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Abstract

We proposed the first models based on recurrent neural networks (more specifically Long Short-

Term Memory - LSTM) for classifying relations from clinical notes. We tested our models on the 

i2b2/VA relation classification challenge dataset. We showed that our segment LSTM model, with 

only word embedding feature and no manual feature engineering, achieved a micro-averaged f-

measure of 0.661 for classifying medical problem-treatment relations, 0.800 for medical problem-

test relations, and 0.683 for medical problem-medical problem relations. These results are 

comparable to those of the state-of-the-art systems on the i2b2/VA relation classification 

challenge. We compared the segment LSTM model with the sentence LSTM model, and 

demonstrated the benefits of exploring the difference between concept text and context text, and 

between different contextual parts in the sentence. We also evaluated the impact of word 

embedding on the performance of LSTM models and showed that medical domain word 

embedding help improve the relation classification. These results support the use of LSTM models 

for classifying relations between medical concepts, as they show comparable performance to 

previously published systems while requiring no manual feature engineering.
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1 Introduction

In knowledge representation, identifying relations from text documents is important for 

creating or augmenting structured knowledge bases and in turn supporting question 

answering, inference reasoning and decision making. The task usually breaks down to 

annotating unstructured text with named entities and identifying the relations between these 

annotated entities. State-of-the-art named entity recognizers can now recognize concept with 

high accuracy [1], but relation extraction is not as straightforward. In the biomedical and 

clinical domain, extracting relations from scientific publications and clinical narratives has 

also been an important focus over the past decade with numerous challenges due to the 

complexity of language and domain specific knowledge involved [2].
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Biomedical relation extraction is critical in understanding clinical notes, facilitating 

automated diagnostic reasoning and clinical decision making. In pathology reports, 

immunophenotypic features are often written as relations among medical concepts. For 

example, in “Studies performed at MGH reveal that the [lymphoid cells] are [CD10] 

positive, [BCL6] positive, and [BCL2] negative.”, “lymphoid cells”, “CD10”, “BCL6” and 

“BCL2” are medical concepts; “CD10”, “BCL6” and “BCL2” are biomarkers of the cell. If 

one only captures bag-of-words or bag-of-concepts features and do not account for how 

concepts are interrelated, one would fail to encode in such feature representation whether 

“lymphoid cells” are positive or negative for “CD10”, “BCL6” and “BCL2”. In this and 

many other similar situations, the relations between the biomedical concepts need to be 

understood in the context of syntactic and/or semantic cues in order to resolve possible 

ambiguities.

In a broad sense, one can define a relation as a tuple r(c1 ,c2, …, cn), n ≥ 2, where ci’s are 

biomedical concepts (e.g., cells, biomarkers etc.), and the ci’s are semantically and/or 

syntactically interconnected by an overarching relation r, as expressed in text. Note that such 

a definition requires a relation to at least involve two concepts and precludes either a single 

concept or an assertion of a single concept from being regarded as a relation. Specifically, if 

n is two, we call the relation a two-concept relation. In the previous sentence example, one 

may treat the sentence as encoding a relation between four medical concepts that are of 

interest. One may also use the term relation to specifically refer to two-concept relations, for 

example

positive-expression(lymphoid cells, CD10)

positive-expression(lymphoid cells, BCL6)

negative-expression(lymphoid cells, BCL2)

From the perspective of composite relations, one may be able to decompose a multi-concept 

relations using certain logics over a list of two-concept relations, for example

and(positive-expression(lymphoid cells, CD10),

   positive-expression(lymphoid cells, BCL6),

   negative-expression(lymphoid cells, BCL2))

In some cases, logics can become more complex than the Boolean logic when we need to 

understand what are often referred to as events, which are defined as grammatical objects 

that combine lexical elements, logical semantics and syntax [3]. For example, the ternary 

relation treated_by(patient, Harvoni, 8-week course) as expressed in “[the patient] was 

administered [Harvoni] for an [8-week course]” can be understood as an event, where the 

event trigger is “administered”, the theme is the Hepatitis C medication “Harvoni” and the 

target argument is “patient”. Clearly, with a variety of logics such as temporal logic one can 

represent increasingly flexible events and relations. Two-concept relations are building 
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blocks of such compositions and the most frequent forms of relations; correctly classifying 

two-concept relations will produce fundamental insights on how to devise better natural 

language processing (NLP) algorithms for elucidating the interactions between biomedical 

concepts.

2 Background and Related Work

Some of the critical clinical information contained in clinical narratives can be represented 

by relations of concepts. Biomedical relations are critical in facilitating applications such as 

clinical decision making, clinical trial screening, pharmacovigilance [4–12]. Determining 

the exact relation between the two concepts requires an understanding of the context in 

which the two concepts are discussed.

Part of the advances in the state-of-the-art specialized clinical NLP systems for identifying 

medical problems have been documented in challenge workshops such as the yearly i2b2 

(Informatics for Integrating Biology to the Bedside) Workshops, which have attracted 

international teams to address successive shared classification tasks. One such challenge 

focused in part on identifying the relations that may hold between medical problems and 

treatments, between mdedical problems and tests, as well as between pairs of medical 

problems [13]. Many systems applied Support Vector Machines (SVMs) to tackle the 

relation extraction task by combining lexical, syntactic, and semantic features. Some 

systems adopted a two-step approach by first determining the candidate pairs that did not 

relate to each other, and then classifying the specific relation type for the rest of the 

candidate pairs [14–16]. Some teams added annotated and/or unannotated external data to 

complement their machine learning system [15, 17]. Other teams complemented their 

machine learning systems with rules that capture simple linguistic patterns of relations [18].

All challenge participating systems involved heavy feature engineering; they explored 

lexical, semantic, syntactic, general domain and medical domain ontology features [13]. 

Many systems also harvested features from existing NLP pipelines such as cTakes [19] and 

MetaMap [20]. Systems that use many human engineered features often do not generalize 

well to new datasets [21]. In general domain NLP, a growing number of studies have 

successfully used recurrent neural networks (RNNs) combined with word embedding [22] 

on tasks including language modeling [23], text classification [24–27], question answering 

[25, 26, 28, 29], machine translation [25, 30–32], named entity recognition [33–36], and 

relation classification [37, 38]. Inspired by general domain successes, recent progress on 

applying RNNs to clinical datasets also aims to reducing the amount of engineered features 

and has achieved some success on modeling both structured and unstructured clinical data. 

