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Abstract

Accuracy assessment is a standard protocol of National Land Cover Database (NLCD) mapping.
Here we report agreement statistics between map and reference labels for NLCD 2011, which
includes land cover for ca. 2001, ca. 2006, and ca. 2011. The two main objectives were assessment
of agreement between map and reference labels for the three, single-date NLCD land cover
products at Level Il and Level I of the classification hierarchy, and agreement for 17 land cover
change reporting themes based on Level | classes (e.g., forest loss; forest gain; forest, no change)
for three change periods (2001-2006, 2006—-2011, and 2001-2011). The single-date overall
accuracies were 82%, 83%, and 83% at Level Il and 88%, 89%, and 89% at Level | for 2011,
2006, and 2001, respectively. Many class-specific user's accuracies met or exceeded a previously
established nominal accuracy benchmark of 85%. Overall accuracies for 2006 and 2001 land cover
components of NLCD 2011 were approximately 4% higher (at Level 1l and Level I) than the
overall accuracies for the same components of NLCD 2006. The high Level I overall, user's, and
producer's accuracies for the single-date eras in NLCD 2011 did not translate into high class-
specific user's and producer's accuracies for many of the 17 change reporting themes. User's
accuracies were high for the no change reporting themes, commonly exceeding 85%, but were
typically much lower for the reporting themes that represented change. Only forest loss, forest
gain, and urban gain had user's accuracies that exceeded 70%. Lower user's accuracies for the
other change reporting themes may be attributable to the difficulty in determining the context of
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grass (e.g., open urban, grassland, agriculture) and between the components of the forest-
shrubland-grassland gradient at either the mapping phase, reference label assignment phase, or
both. NLCD 2011 user's accuracies for forest loss, forest gain, and urban gain compare favorably
with results from other land cover change accuracy assessments.
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1. Introduction

The National Land Cover Database (NLCD), sponsored by the MultiResolution Land
Characteristics (MRLC) Consortium (http://www.mrlc.gov), is a well-established and widely
used source of information on land cover (Wickham et al., 2014). The most recent release of
the product, NLCD 2011 (Homer et al., 2015), includes 16 land cover classes (http://
www.mrlc.gov/nlcd11_leg.php) and related information for three eras (2001, 2006, 2011) at
the native 30 m x 30 m pixel size of Landsat Thematic Mapper. One objective of the NLCD
project is to provide land cover monitoring data that can be used to assess land cover change
and trends, and the release of NLCD 2011 is the first realization of the database that can be
used to assess change over multiple time intervals (Homer et al., 2015).

Accuracy assessment is one of the protocols of the NLCD program. Continuing this protocol
of documenting accuracy of NLCD products, the two main objectives of this assessment are:
1) assess the accuracy of the single-date land cover maps produced for each NLCD era
(2001, 2006, 2011) at Level Il and I classification hierarchies, and 2) assess the accuracy of
land cover change across the three NLCD change periods (2001-2006, 2006—-2011, 2001-
2011). The focus on the accuracy of change across the three NLCD time periods is
consistent with the format used to report NLCD 2006 land cover thematic accuracy
(Wickham et al., 2013). NLCD 2006 (Fry et al., 2011) was the first NLCD database to
incorporate land cover change. This accuracy assessment was undertaken to document
product quality, inform production of future NLCD products, and support monitoring,
modeling, and assessments that use NLCD 2011 land cover data.

The continuing development of the NLCD database results in new versions of previously
released land cover products. The NLCD 2011 database includes version 1 of the year 2011,
version 2 of the year 2006 and version 3 of the year 2001. Thus, the NLCD 2011 accuracy
assessment reported in this paper evaluates version 3 of year 2001, version 2 of year 2006
and version 1 of year 2011. Users of NLCD 2001 (Homer et al., 2007) and NLCD 2006 (Fry
etal., 2011) products should refer to their associated accuracy assessments when using those
products. The accuracy assessment of NLCD 2001, which includes version 1 of NLCD
2001, is reported in Wickham et al. (2010), and the accuracy assessment of NLCD 2006,
which includes version 2 of year 2001 and version 1 of year 2006, is reported in Wickham et
al. (2013). NLCD 1992 (Vogelmann et al., 2001) is not considered part of the NLCD time
series because of substantial methodological differences from later NLCD versions (Homer
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etal., 2004). The NLCD 1992 accuracy assessments are reported in Stehman et al. (2003)
and Wickham et al. (2004).

