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Abstract

Chromium (Cr) is a naturally occurring metallic element found in the Earth’s crust. While trivalent 

chromium ([Cr(III)] is considered non-carcinogenic, hexavalent chromium [Cr(VI)] has long been 

established as an IARC class I human carcinogen, known to induce cancers of the lung. Current 

literature suggests that Cr(VI) is capable of inducing carcinogenesis through both genetic and 

epigenetic mechanisms. Although much has been learned about the molecular etiology of Cr(VI)-

induced lung carcinogenesis, more remains to be explored. In particular, the explicit epigenetic 

alterations induced by Cr(VI) in lung cancer including histone modifications and miRNAs, remain 

understudied. Through comprehensive review of available literature found between 1973–2019, 

this article provides a summary of updated understanding of the molecular mechanisms of Cr(VI)-

carcinogenesis. In addition, this review identifies potential research gaps in the areas of histone 

modifications and miRNAs, which may prompt new niches for future research.
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Introduction

Chromium (Cr) is a naturally occurring element found in soil, rocks and living organisms, 

and primarily exists in two stable valence states: trivalent chromium (Cr(III)) or hexavalent 

chromium (Cr(VI)) (Wilbur et al., 2012). Cr(III) is considered non-carcinogenic due to 

insufficient evidence in humans and animals. However, according to the International 

Agency for Research on Cancer (IARC) and U.S. Environmental Protection Agency (EPA), 

Cr(VI) compounds are classified as Group 1 and Group A human carcinogens, 

respectively(Stoss et al., 1983). Due to the potential adverse health effects resulting from 

exposure to Cr, the EPA established a maximum contaminant level of 0.1 mg/L total Cr in 

drinking water. However, Cr(VI) is often found in occupational settings as a result of 
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industrial activities such as leather working, smelting, welding, and metal plating (Wilbur et 

al., 2012). Cr(VI) is also found in automobile exhaust and in tobacco products such as 

traditional and electronic cigarettes and hookahs (Williams et al., 2017). It has been 

estimated that 66% of current or former hazardous waste sites on the National Priorities List 

also contain Cr (Wilbur et al., 2012).

Cr(VI) is considered the biologically relevant form of Cr due to its ability to readily pass 

through the cell membrane via non-specific sulfate/phosphate anionic transporters. Cr(III) is 

capable of passing through cell membranes via diffusion or phagocytosis, albeit at much 

lower levels than Cr(VI) (Stout et al., 2009). Systemic toxicity attributable to Cr has been 

documented in the respiratory and pulmonary system, gastrointestinal system, dermis, and 

renal system (Wilbur et al., 2012). In addition, multiple mechanisms of carcinogenesis have 

been proposed involving oxidative stress, DNA damage and genomic instability, and 

epigenetic modulation. A comprehensive literature search was conducted through Pubmed 

using key words such as “Chromium”, “Cr(VI)”, “Carcinogenesis”, “Cancer”, “Epigenetic” 

and “Mechanisms”. In addition, the reference list of each article is also examined to prevent 

missing data. This review summarizes most current findings in the field of Cr(VI)-

carcinogenesis, with a focus on epigenetic mechanisms. Furthermore, a comprehensive lists 

of genes, histone modifications, and miRNAs altered through Cr(VI) exposure is presented.

Chromate Exposure and Associated Health Risks

The primary non-occupational route of exposure to Cr is ingestion. However, for 

occupationally exposed individuals, exposure to Cr most often occurs via inhalation or 

dermal absorption (Wilbur et al., 2012). Adverse respiratory and pulmonary health effects 

due to Cr exposure include asthma (Bright et al., 1997), bronchitis and respiratory tract 

irritation (Khan et al., 2013), and nasal septum ulceration and perforation (Lindberg & 

Hedenstierna, 1983). Contact dermatitis is frequently documented following exposure to 

chromate and dichromate (Leijding et al., 2018), and more severe dermal reactions including 

skin burns, blisters, and skin ulcers have been reported (Wilbur et al., 2012). Gastrointestinal 

(GI) effects including chronic dyspepsia, gastric ulcers, and gastritis have all been 

documented following occupational exposure to Cr (Khan et al., 2013). Exposure to Cr(VI) 

can also cause acute tubular necrosis, which is localized to the proximal convoluted tubules 

and may result in rapid onset of renal failure (Wedeen et al., 1991).