For structured clinical data, Choi et al. [39] applied Gated Recurrent Unit networks (GRUs) 

for early detection of heart failure onset using time-stamped medical events (diagnosis, 

medications and procedures). They showed RNNs outperformed multiple statistical learning 

models including logistic regression, support vector machine (SVM), k-nearest neighbor 

(kNN), and multi-layer perceptron (MLP). Che et al. [40] applied GRUs to perform 

mortality and diagnosis code prediction using time series data consisting of physiologic 

measurements, lab-tests values, and prescriptions. Their GRU-based model showed better 

AUC than logistic regression, SVM, and random forests (RF). Lipton et al. [41] trained 
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Long Short-Term Memory networks (LSTMs) to classify 128 diagnoses from 13 frequently 

but irregularly sampled clinical measurements from patients in pediatric ICU. Their model 

showed significant improvements with respect to several strong baselines, including 

multilayer perceptron trained on hand-engineered features. Razavian et al. [42] used LSTMs 

to predict onset of 133 diseases and conditions simultaneously based on 18 common lab 

tests measured over time. They showed that the LSTM learned representations outperformed 

a logistic regression baseline with hand engineered features. Pham et al. [43] used LSTMs to 

model the longitudinal records of diagnoses, medications and procedures and made dynamic 

predictions of future diagnoses, medications and procedures. They showed improved 

performance over competitive models including SVM and RF. For unstructured clinical data, 

Dernoncourt et al. [44] applied bi-directional LSTMs to de-identifying patient notes. They 

adopted two bi-directional LSTM layers, one at character level and the other at word level. 

Their character level embedding and LSTM aim to address data sparsity due to out-of-

vocabulary tokens, misspellings, and different noun forms or verb endings. The two-layer bi-

directional LSTMs showed improved de-identification performance from state-of-the-art 

Conditional Random Field (CRF) models. Jagannatha et al. [45] applied bidirectional RNNs 

using Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) to recognize 

named entities or concepts such as medications, diseases and their associated attributes (e.g. 

frequency of medications). Their bi-directional LSTMs showed significant improvement 

from state-of-the-art CRF models. We refer the reader to Miotto et al. [46] for a 

comprehensive review of other related deep learning approaches for healthcare applications. 

In general, there have been fewer studies on applying RNNs to unstructured data than those 

to structured data in the clinical domain. This is likely due to the lack of large clinical corpus 

available to train word or phrase embeddings. To address this issue, Jagannatha et al. [45] 

combined an EHR corpus of 99,700 clinical notes with English Wikipedia and PubMed 

Open Access articles to train word embedding. The recent release of 2 million clinical notes 

from MIMIC-III database [47] has at least partially alleviated the corpus issue. In fact 

Dernoncourt et al. [44] used the MIMIC-III corpus as the embedding training corpus for de-

identification. We used MIMIC-III trained word-embedding to enable the clinical relation 

classification. Our models differ from general domain relation classification models [37, 38] 

in that we do not use syntactic/semantic resources (compared to Yan et al. [37]), and we 

explicitly distinguish the words within and surrounding the two concepts (compared to Zhou 

et al. [38]). To the best of our knowledge, this work is the first attempt on using recurrent 

neural networks to classify the medical relations between candidate concepts in the clinical 

notes.

3 Data

In this work, we used the relation classification data from the 2010 i2b2/VA challenge, 

which includes relations between medical problems and treatments (TrP), relations between 

medical problems and tests (TeP), as well as relations between medical problems and 

medical problems (PP). Each of the three categories has a list of possible relations that can 

potentially hold between the two concepts, thus the overall task is a multi-class classification 

problem. The TrP relations include:
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• Treatment administered for medical problem (TrAP). For example, “he was 

given Entresto to treat his high blood pressure”.

• Treatment is not administered because of the medical problem (TrNAP). For 

example, “Relafen which is contraindicated because of ulcers”.

• Treatment improves medical problem (TrIP). For example, “infection resolved 

with a full course of cephalexin”

• Treatment causes medical problem (TrCP). For example, “the patient took 

amoxicillin for two days, which caused diarrhea”

• A patient’s medical problem has deteriorated or worsened because of or in spite 

of a treatment being administered (TrWP). For example, “the tumor was growing 

despite the drain”

• Treatment does not relate to the medical problem as stated in the text (None)

The TeP relations include:

• Test has revealed some medical problem (TeRP). For example, “an 

echocardiogram revealed a pericardial effusion”

• Test was performed to investigate a medical problem (TeCP). For example, 

“chest x-ray done to rule out pneumonia”

• Test does not relate to the medical problem as stated in the text (None)

The PP relations include:

• Two problems are related to each other (PIP). For example, “Azotemia presumed 

secondary to sepsis”

• Medical problem does not relate to the medical problem as stated in the text 

(None)

The i2b2/VA challenge organizers split the entire dataset into training and test datasets. The 

test dataset is in fact larger than the training dataset, in order to better test the systems’ 

generalizability [13]. Table 1 shows the class distribution of relation instances in the training 

and test datasets respectively. For the i2b2/VA relation classification task, the concepts are 

given, so there is no need to run a Named Entity Recognizer for this task.

4 Methods

The motivating question for this study is whether we can design recurrent neural networks 

(RNNs) with only word embedding features and no manual feature engineering to 

effectively classify the relations among medical concepts as stated in the clinical narratives. 

We also investigated how the RNN-based approaches differ from the state-of-the-art 

challenge participating systems with respect to each relation category. We first describe 

word embedding, then our recurrent neural network models, which include sentence level 

and segment level Long Short-Term Memory (LSTM) models for relation classification.
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4.1 Word embedding

For NLP applications, recurrent neural network models are most used together with word 

embeddings. The word embedding is designed to capture semantic similarity of words. The 

embeddings are meaningful real-valued vectors of configurable dimension, and semantically 

similar words usually have close embedding vectors. Neural language modeling tools such 

as word2vec [48] can learn embedding vectors from an unlabeled large text corpus, based on 

the word’s context in different sentences. For word embedding, we experimented with pre-

trained word vector on general domain corpus and in-house-trained word vector on clinical 

notes from MIMIC-III database [47] using word2vec tool. Of note, the MIMIC-III dataset 

contains clinical notes for over 46,000 patients with 2 million notes and a total of 100 

million words.