In addition to the three eras of land cover, the NLCD database also includes percentage
urban impervious cover for 2001, 2006, and 2011 (Xian et al., 2011), and forest
canopydensity for 2001 and 2011 (Coulston et al., 2012, Homer et al., 2007). The number of
accuracy assessment objectives increases with the continued growth and development of the
NLCD database, and all of these objectives cannot be accommodated with the limited
NLCD resources (Stehman et al., 2008). We focus here on accuracy of land cover and land
cover change among the three NLCD eras because it was considered the highest priority
among MRLC participants. Accuracy of urban impervious cover and forest canopy density
are not addressed in this assessment.

2. Methods
2.1. Sampling design

Accuracy assessment methods were based on the sampling design, response design, and
analysis components developed by Stehman and Czaplewski (1998). We implemented a
stratified random sampling design to accommodate the dual objectives of individual era (i.e.,
single date) assessments at Level Il and Level | (Table 1) and temporal change assessments
at Level | for multiple change periods. The continental United States was first divided into
east and west regions to create two geographic strata (Fig. 1). This regional stratification was
used because previous NLCD accuracy assessments have shown geographic variations in
accuracies in which class-specific accuracies tend to be higher when the class was dominant
regionally (Stehman et al., 2003, Wickham et al., 2004, Wickham et al., 2010, Wickham et
al., 2013). Thirty-eight (38) strata were sampled within each region, with 16 of these strata
corresponding to mapped no change over all three dates for the 16 Level Il classes. The
other 22 strata were defined based on mapped change over the three dates (Table 2). The 22
change strata prioritized shifts among forest, shrubland, grassland and urban among the 504
possible change combinations of eight Level I classes for three dates (excluding Level I no
change classes). The 38 strata accounted for all pixels in the NLCD 2011 map area thereby
satisfying one condition of a probability sampling design which is that each pixel in the
population must have a non-zero inclusion probability (Stehman, 2001). Accuracy estimates
for the temporal component of NLCD 2011 were produced for 17 reporting themes that
were based on the eight Level | classes (Table 3). These reporting themes are same as those
used in the NLCD 2006 accuracy assessment (Wickham et al., 2013) facilitating comparison
of accuracy of NLCD 2011 with NLCD 2006.

Previous NLCD accuracy assessments used 10 geographic strata (regions), but only two
regions were defined for this assessment because limited resources reduced the total sample
size to 8000 from 15,000 sample pixels used in the NLCD 2001 (Wickham et al., 2010) and
NLCD 2006 (Wickham et al., 2013) accuracy assessments. The eastern U.S. region received
3900 sample pixels and the western U.S. region received 4100 sample pixels. There were no
sample pixels of the NLCD perennial ice and snow class in the eastern region.
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2.2. Response design

The main elements of the response design were: 1) blind interpretation; 2) reliance on
Google Earth™ time series imagery to determine the reference labels; 3) reliance on the
pixel as the spatial support unit of the assessment (Stehman and Wickham, 2011); 4)
assignment of primary and alternate reference labels, and; 5) specific rules for coding
primary and alternate reference labels across Level Il and Level I classification hierarchies.
Collection of reference labels was accomplished by four persons at the U.S. Geological
Survey. Before assigning reference labels to the actual sample pixels, interpreters completed
training and orientation to promote consistency among interpreters and gain experience in
collection of reference labels for some of the common land cover trends in the NLCD maps
(Mann and Rothley, 2006). Landsat path/rows in the vicinity of Jacksonville, Florida and
Denver, Colorado were used for training and orientation. Following training and orientation,
reference label collection was initiated with 200 sample pixels that were interpreted
collectively by all four interpreters to further enhance consistency among interpreters (Mann
and Rothley, 2006), and following completion of the interpretation of these sample pixels,
each person was assigned an additional 1950 sample pixels that they interpreted individually.
Weekly web-enabled conference calls were conducted during the collection of reference
labels to further ensure consistent interpretation.