As a prominent human carcinogen, Cr(VI) has long been reported to promote cancers of the 

lung and nasal and sinus cavities among occupationally-exposed workers. A study based on 

the Baltimore cohort which consisted of 2,357 participants, demonstrated a highly positive 

correlation between cumulative Cr(VI) exposure and lung cancer mortality rate (Gibb et al., 

2000; Gibb et al., 2015). Another retrospective study based on 493 workers from a chromate 

production plant in Painesville further confirmed the correlation between lung cancer 

mortality and occupational Cr(VI) exposure (Luippold et al., 2003; Proctor et al., 2003). In 

addition, a meta-analysis of Cr(VI) exposure and GI cancers showed an increased risk of 

stomach cancer (relative risk = 1.27; 1.18 – 1.38) in Cr(VI)-exposed workers and an elevated 

stomach cancer mortality rate (rate ratio = 1.82; 1.11 – 2.91) in Cr contaminated regions 

(Beaumont et al., 2008; Welling et al., 2015; Zhang & Li, 1987). Despite the lack of 
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conclusive evidence supporting a causal role of Cr(VI) in GI cancers in humans, associations 

between Cr(VI) ingestion and GI cancers have been documented in rodent models. In a two-

year drinking water study conducted by the National Toxicology Program (NTP), oral 

exposure to sodium dichromate dihydrate in male and female rats increased the incidence of 

squamous cell neoplasms of the oral cavity. In mice there was an increase in incidence of 

neoplasms of the small intestine (duodenum, jejunum, or ileum) (NTP 2008). Together, 

these results suggest that Cr(VI) may act in a carcinogenic manner following ingestion, 

thereby raising concerns for non-occupationally exposed individuals. Molecular mechanisms 

involving oxidative stress and DNA damage are considered principal ways by which Cr(VI) 

exhibits its carcinogenic effects.

Molecular Mechanisms of Chromium Carcinogenesis

Oxidative Stress

Toxicity and carcinogenicity of Cr(VI) compounds is by virtue of their ability to readily 

enter the cells through isoelectric and isostructural anion transfer channels, which are used 

to transport HPO−
4 and SO2−

4 ions (Codd et al., 2001; Valko et al., 2005). Although Cr(VI) 

compounds do not bind directly to DNA, intermediates and byproducts of Cr(VI) 

metabolism can elicit a wide range of damages through DNA adducts and crosslinks 

(Kasprzak 1995). Notably, generation of reactive oxygen species (ROS) through 

detoxification is principally responsible for Cr(VI)-induced cellular damages such as DNA 

lesions, cytotoxicity, and tumor development (Chen et al., 2019; Shi et al., 1999; Wise et al., 

2019; Zhitkovich 2005; Zhitkovich 2011). Cr species [(III), (IV), (V), and (VI)] are known 

to produce intracellular ROS. Specifically, ROS scavengers such as ascorbic acid and 

glutathione are able to detect and reduce Cr(VI) to Cr(III), thereby producing free radicals 

such as hydroxyl radicals and DNA-damaging intermediates such as Cr(V) and Cr(IV) 

(Arita & Costa, 2009; Chen et al., 2019; Jomova & Valko, 2011; Zhitkovich 2011).

During intracellular reduction of Cr(VI), hydroxyl radicals are generated through Fenton-

like reactions in the presence of hydrogen peroxide (Sun et al., 2015). Endogenous 

superoxide anions and hydrogen peroxide produce hydroxyl radicals via Haber-Weiss-like 

reactions in the presence of Cr(VI) (Sun et al., 2015). Cr(VI) can also generate hydroxyl 

radicals through stimulated cells, which demonstrate upregulated activities of NADPH 

oxidase (Gao et al., 2002; Wang et al., 2000; Wang et al., 2004; Yao et al., 2008; Ye et al., 

1995). Other reducing agents of Cr(VI) include flavoenzymes such as glutathione reductase 

and ferredoxin NADP+ oxidoreductase (Shi et al., 1999; Wise et al., 2019). In addition, 

Cr(VI) can disrupt the thioredoxin antioxidant system by irreversibly inhibiting thioredoxin 

reductase, which under normal conditions maintains thioredoxin in a reduced state (Myers & 

Myers, 2009). The thioredoxin antioxidant system promotes cell survival by defending 

against oxidative stress (Myers & Myers, 2009).

ROS including hydroxyl radicals, singlet oxygen, peroxides, and superoxides can serve as 

important secondary messengers and activators for various pathways including apoptosis, 

cell signaling, and homeostasis (Deyasagayam et al., 2004; Kwee 2014; Leonard et al., 

2004; Valko et al., 2007; Wise et al., 2019). Specifically, Cr(VI) has been found to induce 

NF-kB, AP-1, and Nrf2 activation, each of which has important implications in cancer 
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development (He et al., 2007; Klaunig et al., 2011; Valko et al., 2005; Ye et al., 1995). 