4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are designed to capture sequential patterns present in 

data and have been applied to longitudinal data (temporal sequence)[39], image data (spatial 

sequence)[49], and text data[44] in medical domain. Text data is inherently sequential as 

well in that when reading a sentence, one’s understanding of previous words will help 

his/her understanding of subsequent words. This observation of sequential characteristics of 

text also holds for relation classification of clinical narratives, as evidenced by the fact that 

many i2b2/VA challenge participants benefit from exploration of local context in their 

relation classification system [13]. Compared to conventional artificial neural networks, 

RNNs introduce a recurrent structure on a neuron, as shown in Figure 1. The recurrent 

neuron as in Figure 1 c) can be unfolded into a chain-like structure with multiple copies of 

the same input-neuron-output triplet, each passing a message to its successor, as shown in 

Figure 1 d). The number of triplet copies in the chain-like structure dynamically depends on 

the sequence that the RNN handles. That is, reading a sentence of n words, the RNN can be 

thought of as having a chain of n triplet copies.

Although RNNs are capable of handling input sequences of variable sizes, they face 

difficulties when modeling long-term dependencies where the gap between the relevant 

information and the point where it is necessary becomes very large [50]. Long Short-Term 

Memory networks (usually abbreviated as LSTMs) are a special type of RNN that can learn 

long-term dependencies [51]. The recurrent neuron in RNNs, similar to the neuron on 

conventional Artificial Neural Networks (ANNs), has a simple activating structure, for 

example, h = tanh(Ws + b), where h is the output, s is the input, W is the weight matrix, and 

b is the bias. In LSTM networks, the recurrent neuron is equipped with a considerably more 

complex structure and is termed as a LSTM memory cell. More specifically, given a text 

sequence [s1;s2; …; sn], at each step t = 1,…,n. Let demb be the embedding size of st. Let ht 

and ct be the output and the state of a LSTM memory cell respectively. Let ht have a 

dimension of nhu, the ht’s are then pooled to produce a feature vector of dimension nhu as 

well. As illustrated in Figure 2 a), in step t, the LSTM cell takes as input st, ht-1, ct-1 and 

produces the output ht and the cell state ct based on the following formulas:

f t = σ(W f [ht − 1; st] + b f ) (1)
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it = σ(W i[ht − 1; st] + bi) (2)

c t = tanh(Wc[ht − 1; st] + bc) (3)

ct = f t * ct − 1 + it * c t (4)

ot = σ(Wo[ht − 1; st] + bo) (5)

ht = ot * tanh(ct) (6)

where “;” indicate vector concatenation, ft,it,ot are the values of the forget gate, input gate 

and output gate respectively and are each of dimension nhu, ĉt is the candidate value for the 

cell state and is of dimension nhu, Wf, Wi, Wc, Wo are the weight matrices and are each of 

dimension nhu × (demb + nhu), bf, bi, bc, bo are the bias vectors associated with 

corresponding gates and states and are each of dimension nhu. For operators, σ(·) and tanh (·) 

refer to the element-wise sigmoid and hyperbolic tangent functions, and * is the element-

wise multiplication. Intuitively, ĉt corresponds to the new information one is going to store 

in the cell state. To derive the new cell state ct that is of dimension nhu, the forget gate ft 

controls what information from the old state ct-1 one wants to forget, the input gate it 
controls what information in ĉt one wants to use as an update. When deciding the cell output 

ht, the output gate ot determines which information from the cell state ct one wants to output, 

as in equation ( 6 ). Note that the output and the cell state from a previous step are used as 

input for a subsequent step, giving the recurrent nature of an LSTM memory cell.

4.3 Sentence level LSTM for relation classification

The recurrent nature of a LSTM memory cell enables it to unfold when reading a sequence 

input. We thus propose to use the LSTM architecture as shown in Figure 2 b) to model 

relation classification. In order to respect the relative positions of individual words to the two 

medical concepts in consideration, we append to the word embedding vector two numbers 

p1, p2 corresponding to the distances from the current word to concept 1 and concept 2 

respectively. For example in Figure 2 b), “an” is at -1 distance and “revealed” is at +1 

distance away from the first concept “echocardiogram”, hence their p1 values are -1 and +1 

respectively. For all words in the first concept (“echocardiogram” in this case), p1 values are 

set to 0. The input to LSTM memory cells is represented as a sequence of [embedding; 

position] vectors. We then pool the output from LSTM cells into a nhu-dimensional feature 

vector h, transform the feature vector into z = Whh + bh, where Wh ∈ RK×nhu, for a 

Luo Page 7

J Biomed Inform. Author manuscript; available in PMC 2019 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classification problem with K classes. We use a softmax classifier which minimizes the 

objective function of the K-dimensional vector z in equation ( 7 ) to obtain the class label for 

the concept pair.

Lk = − log e
zk

n 1
K

e
zn

(7)

For RNNs such as LSTMs, overfitting may be a serious problem. To address such a problem 

on sentence LSTM and other LSTM models developed in this study, we used the dropout 

technique [49] to randomly drop the values of a portion (50% in our experiment) of hidden 

units in the output of the pooling layer during training. Dropout prevents co-adaptation of 

these hidden units by sampling from an exponential number of different “thinned” networks, 

thus reduces overfitting and leads to significant improvements over other regularization 

methods [52].

4.4 Segment level LSTM for relation classification

The formulation of sentence level LSTM for relation classification does not explicitly 

distinguish the features associated with the two concepts from the features associated with 

the context of the two concepts. Some of the top performers in the i2b2/VA relation 

classification challenge reported improved performance by distinguishing the concepts vs. 

context text, and further differentiating the context text into text preceding the first concept, 

between the concepts, and succeeding the second concept [53]. To explicitly model the 

concept and context text, we propose the segment level LSTM architecture for relation 

classification, as shown in Figure 3. We divide the concept and context text into five 

segments: before the first concept (preceding), of the first concept (concept 1), between the 

two concepts (middle), of the second concept (concept 2), and after the second concept 

(succeeding). For each segment, we feed the sequence into a LSTM layer then a pooling 

layer to learn the nhu-dimensional hidden feature vector. We then concatenate the hidden 

features from the five segments into one 5nhu-dimensional feature vector, input the feature 

vector to a softmax layer to produce the relation class label. The specific sizes for each of 

the segment (preceding, concept 1, middle, concept 2, succeeding) in terms of the maximum 

number of words for a segment in the corpus are (154, 12, 153, 18, 121) for TrP relations 

respectively, (67, 11, 78, 31, 76) for TeP relations respectively and (125, 31, 99, 31, 78) for 

PP relations respectively. There is no minimum word requirement per segment, i.e., a 

segment can be empty in which case all-zero embedding vectors will be used to fill the 

necessary spaces. In the challenge dataset, some of the concepts are annotated on the head 

word, while others are annotated including the preceding and succeeding modifiers. There 

are also cases where concept annotations are on adjectives only, e.g., “temp noted to be 