Reference labels were collected by the interpreters without knowledge of the map
classification (response design element 1). Each interpreter was provided three vector
Keyhole Markup language Zipped (KMZ) files of the sample pixels for overlay on Google
Earth™ imagery. The vector files were point and polygon expressions of the sample pixels,
and a vector file of the 3-x-3 pixel window surrounding the sample pixel. The 3-x-3 pixel
window file was supplied to add context; it is appropriate to survey the surrounding
landscape to determine the most appropriate labels for a sample pixel (Stehman and
Czaplewski, 1998). The vector files were overlaid on the Google Earth™ time series
imagery to assist the interpreters in obtaining the reference label for the sample pixel
(response design element 2). The interpreters also had Landsat imagery acquisition dates for
the NLCD classifications to guide selection of the most appropriate Google Earth™ date to
use when determining the reference label. The goal of reference label assignment was to
identify the most appropriate land cover labels that corresponded to the ground condition for
the sample pixel (Stehman and Wickham, 2011) (response design element 3).

The interpreters collected primary and alternate reference labels at Level 11 and Level | of
the NLCD classification hierarchy for each sample pixel while keeping in mind the NLCD
mapping protocols. The primary label was that deemed most correct and the alternate label
was considered a very likely alternative (response design element 4). An alternate label was
not assigned if, in the interpreter's judgment, the primary class was the only possible class.
In aggregate for the three dates sampled, no alternate label was assigned for 42% of the
sample pixels at Level 11 and 65% of the sample pixels at Level I. Use of primary and
alternate labels was consistent with all previous NLCD accuracy assessments (Stehman et
al., 2003, Wickham et al., 2004, Wickham et al., 2010, Wickham et al., 2013), and can be
considered a special case of the linguistic scale, fuzzy membership analysis (Stehman et al.,
2003, p. 513) reported in Gopal and Woodcock (1994). The main protocol for collection of
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reference data was for each interpreter to examine the time series of Google Earth™
imagery and determine the primary and alternate reference label sets at Level | for all three
eras. The interpreters then used the Level | reference labels to assign the Level Il reference
labels (i.e., the Level Il label had to be one of the subclasses within the Level I hierarchy).

Reference labels were assigned using the conceptual model of NLCD mapping protocols
(response design element 5), rather than from the perspective of the land cover evident on
Google Earth™ imagery (Comber et al., 2005). The numerous forest fires that have occurred
in the western United States over the past decade provide a good example of the difference
between reference label assignments from the perspective of NLCD mapping protocols
versus the perspective of the land cover evident on Google Earth™ imagery. Many of these
areas impacted by forest fire are comprised of standing dead trees, and thus from the Google
Earth™ perspective there would be a tendency to label sample pixels in such areas as forest
since trees are still present and ecological succession is likely to follow. The NLCD protocol
was to map areas that changed from forest to burned forest as forest to shrubland so the
reference label assignment protocol implemented would label such a case as forest in 2006
and shrubland in 2011. Reference label assignment accounted for such protocols and was
conducted by interpreters who also participated in production of the NLCD maps.

2.3. Analysis

The analysis component employed general estimation theory of probability sampling (cf.
Sarndal et al., 1992). The sample-based estimates incorporate the known inclusion
probabilities of the stratified random design (Stehman, 2001, Stehman and Czaplewski,
1998) although special case estimation formulas are used that do not show the inclusion
probabilities explicitly. Overall accuracy was estimated as

~ 1\l —
o=y E P, @

where ph is the sample proportion of pixels correctly classified in stratum A, N is the total
number of pixels in the region, N is the population size of stratum /4, and the summation is
over all H strata (H = 38 for a regional estimate and H = 76 for a national estimate). Overall
accuracy was estimated for the individual, single-date land cover products (2001, 20086,
2011) and the change between them at Level | for the three time intervals (2001-2006,
2006-2011, 2001-2011). User's and producer's accuracies were estimated as a ratio R
Y/X, where Y is the population total of y, where,

1 if pixel u satisfies condition A @)
if pixel u does not satisfy conditon A

=13

and X is the population total of x,, where

. = 1 if pixel u satisfies condition B 3)
u = L0 if pixel udoes not satisfy conditon B
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For example, to estimate user's accuracy for the Level I class forest (e.g., Table 1, Table 2),
condition A would be that the map and reference labels were both forest, and condition B
would be that the map label was forest. The ratio Y/X would then be the parameter defining
user's accuracy, which is the total number of pixels in the region for which both the map and
reference labels were forest divided by the number of pixels in the region mapped as forest.
To estimate producer's accuracy of forest, condition A would remain the same, but condition
B would be that the reference label was forest. The combined ratio estimator (Cochran,
1977, Section 6.11) for user's or producer's accuracy is then