Hydroxyl radicals are able to react with guanine residues and generate radical adducts such 

as 8-hydroxy-deoxyguanosine (8-OH-dG), which is a prominent marker for oxidative 

damage in cancer (Valko et al., 2004). The accumulation of ROS can lead to oxidative stress 

and contribute to chronic inflammation, metabolic reprogramming, genetic instability, and 

development (Wang et al., 2016). Sprague-Dawley rats exposed to Cr(VI) for 5 days via 

intraperitoneal injection demonstrated enhanced antioxidant enzymes to combat oxidative 

stress in liver and kidneys as well as DNA damage in peripheral blood lymphocytes (Patlolla 

et al., 2009). In addition, adducts formed through Cr and ROS scavenger conjugation, 

including GSH-Cr-DNA, can generate bulky adducts and block proper DNA replication and 

repair (Chen et al., 2019; Quievryn et al., 2003; Zhitkovich 2005).

Cr(VI)-induced DNA Damage

It is widely accepted that Cr(VI) is capable of causing DNA damage following intracellular 

reduction in the form of apurinic/apyrimidinic sites (Casadevall & Kortenkamp, 1994) and 

by interacting with proteins (Wedrychowski et al., 1985), amino acids (Zhitkovich et al., 

1995), or directly with DNA (DeLoughery et al., 2015), causing DNA single- (Christie et al., 

1984) and double-strand breaks (DSBs) (DeLoughery et al., 2015). Upon intracellular 

reduction, Cr(VI) can form bulky Cr(III) binary adducts (i.e. Cr(III) – DNA) as well as 

ternary adducts (i.e. Cr(III)–ligand–DNA). Cr(VI) reduction in the presence of physiological 

concentrations of ascorbic acid demonstrated that ternary ascorbate-Cr(III)-DNA crosslinks 

were more mutagenic than their binary Cr(III)-DNA counterparts, with ternary complexes 

accounting for more than 90% of mutagenic damage (Quievryn et al., 2003). Cr(VI) is also 

capable of inducing 8-oxo-dG formation in proportion to Cr(VI) concentration in vitro, and 

8-oxo-dG is often employed as a biomarker of exposure in chromate exposed individuals 

(Arakawa et al., 2012; Li et al., 2014). Using UvrABC and Fpg incision methods, Cr(VI) 

was found to induce bulky adducts and oxidative DNA damage at both dG’s as well as dA’s 

in the p53 gene (Arakawa et al., 2012).

More recently, DSBs caused by Cr-adducted DNA has been investigated in detail. Selective 

formation of Cr-induced DSBs occurred in euchromatin, despite the presence of Cr-DNA 

adducts in both euchromatin and heterochromatin (DeLoughery et al., 2015). It was further 

revealed that DSB repair signaling involving γH2AX, mono-, and di-ubiquitinated H2AX 

were dependent on ATR as opposed to the classical ATM mode of activation (DeLoughery et 

al., 2015). ATR is strongly activated by single-stranded tails as opposed to blunt-ended 

DSBs (Lukas et al., 2011). The authors further point out that mismatch repair operates by 

excision of one strand, producing a series of single-stranded DNA. This partly reveals that 

the nature of DNA damage following the formation of Cr-DNA adducts. Extended exposure 

(>48 h) to particulate Cr(VI), however, was shown to reduce Rad51 foci formation and 

protein expression, suggesting that the homologous recombination (HR) signaling pathway 

is repressed after longer exposures to Cr(VI) in particulate form (Qin et al., 2014). After 48 

h, Rad51 was observed to aggregate in the cytoplasm, providing a possible explanation. It 

was later confirmed that prolonged exposure to particulate Cr(VI) does, in fact, inhibit HR 

repair (Browning et al., 2016). Rad51C is responsible for Rad51 nuclear import and 

stabilization of the Rad51 nucleofilament, and Rad51C foci formation was subsequently 
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shown to be inhibited following prolonged exposure to particulate Cr(VI) (Browning et al., 

2016).

Using formaldehyde-assisted isolation of regulatory elements and deep sequencing, Ovesen 

et al. reported, in vitro, that acute Cr(VI) versus chronic Cr(VI) treatment opened 3 times as 

many unique chromatin domains, and only eleven of these unique domains were shared 

between treatments (Ovesen et al, 2014). Chromatin domains surrounding both AP-1 and 

CTCF were found to become significantly more open after acute treatment whereas 

chromatin domains surrounding AP-1 and BAH2 were more open following chronic 

treatment. Furthermore, structural chromatin changes were not correlated with changes in 

global transcriptional response. Structural chromatin changes did, however, affect gene 

expression levels in target areas that vary with Cr(VI) concentration. Overall, the changes in 

chromatin structure in response to acute and chronic Cr(VI) suggests that the mechanisms 

governing Cr(VI)-induced transcriptional response are uniquely different depending on the 

dose, which may impact molecular events leading to carcinogenesis. Epigenetic Mechanisms 

of Chromium Carcinogenesis

Epigenetics refers to the reversible yet heritable changes in gene expression, independent of 