[low]problem at 94 and she was placed on [bear hugger]treatment which improved temp to 

96.7”. The issue of possible inconsistent annotation of concept boundaries seems sometimes 

hard to avoid and is not specific to LSTMs. In fact, many challenge participating systems 

used phrase chunkers (e.g., from cTakes [19], MetaMap [20], and GeniaTagger [54]) to 
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recognize modifiers of head words in phrases [13] to address the inconsistent annotation 

issue. For example, the top system by Roberts et al. [53] specifically used any word used to 

describe the first (second) concept as features, which mitigated the effect of the inconsistent 

annotation of concept boundaries. To more consistently capture concept characteristics, we 

allow the text of the first concept to be padded before and after by neighboring words from 

preceding text and middle text respectively. We also padded the text of the second concept 

analogously. For example, in the TrIP instance “temp noted to be [low]problem at 94 and she 

was placed on [bear hugger]treatment which improved temp to 96.7”, with a padding size of 4, 

the problem concept will be padded as “temp noted to be low at 94 and she”, and the 

treatment concept will be padded as “she was placed on bear hugger which improved temp 

to”.

5 Experiments and Results

Our LSTM models used only word embedding features, and were compared with the 

i2b2/VA challenge participating systems. The types of concept 1 and concept 2 were not 

used as features in training and testing the LSTM models, and were only used in 

constructing TrP, TeP, and PP datasets. For example, if a concept pair consists of one 

treatment concept and one medical problem concept, they are included in the TrP dataset but 

not the TeP and the PP datasets. In order to make fair comparisons between our models and 

those from the i2b2/VA challenge participants, we adopted the same training-testing split by 

the challenge organizers. To optimize the hyper-parameters for our models, we further 

randomly selected 10% of the training dataset as the validation set. For word embedding, we 

experimented with the pre-trained word vectors on the Google news corpus [48] and the in-

house-trained word vectors on the MIMIC-III clinical notes; both embeddings’ dimensions 

are 300. When inspecting relation categories, we found that the PP relations have highly 

imbalanced class ratio (nearly eight times more negative None relations than PIP relations). 

Following de Bruijn et al. [15], we down sampled the training set to a PIP/None ratio of 1:4. 

For segment level LSTM models, we experimented with a series of padding sizes (from 3 to 

10) for padding the concept text with their context. In both sentence level and segment level 

LSTM models, we experimented with multiple numbers of hidden units (100, 150, and 200 

in this work). Note that the number of hidden units nhu is same as the dimension of the 

LSTM memory cells (see Section 4.2 for more detail), not the number of LSTM memory 

cells. The optimal padding size, number of hidden units were chosen based on validation set 

performance. We used the Adadelta technique [55] – a variant of stochastic gradient descent 

algorithm – to optimize our loss function.

To evaluate the performance of our LSTM models, and compare them with those of the 

challenge participants, we computed the micro-averaged precision, recall, and F-measure. 

Let the set of class labels be 𝒦 (e.g., set of 6 labels for TrP relations), for a class k that is not 

“None”, let TPk be the number of true positives, FPk the number of false positives, and FNk 

the number of false negatives. We can calculate the micro-averaged number of true positives, 

false positives, and false negatives as in equation ( 8 ).
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TPmi =
k 𝒦 None

TPk FPmi
k 𝒦 None

FPk FNmi
k 𝒦 None

FNk (8)

In turn, we can compute the micro-averaged precision Pmi, recall Rmi, and f-measure Fmi as 

shown in equation ( 9 ).

Pmi =
TPmi

TPmi + FPmi
; Rmi =

TPmi
TPmi + FNmi

; Fmi = 2Pmi × Rmi/(Pmi + Rmi) (9)

As shown in the above formulas, micro-averaging gives equal weight to each per-relation 

classification decision. Intuitively, Pmi is the proportion of predicted relation labels that are 

ground-truth labels, Rmi is the proportion of ground-truth relation labels that are correctly 

predicted, and Fmi is the harmonic mean of Pmi and Rmi.

We first compare our systems’ performance with those from the i2b2/VA challenge 

participants, as shown in Table 2. Unless otherwise mentioned, all performances are 

evaluated on the held-out test set. Both LSTM models in Table 2 use mean pooling. From 

the comparison of the micro-averaged f-measure, we see that segment LSTM model ranks 

the second in classifying the TrP relations, the third in TeP relation classification, and the 

third in PP relation classification. Although the sentence LSTM model is outperformed by 

the segment LSTM model in TrP and TeP relations, it does attain the best performance for 

PP relations. Overall segment LSTM achieves good performance that are comparable to 

state-of-the-art systems from i2b2/VA challenge participants with heavily engineered 

features, even though segment LSTM uses only the basic word embedding as features. In 

addition, the segment LSTM outperforms the sentence LSTM in more relation categories, 

which is consistent with our intuition on the benefits of exploring the distinction between 

concept text and context text, and between different contextual parts in the sentence 

regarding their different relative positions to the concepts. The exception with the problem-

problem relation may be because both concepts are medical problems that tend to have 

similar context and concept text, making their distinction rather subtle and less informative 

regarding problem-problem relation classification.

In order to directly compare the held-out test set performance in Table 2 with the validation 

set performance, we showed in Table 3 the validation set performance of the corresponding 

models with the same hyper-parameters as specified in Table 2. We also showed the standard 

deviations of the respective performance metrics across the hyper-parameter grids. We see 

that there is a 0.1-0.15 drop from validation Fmi to held-out Fmi (micro-averaged F-

measure), which suggests the level of overfitting associated with architecture engineering 

with LSTM models. Meanwhile, the standard deviations of the validation scores are 

relatively small (around 0.01 in Fmi), suggesting the modest sensitivity of LSTM models to 

parameter tuning. In order to evaluate the impact of the corpus used to train word 

embedding, we showed in Table 4 the performance of our segmental level LSTM and 
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sentence level LSTM mean pooling models using general domain corpus trained embedding. 

Compare with the corresponding models’ performances with word embedding trained on 

MIMIC-III corpus in Table 2, we see about a 2% drop in micro-averaged f-measure for 

models using word embedding trained on the general domain corpus. The performance 

difference is consistent with the distinct characteristics of clinical narratives, many of which 

are fragmented text that is abundant with acronyms (e.g., CABG for coronary artery bypass 

grafting) and abbreviations (e.g., s/p for status post). General domain corpus often consists 

of full sentences, and often lacks coverage on clinically specific acronyms and abbreviations. 