H . _
A 2——N,y
R= =—h;11 h_h (4)
E—hlehxh

D> ~i>

where X, is the sample mean of x, in stratum / (i.e., Table 2) and y, is the sample mean of

y,in stratum A. We report accuracy estimates for agreement based on the map label
matching the primary reference label and also for agreement based on the map matching the
primary reference label or an alternate reference label. For assessments of change accuracy,
as many as three alternate reference conditions were possible. For example, when assessing
the 2001 to 2006 NLCD change, the alternate reference labels included the alternate 2001
Level 1 class with the 2006 alternate Level 1 class, the primary 2001 Level | class with the
alternate 2006 Level | class, and the alternate 2001 class with the primary 2006 class. These
three comparisons were in addition to the comparison using the primary 2001 Level I class
and the primary 2006 Level I class to determine the reference class of change.

The estimated variance of the combined ratio estimator is

VR) = | = || S0 N2 = ny f N2+ R [ | ()

1
2

where 1y, is the sample size in stratum h, sy/,z and 5,2 are the sample variances of y, and x;,
for stratum /and sy, is the sample covariance for y,,and X, for stratum /. Sample data from
several strata may contribute to the accuracy estimators for a targeted class (Table 2) because
the strata do not always directly correspond to a target class. Estimation of user's accuracy
for shrubland loss during 2001 to 2006, for example, would include sample pixels from
strata 23 through 28 in Table 2. The values of y, y,, and sy/,z equal zero (0) for a stratum in

which no sample pixels satisfy condition A (the condition defining the numerator of &), and,
similarly, the values of x, x,;, and S equal zero (0) for a stratum in which no pixels

satisfy condition B (the condition defining the denominator of R). Estimates were computed
using version 9.3 of SAS (Statistical Analysis Software, SAS, Inc., Cary, North Carolina,
USA).

We used a nominal benchmark of 85% as a quality threshold for interpreting agreement
between map and reference data (Anderson et al., 1976). We recognize that this benchmark
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has been used uncritically as a heuristic, and its use may not be appropriate in all contexts
(Foody, 2006). Nevertheless, we feel that it serves as a useful guide for evaluation of the
quality of the temporal NLCD maps.
3. Results

3.1. Accuracy of single-date maps

Unless otherwise stated, the results presented are based on the definition of agreement as a
match between the map label and either the primary or alternate reference label. At Level Il
of the classification hierarchy, land cover overall accuracies of the NLCD 2011 individual
date products were 82% for 2011 (Table 4) and 83% for both 2006 and 2001 (Table 5, Table
6). High user's accuracies (= 85%) were realized for water (11), high intensity developed
(24), deciduous forest (41), evergreen forest (42), shrubland (52), and cropland (82) when
agreement was defined as a match between the map and the primary or alternate reference
label. There was a regional dichotomy in Level 11 overall accuracy. Level Il overall
accuracies for 2011 were approximately 10% higher in the western sampling region than the
eastern sampling region, primarily from much higher agreement in the western region for
shrubland and grassland as well as the urban classes (Table 7, Table 8). A similar east versus
west difference in overall accuracy was observed for 2001 and 2006 (tables not included).

Overall accuracies increased from 6% to 9% across all NLCD eras when land cover classes
were aggregated from Level 11 to Level I, depending on the definition of agreement (Table 9,
Table 10, Table 11). Level I overall accuracies were about 9% higher than the Level 1l
overall accuracies when the definition of agreement was restricted to a match between the
map label and the primary reference label only. High user's accuracies (= 85%) were realized
for water (10), forest (40), shrubland (50), and agriculture (80) across all NLCD eras.
Overall accuracy was approximately 6% higher in the east than in the west when agreement
was defined as a match between the map label and primary reference label only (Table 12,
Table 13).

Map homogeneity and the definition of agreement had substantial impacts on overall
accuracy. Constraining agreement to a match between the map and primary reference label
reduced overall accuracies from 9% to 15% relative to overall accuracy based on agreement
defined as a match based on either the primary or alternate reference label (Table 14). The
magnitude of the change in accuracy depended on the NLCD era, level of classification
hierarchy, and sampling region. The impact of map homogeneity, defined here as like-
classified pixels (Level I) for a sample pixel's eight immediate neighbors, was similar to the
impact of agreement definition. Depending on the NLCD era, level of classification
hierarchy, sampling regions, and agreement definition, overall accuracy improved by 4-13%
when only the subset of sample pixels with like-classified neighbors was considered.