DNA sequence, caused by DNA hypo- or hypermethylation, histone tail post-translational 

modifications, and microRNAs (miRNAs). The 5 carbon of cytosine in DNA can be 

covalently methylated by DNA methyltransferases, or may be actively or passively 

demethylated. Histone post-translational modifications (PTMs) include, but are not limited 

to: acetylation, methylation, phosphorylation and citrullination, and can impact chromatin 

structure, thereby acting as gate-keepers for chromatin access (reviewed in Tessarz & 

Kouzarides, 2014). Histone PTMs also recruit or hinder epigenetic machinery or 

transcriptional regulators that direct gene expression. miRNAs, on the other hand, regulate 

gene expression by binding to complementary regions on target messenger RNAs (mRNAs) 

to dampen and fine-tune expression in the form of RNA degradation, and also reduce 

expression through induced decapping, induced deadenylation, altered cap protein binding, 

reduced ribosome occupancy, and sequestration of mRNA from translational machinery 

(reviewed in Mohr & Mott, 2015). Extensive studies have shown that Cr(VI) is capable 

altering gene expression and inducing cancer development through multiple epigenetic 

mechanisms. The following sections will examine these mechanisms in depth, and a 

comprehensive summary of genes altered by Cr(VI) exposure is listed in Table 1.

DNA Methylation

It was first reported that Cr(VI) could induce DNA methylation and silencing of the gpt 
transgene in G12 Chinese hamster lung cells (Klein et al., 2002). Since then, a number of 

studies have shown a wide range of epigenetic effects. Lou et al. found acute soluble Cr(VI) 

or particulate lead chromate induced global DNA hypomethylation, which maintained for 20 

h (Lou et al., 2013). Aberrant DNA methylation, including global DNA hypomethylation as 

well as promoter specific DNA methylation, contributes to genomic instability and gene 

silencing, and has been identified in numerous cancer types and human diseases (reviewed in 

Pogribny & Beland, 2009). Hu et al. (2016) found that in human bronchial epithelial cells 

(16HBE), CpG sites on the p16 gene were significantly more methylated than controls 
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following Cr(VI) exposure, and that p16 mRNA expression was negatively correlated with 

dose (Hu et al., 2016). The p16 tumor suppressor functions by inhibiting CDK4 and CDK6, 

which phosphorylate retinoblastoma protein and induces cell cycle arrest, and its 

inactivation via promoter methylation is common in lung cancers (Ohtani et al., 2004; Tam 

et al., 2013).

In lung tumors obtained from chromate workers in Japan, methylation of both DNA repair 

genes, hMLH1 (28%) and MGMT (20%), and tumor suppressor APC (86%), were detected 

using nested methylation-specific PCR (Ali et al., 2011). In non-chromate lung cancer 

tumors, methylation of hMLH1 was not detected, and methylation of APC was detected in 

only 44% of tumors. In a cross-sectional study examining CpG methylation of DNA repair 

genes, HOGG1, MGMT, XRCC1, ERCC3, and RAD53, methylation of HOGG1, MGMT, 

and RAD53 were significantly higher in chromate-exposed workers as well as in 16HBE 

cells treated with Cr(VI) (Hu et al., 2018). CpG sites within HOGG1, MGMT, and RAD51 

were similarly modified in both lymphocytes from chromate-exposed workers and in 

Cr(VI)-treated 16HBE cells, revealing a distinct methylation pattern.

Recently, Cr was found to inhibit the levels of 5-hydroxymethylcytosine (5-hmC), 5-

formylcytosine (5-foC), and 5-carboxylcytosine (5-caC) in mouse embryonic stem cells - all 

10–11 translocation (TET) protein-induced derivatives of 5-methylcytosine (5-mC) (Xiong 

et al., 2017). While TET1–3 mRNA expression was found to be unchanged, TET protein 

activity decreased by 62.1% and 2-hydroxyglutarate (2-HG; endogenous TET inhibitor) was 

found dramatically increased. 2-HG can act as a competitive inhibitor of TET 5-

methylcytocine hydroxylases due to structural similarities with α-KG, a necessary co-

substrate for conversion of 5mC to 5-hmC (Xu et al., 2011). TET proteins and their 5-mC 

modifying activities are crucial for epigenetic reprogramming during both development and 

active DNA demethylation (reviewed in Kohli & Zhang, 2013).

Histone Posttranslational Modifications

The roles that histone modifications play in chromatin homeostasis are dynamic and 

dependent on factors such as the degree of modification (e.g. mono-, di-, and tri- 

methylation), location, and on histone cross-talk, which is context specific. Histone 

modification is tightly controlled by enzymatic activities of histone methyltransferases, 

demethylases, histone acetyltransferases (HATs), and deacetylases (HDACs), among others. 