Thus LSTM with embedding from general domain corpus will likely miss the information 

from them. For example, “the patient developed [medical problem] status post [treatment]” 

likely indicates a TrCP relation. Interestingly with word embedding trained from general 

domain corpus, the sentence LSTM also outperforms segment LSTM on PP relations. This 

is in agreement with the observation from the experiment with medical word embedding, 

and similar reasoning applies here as well.

An alternative of the mean pooling in the pooling layer is the max pooling. That is, instead 

of taking the average across the sequence for each of the nhu positions, one takes the 

maximum as the pooled value. The choice between the mean pooling and the max pooling 

depends on the sequence characteristics. In general, if the signal is distributed uniformly 

among the full sequence, it is reasonable to use mean pooling; if there is a strong signal from 

some word/phrase/segment of the sequence, max-pooling may be preferred. In Table 5, we 

report the results by substituting the mean pooling in Table 2 with max pooling. The 

performance from neither pooling scheme shows complete advantage compared to the other. 

It is worth noting that the sentence LSTM tends to excel in PP relations with max pooling, 

similar to with mean pooling.

We implemented our models using the Theano package [60] and ran them on NVidia Tesla 

GPU with cuDNN library enabled. Table 6 shows the end-to-end time required to perform 

training, validation, and held-out testing, for segment LSTM and sentence LSTM on three 

relation categories using word embeddings trained with the MIMIC-III clinical notes. The 

end-to-end time falls between 25-45 min for all the model-task combinations.

6 Error Analysis

To better illustrate the behavior of the four types of LSTM models and to compare their 

performances to those of the i2b2/VA challenge participants in greater detail, we provide the 

confusion matrices, and per-class Precision, Recall and F-measure metrics for the three 

categories of relations in Table 7 through Table 11. For PP relations, there is only one PIP 

relation besides the None relation and the micro-averaged metrics Pmi, Rmi, Fmi do not count 

None relation, thus the PP relations’ Pmi, Rmi, Fmi in Table 2 and Table 5 are also the PIP 

Precision, Recall and F-measure. Interestingly, the LSTM models with max pooling 

outperform those with mean pooling in certain relations, for example, Segment LSTM with 

max pooling on TeP and PP relations and Sentence LSTM with max pooling on PP relations. 

Although mean pooling seems a more common choice than max pooling for LSTM models, 

we tried to also include LSTM with max pooling in the following error analysis when 

possible.
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For TrP relations, we can see from Table 7 that the Segment LSTM with mean pooling 

correctly classifies more instances in the two largest relation classes (None and TrAP), 

which explains why it attains the best Fmi among all LSTM models. On the other hand, 

Segment LSTM with mean pooling does not recognize any TrWP relations in the test 

dataset, which is likely a result of favoring the larger relation classes. From Table 8, we can 

see that the performance of Segment LSTM with mean pooling resembles that of the top 

challenge participating system by Roberts et al. [53] on TrIP, TrAP, and TrNAP relations, 

and that of the second-top challenge participating system by deBruijn et al. [15] on TrWP 

relation. In fact, both Segment LSTM with mean pooling and deBruijn et al. [15] et al. did 

not recognize any TrWP instances in the test dataset. Table 8 shows that for TrCP relations, 

Segment LSTM with mean pooling has lower recall but higher precision than Roberts et al. 

[53]. Table 7 shows that Segment LSTM with mean pooling misclassified many TrWP and 

TrCP relations as None or TrAP relations. This is partly because None and TrAP are the two 

largest relation classes, which may skew the classifier towards favoring their labeling. In 

addition, we note several patterns among misclassified relations as follows. Many 

misclassified relation instances involve a variety of negation expressions. For example, the 

TrCP instance “discussed the risks and benefits of [surgery]treatment with dr. **name[zzz] 

including but not limited to [bleeding]problem” is misclassified as None. Note that the 

definition of TrCP essentially asks for “treatment could cause problem”, and the negation 

here is not on the surgery-bleeding relation. The TrWP instance “inability to prevent 

progression of [skin , sinus and neurological acanthamoeba infection]problem on [maximal 

antimicrobial therapy]treatment” is misclassified as TrAP, which is likely due to the 

unrecognized negation cue word “inability”. The word embedding may not effectively 

handle negation if there is not enough presence of some alternative negation expressions 

with the particular words in the embedding training corpus. In addition, negation coupled 

with clause or co-reference likely also introduces confusion. For example, the TrWP 

instance “he had been noting [night sweats]problem , increasing fatigue , anorexia , and 

dyspnea , which were not particularly improved by [increased transfusions]treatment or 

alterations of hydroxy urea” has negation on the co-reference in a clause and is misclassified 

as None. In addition, the negation signal may fade away as LSTMs with mean pooling 

aggregate over a long segment of text containing the negation. Moreover, subtle differences 

between the passive voice in this example and active voice in otherwise similar examples 

present an additional dimension of confusion to our models. Another pattern involves the 

conjunctions such as “but” and “however”, which depending on the context may suggest 

variable degree of contrast between clauses. For example, the TrWP instance “the patient 

was initially trialed on [bipap]treatment , but the patient was [increasingly dyspneic]problem” is 

misclassified as None. However, the instance “he has been managing at home on restricted 

activity but able to get around with [a walker]treatment but on the day before admission he 

became [increasing dyspneic]problem” is a true None instance. Co-reference also introduces 

difficulty when coupled with conjunctions such as “but” and “however”. For example, the 

TrWP instance “[stitches]treatment were placed in [the incision]problem , however it continued 

to leak” is misclassified as TrAP, which is likely because our LSTM models do not 

recognize co-reference between “stitches” and “it”. Note that the passive voice in this 

example may have also facilitated the use of co-reference and introduced additional 

confusion to our models. Compositional syntactic structure also contributes to the 
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confusions in relation classification. For example, the TrCP instance “patient needs 

anticoagulation for [large saphenous vein graft]treatment to prevent any possibility of 

[thrombosis]problem” is misclassified as TrAP likely due to infinitive “to prevent” 

erroneously associated with “large saphenous vein graft”.