3.2. Accuracy of change

Overall accuracies for a binary change versus no change classification exceeded 95% for all
three change periods (Table 15, Table 16, Table 17). User's and producer's accuracies for no
change were > 95% in all cases, but accuracy of change was lower. User's accuracy of
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change was approximately 55% for all change periods when agreement was defined as a
match with only the primary reference change labels, and increased to approximately 82%
when agreement also allowed a match with one of the alternate reference change labels.
Producer's accuracies were typically lower than user's accuracies, indicating high change
omission error. Producer's accuracies of change were 24.4%-30.3% for agreement defined
as a match with the primary change reference label only, and increased to approximately
44.6%—47.2% when agreement also allowed a match with the alternate reference change
labels. Overall accuracies for binary change classification tended to be higher by 0.8%-2.5%
in the western sampling region than the eastern sampling region because of higher
accuracies for the no change class (Table 18, Table 19, Table 20, Table 21, Table 22, Table
23). User's accuracies for binary change tended to be higher in the eastern sampling region
when the definition of agreement was defined as a match between the map label and primary
reference label only, but were essentially equivalent when the alternate reference label was
included in the definition of agreement. Producer's accuracies tended to be distinctly higher
(> 10%) in the eastern sampling region than the west regardless of agreement definition.

Consistent with the agreement statistics reported for the binary change and no change
classification, agreement for the change reporting themes was generally poor (Table 24).
Only the user's accuracies for forest loss was consistently near 80% for the three NLCD
change periods. Urban gain user's accuracy approached 80% for the 2001-2011 and 2001-
2006 change periods, but dropped to 68% for the 2006—-2011 change period. Forest gain
user's accuracies were between 71% and 74% for all three NLCD change periods. User's
accuracies for most of the remaining reporting themes ranged from 50% to 70% with
agriculture gain and water gain being exceptions with user's accuracies below 50%.
Producer's accuracies for the change reporting themes were commonly below 50%. There
was some regional differentiation in the user's accuracies for forest loss and forest gain
(Table 25, Table 26), with higher user's accuracies for forest loss in the western sampling
region and higher user's accuracies for forest gain in the eastern sampling region.

In contrast to the change reporting themes, the no change reporting themes had higher
agreement (Table 24). User's accuracies for all three NLCD time periods were > 85% for
four of the six no change reporting themes, and > 80% for all no change reporting themes.
Producer's accuracies for the six no change reporting themes exceeded 70% except urban.
There was a stark regional difference in the user's and producer's accuracies for the
shrubland no change and grassland no change reporting themes between east and west
regions (Table 25, Table 26). User's accuracies for shrubland no change and grassland no
change exceeded 85% in the western region, but were 30% or less in the eastern region.
Similarly, producer's accuracies for shrubland no change were about 60% higher in the west
region than the east region, and producer's accuracies for grassland no change were
approximately 10% higher in the west region than the east region. Conversely, user's
accuracies for urban and forest no change tended to be approximately 5% higher in the east
region than the west region.
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4. Discussion

4.1. Comparison of NLCD 2011 accuracy assessment methods with “good practice”
recommendations

The sampling design, response design, and analysis protocols implemented in the NLCD
2011 closely match the “good practice” recommendations for accuracy assessment described
by Olofsson et al. (2014). Throughout the entirety of the NLCD program dating back to the
accuracy assessment of NLCD 1992, probability sampling designs have been the basis for
applying rigorous design-based inference (Stehman, 2000) to serve as the scientific
foundation of the accuracy estimates and standard errors (Stehman et al., 2003, Wickham et
al., 2004, Wickham et al., 2010, Wickham et al., 2013). The NLCD 2011 assessment
continued to meet this “good practice” recommendation as we implemented a stratified
random sampling design for collecting reference data. Our sampling design also followed
the “good practice” recommendations of stratifying by map class to reduce standard errors
of accuracy estimates for the rare change types as well as rare land-cover classes, stratifying
by subregions (east and west) to reduce standard errors of sub-region specific estimates, and
implementing a simple random selection protocol within each stratum to allow unbiased
estimation of variance of the accuracy estimates. Because cluster sampling would not have
yielded substantial cost savings, we did not use clusters in the sampling design. Previous
NLCD assessments did use clusters because at the time these assessments were implemented
there were substantial savings in using clusters, as for example in the NLCD 1992
assessment (Stehman et al., 2003, Wickham et al., 2004) when hard-copy aerial photographs
were used to determine the reference class.