For instance, HATs catalyze the transfer of acetyl groups from acetyl CoA to histone lysine 

residues, HDACs remove acetyl groups from histones. Acute high dose Cr(VI) exposure has 

been found to induce various histone modifications including increase in global histone 3 

lysine 9 (H3K9) and histone 3 lysine 4 (H3K4) di- and trimethylation, and decrease global 

histone 3 lysine 27 (H3K27) trimethylation and histone 3 arginine 2 (H3R2) dimethylation, 

in vitro (Sun et al., 2009), see Table 2. Furthermore, H3K9 dimethylation was found 

enriched in the MLH1 promoter, and MLH1 promoter methylation was correlated with a 

decrease in MLH1 mRNA expression. H3K9 dimethylation and subsequent MLH1 silencing 

may be attributable to histone methyltransferase G9a, which specifically methylates H3K9, 

and was also found to increase at both the transcriptional and protein level. However, histone 

modifying enzymes including, but not limited to, SUV39H1, which methylates H3K9 (me2 
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and me3), and EZH2, which methylates H3K27, can also contribute to aberrant histone 

methylation following Cr(VI) exposure (Wang et al., 2018). Cr(VI) has also been shown to 

inhibit JHDM2A, a H3K9 demethylase, by reducing ascorbic acid availability (Sun et al., 

2009). Specifically, the ascorbic acid reserve needed for JHDM2A demethylase activity is 

depleted upon intracellular reduction of Cr(III), which can subsequently lead to elevated 

H3K9me2 levels.

Cr(VI) not only interferes with histone methyltransferases and demethylases, but has also 

been shown to crosslink HDAC1-DNMT1 to the Cyp1A1 promotor (Schenekenburger et al., 

2007). Total HDAC1 activity following Cr(VI) was shown to be unaffected by Cr(VI), yet 

local deacetylase activity was shown to be sufficient to impact histone acetylation levels in 

Cyp1A1 (Schenekenburger et al., 2007). In addition to HDAC1, both HDAC2 and HDAC3 

protein expression levels in 16HBE cells were found to increase following 24 h exposure to 

Cr(VI) (Xia et al., 2014). Corresponding to this increase in HDAC2 and HDAC3, global 

levels of H3 and H4 acetylation were found to decrease (Xia et al., 2014). Xia et al. 2014 

further showed that Cr(VI) significantly decreased biotinidase (BTD) at both the protein and 

mRNA levels, and this decrease was dependent on histone acetylation. Accordingly, histone 

biotinylation was shown to be inversely related to Cr(VI) at low (≤0.6 μM) doses (Xia et al., 

2014). Lastly, Cr(VI) was found to significantly reduce histone 4 lysine 16 (H4K16) 

monoacetylation – a hallmark of cancers (Chen et al., 2016; Fraga et al., 2005).

Among many acetylated histone lysine residues, H4K16 acetylation is the most prevalent 

modification for controlling the formation of higher-order chromatin structure and 

modulating the functional interaction between non-histone proteins and chromatin fibers 

(Zhang et al., 2017). Located in the basic patch of the H4 N-terminal tail, acetylation of 

H4K16 can hinder the interaction between core histones such as H4 and H2A/H2B, and 

dynamically regulate chromatin related processes including chromatin condensation, DNA 

replication, transcription, repa ir, damage responses, as well as overall genome stability 

(Dorigo et al., 2003; Shogren-Knaak et al., 2006; Shogren-Knaak & Peterson, 2006). Due to 

considerable influence of this particular histone modification, it is not surprising that the loss 

of H4K16 acetylation has been reported as an important hallmark for many human cancers 
35.

MOF, Males absent on the first, a member of the MYST (MOZ, Ybf2 (Sas3), Sas2, and 

Tip60) family of histone acetyltransferase (Chen et al., 2015; Li et al., 2010; Taipale et al., 

2005), is an H4K16-specific HAT. Interestingly, although H4K16 can be acetylated by many 

different histone acetyltransferases, studies suggest that MOF may be the only HAT capable 

of acetylating H4K16 in intact cells. As shown in HeLa and HepG2 cell lines, knockdown of 

MOF led to reduction in H4K16 acetylation while other histone acetylation marks remained 

unchanged (Taipale et al., 2005; Smith et al., 2005). Loss of MOF and subsequent H4K16ac 

have been linked to greater genome instability and tumor development (Fraga et al., 2005).