For TeP relations, LSTM models tend to suffer from lower recall compared to top challenge 

participating systems on both TeRP and TeCP relations, as shown in Table 10. For Segment 

LSTM with both mean pooling and max pooling, Table 9 shows that a significant portion of 

TeRP and TeCP instances are misclassified as None. This is partly because None is a large 

relation class, which may skew the classifier towards favoring its labeling. Besides the class 

imbalance issue, we also note several misclassification patterns for Segment LSTM with 

both mean pooling and max pooling as follows. Some misclassified instances contains the 

preposition “with”. For example, the TeRP instance “she was [borderline hypotensive]problem 

with [the blood pressure]test ranging between 98 and 85 systolic” is misclassified as None. 

The TeCP instance “history of [chronic kidney disease]problem with [a baseline creatinine]test 

of approximately 2.3” is misclassified as None. However, the instance “the patient was noted 

to have [elevated right-sided and left-sided filling pressures]problem with [a pulmonary 

capillary wedge pressure]test of 19 and a right atrial pressure of 16” is a true None. Correctly 

distinguishing these cases requires more than contextual cues, and in particular, requires 

understanding the nature of the medical problems and tests. Moreover, some TeRP instances 

may largely depend on reasoning with domain knowledge. For example, the TeRP instance 

“[her vital signs]test are stable , she is [afebrile]problem” is misclassified as None. Note that 

this example does not have much context cues but relies on the reasoning that vital signs 

include temperature and afebrile means having a normal body temperature. The TeCP 

instance “[HIV]problem , [viral load]test 954 , 7/03 - h. pylori pos. , asthma” is misclassified 

as None, which is likely because we did not introduce the knowledge into LSTM that viral 

load measures the amount of HIV in the blood.

For PP relations, Segment LSTMs with both mean pooling and max pooling suffer from 

lower precision compared to top challenge participating systems such as Roberts et al. [53] 

and deBruijn et al. [15], as shown in Table 2. The confusion matrix in Table 11 also shows 

816 None instances misclassified as PIP by Segment LSTM with mean pooling. Note that 

we have down-sampled the None instances in the training data to address the class 

imbalance problem, but Table 11 seems to suggest that down-sampling works most effective 

for Sentence LSTM. Similar to TeP relations, Segment LSTM models have difficulty 

processing the instances containing the preposition “with”. For example, the None instance 

“in summary, the patient is considered to have [severe necrotizing pancreatitis]problem , with 

[severe cardiac disease]problem” is misclassified as PIP, while the PIP instance “pathology 

showed [grade ii-iii papillary adenocarcinoma of the endometrium]problem with [squamous 

differentiation]problem” is misclassified as None. Correctly distinguishing these cases 

requires understanding that “squamous differentiation” describes aspects of 

adenocarcinoma, and pancreatitis and cardiac disease involve different organs. Medical 

knowledge becomes even more necessary when fewer context cues are available, e.g., in the 

following misclassified None instance “due to the unknown group b strep status and 

[prematurity]problem , patient was evaluated for [sepsis]problem”.
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7 Discussion and Future Work

The performance of our LSTM models are comparable with those from the state-of-the-art 

systems in the i2b2/VA challenge participants. However, error analysis and the fact that 

LSTM models do not consistently outperform the systems with manually engineered 

features suggests that there is still merit in the curated features and domain specific 

knowledge. The impact of domain specific knowledge is also evidenced from the fact that 

LSTM models with clinical domain embedding outperform LSTM models with general 

domain embedding. In the future, it is interesting to investigate whether integration of 

advanced semantic and syntactic features and domain specific knowledge into LSTM 

models could result in significant improvement in relation classification producing 

performance that is closer to human experts.

Although this study shows the effectiveness of LSTM models with only word embedding 

features and no manual feature engineering, it is worth pointing out that the complexity of 

the approach lies in the architecture of the LSTM, including the hyper-parameter tuning, 

especially compared to conventional neural networks as shown in Figure 1. From this 

perspective, it is important to consider the nuanced tradeoffs between architecture 

engineering and feature engineering. The top i2b2/VA challenge participating systems 

exemplify the advanced feature engineering. This study can be considered as one of the early 

explorations of the advanced architecture engineering for medical relation classification. 

When experimenting with LSTM with mean pooling and max pooling, we found that neither 

pooling strategy completely outperformed the other. In fact, they respectively rely on the 

following strong assumptions that may not hold all the time: 1) the signal is distributed 

uniformly among the full sequence; 2) there is a strong signal from some word/phrase/

segment of the sequence. This suggests that architecture with more flexible pooling models 

of signals such as attentive pooling networks [61] and neural attention models [27] may lead 

to more accurate relation classification, which will be our future work. We also plan to 

experiment with more advanced architectures such as bidirectional LSTM [36] that can more 

efficiently use both previous context features and succeeding context features and model 

subtle differences such as passive voice vs. active voice. In general, it is also interesting to 

explore a well-balanced tradeoff between the direction of architecture engineering and the 

direction of integrating advanced features and domain knowledge.

It is a known problem that different institutions may have different clinical documentation 

systems and styles, which may bring challenges to generalizing our models to multiple 

institutions. However, because our LSTM models are built on top of generic and basic 

features like words (and positions for sentence LSTM), we expect that these LSTM models 

will perform similarly well on classifying relations for clinical notes from other institutions. 

In fact, the i2b2/VA challenge collected clinical notes from four medical institutions. The 

fact that our LSTM models perform well on this diverse dataset lends credibility on its 

generalizability. On the other hand, we are extending the LSTM models to extract relations 

from other types of clinical narratives such as pathology reports and radiology reports, and 

generalizability analysis is part of our future work.
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8 Conclusion

In this work, we proposed the first system based on recursive neural networks (RNN) – more 

specifically Long Short-Term Memory (LSTM) – for classifying relations from clinical 

notes. We showed that our LSTM models achieve comparable performance to those of the 

state-of-the-art systems on the i2b2/VA relation classification challenge dataset. We also 

showed that segment LSTM model outperforms sentence LSTM model, which is consistent 

with the intuition that exploring the difference between concept text and context text, and 

between different contextual parts in the sentence provides helpful information in discerning 

relations between concepts. We evaluated the impact of word embedding on the performance 

of our LSTM models and showed that medical domain word embedding help improve the 

relation classification. These results are not only encouraging but also suggestive of future 

directions in integrating domain specific knowledge into LSTM models and generalizing the 

models to other types of clinical notes from multiple institutions.
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Figure 1. 
Illustration of Recurrent Neural Network structure in comparison with conventional 