Our analysis protocol follows the “good practice” recommendations (Olofsson et al., 2014,
Sec. 6.4) nearly verbatim. Error matrices are reported in terms of proportion of area, we
estimate user's and producer's accuracies for each class, the estimators are unbiased, we
quantify variability by reporting standard errors, we use design-based inference, and we
assess the impact of reference data uncertainty by reporting results for two definitions of
agreement (i.e., with and without a match to the alternate reference labels). The primary
difference from the “good practice” recommendations is that we do not emphasize in our
reporting the area estimates based on the reference classification. The primary objectives of
the NLCD 2011 assessment focus on documenting the accuracy of the single-date and
change products to inform users of NLCD 2011 data in their applications. While the error
matrices we report include the estimated percent of area of each class (based on the
reference classification), it is not a primary intent of the NLCD program to produce these
area estimates.

The response design protocol also follows the “good practice” guidelines very closely. The
reference data provided the required temporal representation consistent with the change
period of the map, we assigned each pixel a primary and secondary (if warranted) reference
label to account for uncertainty in the labeling protocol, and the response design included
several procedures to ensure interpreter consistency. The one “good practice” suggestion we
did not include was that we did not collect interpreter confidence ratings for each pixel. We
had collected confidence ratings in previous NLCD assessments but found that interpreters
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had difficulty being consistent when assigning these confidence ratings. Analyses showed
that interpreter confidence was not as strongly associated with classification error as features
such as the complexity of the landscape surrounding the sample pixel (Wickham et al.,
2010) so we decided not to burden the interpreters with this extra requirement of a
confidence rating.

4.2. Accuracy of NLCD 2011 land cover

The approximate 83% overall accuracies of the single-date maps for all NLCD eras at the
16-class (Level I1) hierarchical level approached the nominal 85% quality benchmark, and 6
of the 16 classes (water, high density urban, deciduous forest, evergreen forest, and
shrubland) had user's accuracies that met or exceeded the nominal benchmark. At the 8-class
(Level I) hierarchical level, overall accuracies for all NLCD eras were 88% or higher,
exceeding the nominal 85% quality benchmark, and high user's accuracies (= 85%) were
realized for water, urban, forest, shrubland, and agriculture.

Ranging from 33% to 93% across the three change eras, the emergent pattern across the
three change eras was high user's accuracies for no change reporting themes, urban gain, and
forest loss and gain. The remaining change reporting themes had lower user's accuracies. A
partial explanation for the lack of uniformly high user's accuracies for reporting themes
representing change is evident in the error matrices. Approximately 14% of the Level |
disagreement is attributable to map-reference mismatches between forest (class 40) and
shrubland (class 50), shrubland and grassland (class 70), and grassland and agriculture (class
80). Disagreement among these classes suggests that determination of the most appropriate
class label at “interfaces” across the forest-shrubland-grassland gradient is difficult, and,
likewise, determination of the of the context of grassland-dominated areas (grassland,
agriculture, open urban (class 21)) is difficult at the mapping phase, reference label
assignment phase, or both. Less disagreement among these classes likely would have led to
improved agreement across the loss and gain reporting themes. A portion of the
disagreement among these classes is also likely attributable to the inherent ambiguity in
class definitions (Lunetta et al., 2001, Mann and Rothley, 2006).

Several researchers and previous NLCD accuracy assessments have shown that map
accuracy tends to improve in areas that are homogeneously classified (Low et al., 2015,
Smith et al., 2002, Smith et al., 2003, van Oort et al., 2004, Wickham et al., 2010, Wickham
etal., 2013, Yu et al., 2008). In other words, map-reference agreement tends to be more
likely when neighboring pixels have the same map label as the sample pixel. The positive
relationship between map homogeneity and agreement reported in previous assessments was
also found in this assessment. The relationship between map homogeneity and agreement
suggests that user's and producer's accuracies for the 11 loss and gain reporting themes are
probably higher for larger, more homogeneous areas of change and lower for smaller areas
of change (e.g., single, isolated pixels) than reported in Table 14.