Stressor protein NUPR1 promotes tumorigenesis through mechanisms relating to cell cycle, 

apoptosis, and more recently uncovered, chromatin remodeling. Consistent with previous 

studies demonstrating the ability of Cr(VI) to reduce global H3 and H4 acetylation, Chen et 

al. showed that Cr(VI) induced NUPR1, see Figure 1 (Chen et al., 2016). NUPR1 induction 
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resulted in the reduction of MOF and H4K16 acetylation, and subsequently led to cell 

transformation, as indicated by acquired ability for anchorage-independent growth in 

BEAS-2B cells (Chen et al., 2016). NUPR1-induced loss of H4K16ac and downregulation 

of MOF supports the assertion that the chromatin remodeling ability of NUPR1 is a 

mechanism driving Cr(VI)-induced lung carcinogenesis. However, NUPR1 and its 

relationship with other chromatin influencers, post-translational modifications governing 

protein expression and activity, and transcriptional regulation remain to be unveiled.

MicroRNAs

In comparison to DNA methylation and histone post-translational modifications, less is 

known about the influence of Cr(VI) on microRNAs (Table 3), yet they represent critical 

gene regulatory mechanisms and are often dysregulated in cancers. For instance, miR-143 

was found to be downregulated in Cr(VI)-transformed cells, and was also found to be 

repressed in human lung cancer cells, see Figure 2 (He et al., 2013). Repression of miR-143 

was capable of inducing cell transformation and angiogenesis via upregulation of insulin-

like growth factor-1 receptor (IGF-IR) and insulin receptor substrate-1 (IRS1). IGF-IR/IRS1 

was found to upregulate interleukin-8 (IL-8) as well as activate downstream ERK/

HIF-1a/NF-kB signaling pathway to induce transformation and tumor angiogenesis. miRNA 

profile analysis of Drosophila melanogaster larva exposed to varying concentrations of 

Cr(VI) for 24–48 h showed 28 significantly dysregulated miRNAs targeting major biological 

processes (Chandra et al., 2015). Concurrent downregulation of miRNA gene targets, 

mus309 and mus312, acon, and pyd, which function in DNA repair, oxidation-reduction 

processes, and stress activated MAPK cascade, respectively, were also reported. A 

significant dose-dependent increase in miR-21 and dose-dependent decrease in mRNA and 

protein expression of its target gene, PDCD4, has also been observed (Pratheeshkumar et al., 

2016). PDCD4 acts as a tumor suppressor, in part, via regulating E-cadherin. E-cadherin was 

subsequently found to be downregulated, and upregulation of active b-catenin and TCF4 was 

evident. Oncogenic c-MYC and uPAR, targets of b-catenin/TCF4-dependent transcription, 

were increased in a dose-dependent manner, and chromatin immunoprecipitation analysis 

showed their association with both uPAR and c-MYC promoters. uPAR expression has been 

shown to enhance tumor growth and metastasis, and has been associated with cancer stem-

cell like property in small cell lung cancer (Gutova et al., 2007; Xing & Rabbani, 1996). In 

addition, the study revealed that Cr(VI) was able to induce phosphorylation and activation of 

the signal transducer and activator of transcription-3 (STAT3) as well as increased IL-6 

secretion. Previous studies have shown that STAT3 can bind directly to the miR-21 promoter 

upon IL-6 activation (O’hara et al., 2007; Pratheeshkumar et al., 2016), thus Cr(VI) may 

promote miR-21 expression via the IL-6/STAT3 pathway.

Conclusion

Extensive research has solidified Cr(VI) as a potent human carcinogen, especially in the 

context of lung cancer. Although epigenetic alteration has been proposed as an important 

mechanism underlying Cr(VI) carcinogenicity, researchers are still trying to elucidate the 

specific changes as well as the epigenetic machineries responsible for mediating these 

alterations. This review provides an updated summary of current findings on mechanisms of 
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Cr(VI) carcinogenesis, with a focus on epigenetic changes. In addition, this review also 

revealed that while much focus has been placed on the role of oxidative stress in Cr(VI) 

carcinogenesis, less focus has been given to the role of histone modifications and miRNAs. 

The current research gap in this area may provide a new niche for future research, which can 

generate new studies in the effort to provide a more comprehensive understanding of the 

mechanisms of Cr(VI) carcinogenesis.
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Figure 1. 
Model illustrating Cr(VI)-induced reduction in H4K16ac through NUPR1 induction

The model depicts Cr(VI)-induced up-regulation of NUPR1, which can potentially bind to 

MSL complex (MSL1) and thereby hinder MOF transcription and subsequent histone 

H4K16 acetylation (Chen et al., 2015; Chen et al., 2016; Gironella et al., 2009).
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Figure 2. 
Model illustrating Cr(VI)-induced miR-143 reduction and subsequent cell signaling 

response

The model portrays Cr(VI)-induced reduction in miR-143, which has been shown to 

promote IL-8 and malignant cell transformation through two signaling pathways: IGF-IR/

IRS1/ERK and HIF-1a/NF-kB (He et al., 2013).
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Table 1.