Artificial Neural Networks. a) A conventional Artificial Neural Network. b) An input-

neuron-output triplet from a conventional Artificial Neural Network. c) An input-neuron-

output triplet from a Recurrent Neural Network. d) An unfolded Recurrent Neural Network 

upon reading a sentence of n words [s1,…,sn].
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Figure 2. 
Illustration of LSTM model. a) The building blocks – LSTM memory cell. The operator “;” 

denotes vector concatenation, σ(·) and tanh(·) refer to the element-wise sigmoid and 

hyperbolic tangent functions, and * is the element-wise multiplication. The ft, it, ot are the 

values of the forget gate, input gate and output gate respectively, ĉt is the candidate value for 

the cell state, Wf, Wi, Wc, Wo are weight matrices and bf, bi, bc, bo are bias vectors 

associated with them. b) The sentence level LSTM model architecture for relation 

classification. Each LSTM block corresponds to the memory cell structure in a). Each input 

st, t = 1,…,n has a dimension of demb that is the word embedding size, plus two numbers p1, 

p2 corresponding to the distances of the current word to concept 1 and concept 2 

respectively. Each LSTM memory cell output ht has a dimension of nhu, which are then 

pooled to produce a feature vector of dimension nhu as well. The pooling output can be 

regarded as the hidden units, which are input to the softmax layer that produces the label y 
for relation classification.
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Figure 3. 
Segment level LSTM for relation classification. Concept and context text are divided into 

five segments: before the first concept (preceding), of the first concept (concept 1), between 

the two concepts (middle), of the second concept (concept 2), and after the second concept 

(succeeding). For each segment, the LSTM + pooling layer produced a nhu-dimensional 

feature vector. These vectors are then concatenated and fed into a softmax layer.
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Table 1

Distribution of relation classes in the training and test datasets. Both actual numbers and percentages are 

shown. “PP None” indicates None relation between medical problems. “Tep None” indicates None relation 

between tests and medical problems. “TrP None” indicates None relation between treatments and medical 

problems.

Relation Type Training Training % Test Test % Effective Training*

PIP 1239 38.4% 1986 61.6% 1123

PP None 7349 39.64% 11190 60.36% 4453

TeCP 303 34.0% 588 66.0% 271

TeRP 1734 36.4% 3033 63.6% 1564

TeP None 1535 38.50% 2452 61.50% 1379

TrAP 1423 36.4% 2487 63.6% 1284

TrCP 296 40.0% 444 60.0% 270

TrIP 107 35.1% 198 64.9% 100

TrNAP 106 35.7% 191 64.3% 101

TrWP 56 28.1% 143 71.9% 48

TrP None 2329 40.05% 3486 59.95% 2081

*
Effective Training denotes the number of samples used to train each class. It is less than the number of samples in the training dataset due to 

random allocation of 10% training dataset as validation set for all relations, and down-sampling for PP relations. We refer the reader to Experiments 
and Results section for more detail.
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Table 2

Performance of the LSTM models with mean pooling word embedding trained on medical corpus. 

Performance of i2b2/VA challenge participating systems are also included for comparison. The segment 

LSTM mean (pooling) best performance was attained with 150 hidden units and pad size 6 for TrP relations, 

with 200 hidden units and pad size 4 for TeP relations, with 100 hidden units and pad size 4 for PP relations. 

The sentence LSTM mean best performance was attained with 200 hidden units for all relation categories. 

Best micro-averaged f-measures are in bold.

System Problem-Treatment (TrP) Relations Problem-Test (TeP) Relations Problem-Problem (PP) Relations

R P F R P F R P F

Segment LSTM mean 0.641 0.683 0.661 0.766 0.838 0.800 0.731 0.640 0.683

Sentence LSTM mean 0.623 0.658 0.640 0.758 0.794 0.775 0.728 0.681 0.704

Roberts et al. [53] 0.686 0.672 0.679 0.833 0.798 0.815 0.726 0.664 0.694

deBruijn et al. [15] 0.583 0.750 0.656 0.789 0.843 0.815 0.712 0.691 0.701

Grouin et al. [18] 0.646 0.647 0.647 0.801 0.792 0.797 0.645 0.670 0.657

Patrick et al. [56] 0.599 0.671 0.633 0.774 0.813 0.793 0.627 0.677 0.651

Jonnalagadda et al. [14] 0.679 0.581 0.626 0.828 0.765 0.795 0.730 0.586 0.650

Divita et al. [17] 0.582 0.704 0.637 0.782 0.794 0.788 0.534 0.710 0.610

Solt et al. [57] 0.629 0.621 0.625 0.779 0.801 0.790 0.711 0.469 0.565

Demner-Fushman et al. [58] 0.612 0.642 0.626 0.677 0.835 0.748 0.533 0.662 0.591

Anick et al. [16] 0.619 0.596 0.608 0.787 0.744 0.765 0.502 0.631 0.559

Cohen et al. [59] 0.578 0.606 0.591 0.781 0.750 0.765 0.492 0.627 0.552
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Table 4

Performance of the LSTM models with word embedding trained on the Google news corpus. The segment 

LSTM mean (pooling) best performance was attained with 200 hidden units and pad size 5 for TrP relations, 

with 150 hidden units and pad size 5 for TeP relations, with 200 hidden units and pad size 3 for PP relations. 

The sentence LSTM mean best performance was attained with 150 hidden units for TrP and TeP relations, and 

with 200 hidden units for PP relations.

System Problem-Treatment (TrP) Relations Problem-Test (TeP) Relations Problem-Problem (PP) Relations

R P F R P F R P F

Segment LSTM mean 0.629 0.665 0.647 0.728 0.836 0.778 0.777 0.580 0.664

Sentence LSTM mean 0.596 0.662 0.628 0.747 0.804 0.775 0.719 0.666 0.691

J Biomed Inform. Author manuscript; available in PMC 2019 July 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Luo Page 26

Table 5

Performance of the LSTM models with max pooling and word embedding trained on MIMIC-III corpus. The 

segment LSTM max (pooling) best performance was attained with 100 hidden units and pad size 7 for TrP 

relations, with 200 hidden units and pad size 5 for TeP relations, with 100 hidden units and pad size 5 for PP 

relations. The sentence LSTM max (pooling) best performance was attained with 150 hidden units for all 

relations.

System Problem-Treatment (TrP) Relations Problem-Test (TeP) Relations Problem-Problem (PP) Relations

R P F R P F R P F

Segment LSTM max 0.636 0.674 0.655 0.765 0.853 0.806 0.729 0.669 0.698

Sentence LSTM max 0.632 0.650 0.641 0.757 0.793 0.775 0.776 0.666 0.717
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Table 6

Running time of the LSTM models with word embedding trained on MIMIC-III corpus. The model hyper-

parameters are same as in Table 2. The time is measured in the number of seconds.

