity is typically mea-
sured by the ratio between the protein concentration (or
ribo-seq read number in ribosome profiling) and mRNA con-
centration. It is reported that transcriptional differences and
translational differences between species tend to have oppo-
site directions (Artieri and Fraser 2014; McManus et al. 2014).
Again, because the estimates of translational and transcrip-
tional activities are not independent from each other, the
above result could be a statistical artifact. It will be important
to confirm that these and other previous results hold after the
correction for the statistical problem.

Materials and Methods
All simulations and analyses were performed in MATLAB
codes. Random normal variables were generated by the func-
tion “normrnd.” The transcriptomic data sets of E. coli, gup-
pies, and yeast were originally from Fong et al. (2005),
Ghalambor et al. (2015), Rodriguez-Verdugo et al. (2016),
and Tamari et al. (2016). Data processing followed Ho and
Zhang (2018). Specifically, in the study of E. coli K-12 under-
going experimental evolution in glycerol (Fong et al. 2005),
the transcriptomes of 1) the ancestral line in glucose, 2) an-
cestral line in glycerol, and 3) seven parallel evolution lines in
glycerol on day 44 were profiled by Affymetrix E. coli
Antisense Genome Arrays. The number of replicates for (1)
and each line of (3) is 3, whereas the number of replicates for
(2) is 5. In the study of E. coli K-12 undergoing experimental
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evolution in lactate (Fong et al. 2005), the transcriptomes of
1) the ancestral line in glucose, 2) ancestral line in lactate, and
3) seven parallel evolution lines in lactate on day 60 were also
profiled by Affymetrix E. coli Antisense Genome Arrays. The
number of replicates for (1) and each line of (3) is 3, whereas
the number of replicates for (2) is 6. In the study of the guppy
Poecilia reticulata undergoing experimental evolution in low-
predation streams (Ghalambor et al. 2015), RNA-seq was
used for profiling the transcriptomes of 1) guppies caught
from streams with high predation and exposed to chemical
cues of predators in the lab, 2) guppies caught from streams
with high predation and not exposed to chemical cues of
predators in the lab, and 3) two independently evolved
groups of guppies in streams with no predators. The number
of replicates is 5 for (1) and (2), respectively, and the number
of replicates is 4 for either group of (3). All expression levels
were provided by the authors. In the experimental evolution
of E. coli in 42 �C (Rodriguez-Verdugo et al. 2016), RNA-seq
was performed in 1) the ancestral line at 37 �C, 2) ancestral
line at 42 �C, 3) two evolved lines at 42 �C and four lines each
carrying a distinct adaptive mutation at 42 �C. The number of
replicates for (1) is 3, and the number of replicates for either
group of (2) or (3) is 2. The reads were downloaded from
Sequence Read Archive (SRA) database and mapped by the
instruction of the original paper. Expression levels were mea-
sured by Reads Per Kilobase of transcript per Million
mapped reads (RPKM). In the experimental evolution of
12 different strains of the budding yeast Saccharomyces
cerevisiae in a xylulose medium (Tamari et al. 2016), RNA-
seq was used for profiling the transcriptomes of 1) 12 an-
cestral lines in a glucose medium, 2) 12 ancestral lines in the
xylulose medium, and 3) 12 evolved lines in the xylulose
medium. Each line has two replicates. The reads were down-
loaded from SRA database and mapped following the orig-
inal study. Expression levels were measured by RPKM. In all
data sets, the gene expression measures in (1), (2), and (3)
represent the phenotypes at the original, plastic, and
adapted stages, respectively.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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