Summary of genes altered by Cr(VI)

Gene Name Direction of change Chromium compound Dose Length of exposure Tissue type Reference

Angjogenin Up Na2Cr2O7 0.25 uM 6 mo BEAS-2B Kim et al., 
2016

AP1 Up K2Cr2O7 5 uM 24 hr BEAS-2B Pratheeshkumar 
et al., 2014

ATM Down K2Cr2O7 L uM 48 hr BEAS-2B Abreu et al., 
2018

ATR Up K2Cr2O7 1 uM 48 hr BEAS-2B Abreu et al., 
2018

Bcl-xL Up Na2Cr2O7 100 nM 3 mo BEAS-2B Dai et al., 2017

Bcl2 Up Na2Cr2O7 100 nM 3 mo BEAS-2B Dai et al., 2017

Bcl2 Up Cr(VI) 0.3 uM 30 wk BEAS-2B, keratinocytes Ganapathy et 
al., 2017

Bcl2 Up K2Cr2O7 0.5 uM 4 wk BEAS-2B Huang et al., 
2017

Bcl2 Up Na2Cr2O7·2H2O 5 uM 24 wk BEAS-2B Medan et al., 
2012

Bcl2 Up Na2Cr2O7·2H2O 10 uM 24 hr BEAS-2B Son et al., 2017

BTD Down K2CrO4 6.25–12.5 uM 24 hr 16HBE Xia et al., 2011

Capspase-9 Up K2Cr2O7 0.2 uM 0–6 hr A549 Ge et al., 2019

Caspase 3 Up K2Cr2O7 0.2 uM 0–12 hr A549 Ge et al, 2019

Caspase-8 Up K2Cr2O7 0.2 uM 0–6 hr A549 Ge et al., 2019

CDK4 Down K2Cr2O7;
PbCrO4

5–15 uM;
1.25–5 uM 2–24 hr A549, human B 

lymphoblastoid Lou et al., 2013

CDK6 Down K2Cr2O7;
PbCrO4

5–15 uM;
1.25–5 uM 2–24 hr A549, human B 

lymphoblastoid Lou et al., 2013

Cox-2 Up K2Cr2O7 5 uM 24 hr BEAS-2B Pratheeshkumar 
et al., 2014

Cox-2 Up Na2CrO4 20 uM 6, 12 hr MEFs Zuo et al., 2012

Cox2 Up K2Cr2O7 5 uM 24 hr BEAS-2B Roy et al., 2016

E-cadherin Down K2Cr2O7 1.5–15 uM 10 hr-1 wk BEAS-2B Ding et al., 
2013

ERCC3 Down K2Cr2O7 0.6 uM 24 hr 16HBE Hu et al., 2018

ERK Up Na2Cr2O7 50–100 uM 1–2 hr A549 Wang & Shi 
2001

EZH2 Up K2Cr2O7 .25 uM 20,40 wk BEAS-2B, 16HBE Wang et al., 
2018

FBP1 Down Na2Cr2O7 100 nM 3 mo BEAS-2B Dai et al., 2017

G9a Up K2CrO4 5–10 uM 24 hr A549 Sun et al., 2009

G9a Up K2Cr2O7 .25 uM 20,40 wk BEAS-2B, 16HBE Wang et al., 
2018

Gene 33 Down Na2CrO4 1–5 uM 48–72 hr BEAS-2B Park et al., 
2016

Gli2 Up K2Cr2O7 0.5 uM 4 wk BEAS-2B Huang et al., 
2017
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Gene Name Direction of change Chromium compound Dose Length of exposure Tissue type Reference