System Problem—Treatment Relations Problem—Test Relations Problem—Problem Relations

Segment LSTM mean 1901s 2175s 1550s

Sentence LSTM mean 2618s 1701s 1705s
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Table 7

Confusion matrices for TrP relations by LSTM models with medical word embedding. The maximum 

diagonal entries across all LSTM models are shown in bold.

Segment mean pooling Sentence mean pooling

None TrIP TrWP TrCP TrAP TrNAP None TrIP TrWP TrCP TrAP TrNAP

None 2855 20 0 55 533 23 2812 20 12 78 545 19

TrIP 59 59 0 15 60 5 62 53 5 13 65 0

TrWP 56 12 0 10 58 7 53 9 8 17 53 3

TrCP 174 7 0 181 78 4 150 7 4 206 66 11

TrAP 498 19 0 17 1942 11 532 28 8 44 1851 24

TrNAP 56 5 0 15 78 37 59 2 1 26 63 40

Segment max pooling Sentence max pooling

None 2797 15 13 56 597 8 2795 27 13 131 493 27

TrIP 78 52 3 4 61 0 60 67 6 14 51 0

TrWP 56 14 7 8 56 2 43 13 10 22 49 6

TrCP 170 4 5 179 84 2 145 4 13 205 62 15

TrAP 505 20 6 14 1931 11 484 42 10 49 1861 41

TrNAP 76 1 2 13 65 34 52 2 2 24 64 47

J Biomed Inform. Author manuscript; available in PMC 2019 July 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Luo Page 29

Table 8

Class-wise performance of LSTM models with medical word embedding on TrP relations in comparison with 

challenge participating systems. The best F-measure for each relation is in bold.

System TrIP TrWP TrCP TrAP TrNAP

R P F R P F R P F R P F R P F

Segment LSTM mean 0.298 0.484 0.369 0.000 NaN NaN 0.408 0.618 0.491 0.781 0.706 0.742 0.194 0.425 0.266

Sentence LSTM mean 0.268 0.445 0.334 0.056 0.211 0.088 0.464 0.536 0.498 0.744 0.700 0.722 0.209 0.412 0.278

Segment LSTM max 0.263 0.491 0.342 0.049 0.194 0.078 0.403 0.653 0.499 0.776 0.691 0.731 0.178 0.596 0.274

Sentence LSTM max 0.338 0.432 0.380 0.070 0.185 0.102 0.462 0.461 0.461 0.748 0.721 0.735 0.246 0.346 0.287

Roberts et al. 0.298 0.562 0.389 0.035 0.278 0.062 0.565 0.542 0.554 0.814 0.707 0.757 0.199 0.432 0.272

deBruijn et al. 0.177 0.833 0.292 0.000 NaN NaN 0.327 0.747 0.455 0.730 0.748 0.739 0.126 0.774 0.216

Grouin et al. 0.414 0.458 0.435 0.168 0.774 0.276 0.435 0.550 0.486 0.760 0.676 0.715 0.251 0.495 0.333

Patrick et al. 0.157 0.861 0.265 0.028 0.800 0.054 0.480 0.495 0.487 0.725 0.699 0.712 0.131 0.556 0.212

Jonnalagadda et al. 0.207 0.612 0.309 0.007 0.200 0.014 0.457 0.537 0.494 0.835 0.589 0.691 0.147 0.400 0.215

Divita et al. 0.197 0.780 0.315 0.035 0.833 0.067 0.367 0.715 0.485 0.719 0.702 0.710 0.105 0.690 0.182

Solt et al. 0.313 0.591 0.409 0.056 0.667 0.103 0.493 0.389 0.435 0.743 0.685 0.713 0.220 0.316 0.259

Demner-Fushman et al. 0.369 0.635 0.467 0.126 0.346 0.185 0.491 0.536 0.512 0.712 0.675 0.693 0.199 0.376 0.260

Anick et al. 0.237 0.528 0.328 0.014 0.182 0.026 0.561 0.442 0.495 0.731 0.632 0.678 0.157 0.517 0.241

Cohen et al. 0.096 0.576 0.165 0.007 0.200 0.014 0.356 0.608 0.449 0.729 0.608 0.663 0.052 0.435 0.094
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Table 9

Confusion matrices for TeP relations by LSTM models with medical word embedding. The maximum 

diagonal entries across all LSTM models are shown in bold.

Segment mean pooling Sentence mean pooling Segment max pooling Sentence max pooling

None TeRP TeCP None TeRP TeCP None TeRP TeCP None TeRP TeCP

None 2055 317 80 1904 478 70 2097 294 61 1931 400 121

TeRP 472 2521 39 481 2511 40 477 2518 37 460 2473 99

TeCP 234 101 253 230 125 233 250 87 251 224 96 268
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Table 10

Class-wise performance of LSTM models with medical word embedding on TeP relations in comparison with 

challenge participating systems. The best F-measure for each relation is in bold.

System TeRP TeCP

R P F R P F

Segment LSTM mean 0.831 0.858 0.844 0.430 0.680 0.527

Sentence LSTM mean 0.828 0.806 0.817 0.396 0.679 0.501

Segment LSTM max 0.830 0.869 0.849 0.427 0.719 0.536

Sentence LSTM max 0.816 0.833 0.824 0.456 0.549 0.498

Roberts et al. 0.906 0.825 0.864 0.456 0.594 0.516

deBruijn et al. 0.880 0.842 0.861 0.316 0.857 0.462

Grouin et al. 0.881 0.813 0.846 0.391 0.612 0.477

Patrick et al. 0.840 0.840 0.840 0.430 0.614 0.506

Jonnalagadda et al. 0.911 0.784 0.843 0.400 0.596 0.479

Divita et al. 0.886 0.793 0.837 0.245 0.818 0.377

Solt et al. 0.826 0.842 0.834 0.536 0.577 0.556

Demner-Fushman et al. 0.733 0.872 0.796 0.393 0.594 0.473

Anick et al. 0.848 0.765 0.804 0.475 0.597 0.529

Cohen et al. 0.861 0.766 0.810 0.369 0.599 0.457
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Table 11

Confusion matrices for PP relations by LSTM models with medical word embedding. The maximum diagonal 

entries across all LSTM models are shown in bold.

Segment mean pooling Sentence mean pooling Segment max pooling Sentence max pooling

None PIP None PIP None PIP None PIP

None 10374 816 10514 676 10473 717 10415 775

PIP 534 1452 540 1446 538 1448 444 1542
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