4.3. Comparison of NLCD 2011 and NLCD 2006 accuracies

The agreement statistics reported here for year 2006, year 2001, and the 2001-2006 change
reporting themes can be compared to their counterparts from the NLCD 2006 accuracy

Remote Sens Environ. Author manuscript; available in PMC 2019 July 25.



1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Wickham et al.

Page 11

assessment (Wickham et al., 2013). The Level Il and Level I overall accuracies for the
single-date assessments for 2006 and 2001 reported here (about 82% and 88%, respectively)
were approximately 4% greater than their counterparts for the assessment of the NLCD 2006
product. The improvements in NLCD 2011 overall accuracies were modest but significant
since the standard errors for all overall accuracies reported here and in the NLCD 2006
assessment were < 1%. The improved overall accuracies for both hierarchical levels of
NLCD 2011 are primarily attributable to improved user's accuracies for low density urban
(class 22), medium density urban (class 23), woody wetland (90), and emergent wetland
(95). User's accuracies for the two urban classes and two wetland classes were
approximately 10% and 30% higher, respectively, for the NLCD 2011 product than for
NLCD 2006 product. User's accuracies for perennial snow and ice (class 12), mixed forest
(43) and pasture (class 81) were higher in the NLCD 2006 product than the NLCD 2011
product, but the lower user's accuracies for these classes in the NLCD 2011 product did not
affect NLCD 2011 Level Il or Level | overall accuracies, which were higher than their
NLCD 2006 counterparts. Among both the static and dynamic 2001-2006 change reporting
themes, the NLCD 2011 product had higher user's accuracies for urban gain (NLCD 2011:
78% + 3%; NLCD 2006: 72% + 1%), urban—no change (NLCD 2011: 82% + 2%; NLCD
2006: 73% * 2%), shrubland—no change (NLCD 2011: 89% + 1%; NLCD 2006: 85%

+ 2%), and grassland—no change (NLCD 2011: 82% + 2%; NLCD 2006: 75% = 3%).
User's accuracies for most of the other change reporting themes were statistically equivalent,
and statistical equivalence may have been partly attributable to higher standard errors for
NLCD 2011 in some cases. For example, user's accuracy for the 2001-2006 water loss
theme was 86% = 8% for the NLCD 2011 product and 80% =+ 2% for the NLCD 2006
product. The approximate 50% reduction in the number of sample pixels for NLCD 2011
accuracy assessment compared to the NLCD 2006 accuracy assessment contributed to the
higher standard errors. The change reporting themes of shrubland gain and agriculture loss
and gain were other examples of statistical equivalence that may have been attributable to
high standard errors for the NLCD 2011 accuracy assessment. The user's accuracy for
change in the binary change-no change reported here (82.9% + 1.7%; Table 17) was about
equivalent to its counterpart in the NLCD 2006 assessment (84.5% = 0.6%).

4.4. Comparison of NLCD 2011 to other land cover change efforts

More recently there has been an emphasis on accuracy assessment of land cover
changebecause of the wide ranging impacts of land cover change on biodiversity, carbon
dynamics, water quality, and other aspects of environmental condition. The user's and
producer's accuracies reported here for forest loss, forest gain, and urban gain compare
favorably with recent land cover change accuracy assessments. On average, our continental
forest gain and forest loss user's accuracies were 30% to 35% higher than forest gain and
forest loss user's accuracies for the temperate forest biome reported by Feng et al. (2016, p.
80), and approximately 23% higher than those reported for temperate forests by Potapov et
al. (2011, p. 557). The producer's accuracies reported for forest loss and forest gain by Feng
et al. (2016) were 6%—9% higher than NLCD 2011, and forest loss producer's accuracy
reported by Potapov et al. (2011) was approximately 13% higher than NLCD 2011. Yuan et
al. (2005)reported a user's accuracy of 66% across all types of change in metropolitan
Minneapolis, Minnesota (USA), which is about 10% lower than our urban gain user's
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accuracies for 2001-2006 and 2001-2011 change periods. The NLCD 2011 products of year
2001 (version 3), 2006 (version 2) and NLCD 2011 (version 1), when used in tandem,
appear to provide accurate data for determining where urbanization has occurred, where
forests have changed, and where land cover has not changed.
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Regional strata
+ East (3900)

+ West (4100)

NLCD 2011 accuracy assessment sample pixel locations and regional strata. The east-west
regional strata were based on the mapping regions developed for NLCD 2001, version 1
(Homer and Gallant, 2001).
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