GLP Up K2Cr2O7 .25 uM 20,40 wk BEAS-2B, 16HBE Wang et al., 
2018

GRO-a Up ZnCrO44Zn(OH)2 50 uL 0–24 hr BAL fluid Beaver et al., 
2008

GRP78 Up K2Cr2O7 0.2 uM 12 hr A549 Ge et al., 2019

HCS Up K2CrO4 6.25–12.5 uM 24 hr 16HBE Xia et al., 2011

HDAC2 Up K2CrO4 2.5–5 uM 24 hr 16HBE Xia et al., 2014

HDAC3 Up K2CrO4 2.5–5 uM 24 hr 16HBE Xia et al., 2014

HIF-la Up K2Cr2O7 2.5–10 uM 0–24 hr DU145 Gao et al., 2002

HIF-la Up K2Cr2O7 5 uM 24 hr BEAS-2B Pratheeshkumar 
et al., 2014

HIF-a Up Na2Cr2O7 0.25 uM 6 mo BEAS-2B Kim et al., 
2016

HO-1 Up K2Cr2O7 5 uM 24hr Mycoplasma-free 
human dermal fbroblast

Joseph et al., 
2008

HO-1 Up Na2Cr2O7·2H2O
1 uM acute, .
125–5 uM 
chronic

24 hr BEAS-2B Son et al., 2017

HOGG1 Down K2Cr2O7

0.6 uM, 1.2 
uM, 2.5 uM, 
5.0 uM, 10.0 
uM and 20.0 
uM

24 hr 16HBE Hu et al., 2018

Hsp90a Down K2Cr2O7 1 uM 48 hr BEAS-2B Abreu et al., 
2018

HSPA1A Down K2Cr2O7 1 uM 48 hr BEAS-2B Abreu et al., 
2018

IL-6 Up ZnCrO44Zn(OH)2 50 uL 0–24 hr BAL fluid Beaver et al., 
2008

IL-6 Up Na2Cr2O7 0.25 uM 6 mo BEAS-2B Kim et al., 
2016

IL-6 Up K2Cr2O7 0–2 uM 24 hr BEAS-2B Pratheeshkumar 
et al., 2014

IL-8 Up K2Cr2O7 0–2 uM 24 hr BEAS-2B Pratheeshkumar 
et al., 2014

iNOS Up K2Cr2O7 5 uM 24 hr BEAS-2B Pratheeshkumar 
et al., 2014

JNK Up K2Cr2O7 10–80 uM l-12 hr CL3 Chuang et al., 
2000

MGMT Down K2Cr2O7 20 uM 24 hr 16HBE Hu et al., 2018

MMP-1 Up Na2Cr2O7 0.25 uM 6 mo BEAS-2B Kim et al., 
2016

NQO1 Up Na2Cr2O7 100 nM 3 mo BEAS-2B Dai et al., 2017

Nrf2 Up K2Cr2O7 1–5 uM 24 hr BEAS-2B Roy et al., 2016

Nr£2 Up Na2Cr2O7·2H2O
1 uM acute, .
125–5 uM 
chronic

24 hr BEAS-2B Son et al., 2017

NUPR1 Up K2CrO4 5–10 uM 24 hr BEAS-2B Chen et al., 
2016
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Gene Name Direction of change Chromium compound Dose Length of exposure Tissue type Reference

OGG1 Down Na2Cr2O7 0–100 uM 16 hr A549 Hodges & 
Chipman, 2002

p-16 Up K2Cr2O7;
PbCrO4

5–15 uM;
1.25–5 uM 2–24 hr A549, human B 

lymphoblastoid Lou et al., 2013

p-PERK Up K2Cr2O7 0.2 uM 12 hr A549 Ge et al., 2019

p38 Up K2Cr2O7 10–80 uM l-12 hr CL3 Chuang et al., 
2000

p38 Up Na2Cr2O7 50–100 uM 3 hr A549 Wang & Shi, 
2001

p53 Up Na2Cr2O7 20–100 uM l-2 hr A549 Wang & Shi, 
2001

PDCD4 Down K2Cr2O7 5 uM 24 hr BEAS-2B Pratheeshkumar 
et al., 2016

RAD51 Down K2Cr2O7

0.6 uM, 1.2 
uM, 2.5 uM, 
5.0 uM, 10.0 
uM and 20.0 
uM

24 hr 16HBE Hu et al., 2018

Snail Down K2Cr2O7 1.5–15 uM 10 hr-1 wk BEAS-2B Ding et al., 
2013

SOD1 Up Na2Cr2O7·2H2O
1 uM acute, .
125–5 uM 
chronic

24 hr BEAS-2B Son et al., 2017

SOD2 Up Na2Cr2O7 100 nM 3 mo BEAS-2B Dai et al., 2017

SUV39H1 Up K2Cr2O7 .25 uM 20,40 wk BEAS-2B, 16HBE Wang et al., 
2018

TNF-a Up K2Cr2O7 5 uM 24 hr BEAS-2B Pratheeshkumar 
et al., 2014

TNF-a Up K2Cr2O7 1–5 uM 24 hr BEAS-2B Roy et al., 2016

Twist Down K2Cr2O7 1.5–15 uM 10 hr-1 wk BEAS-2B Ding et al., 
2013

VEGF Up K2Cr2O7 2.5 uM 0–24 hr DU145 Gao et al., 2002

VEGF Up Na2Cr2O7 0.25 uM 6 mo BEAS-2B Kim et al., 
2016

Vimentin Up K2Cr2O7 1.5–15 uM 10 hr-1 wk BEAS-2B Ding et al., 
2013

XRCC1 Down K2Cr2O7
2.5 uM, 10.0 
uM and 20.0 
uM

24 hr 16HBE Hu et al., 2018

yH2AX Up Na2CrO4 5 uM 6 & 24 hr BEAS-2B Park et al., 
2016
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Table 2.

Summary of histone modifications altered by Cr(VI)

Histone Mark Direction of change Chromium compound Dose Length of exposure Tissue type Reference

H4K16ac Down K2CrO4 10 uM 24hr BEAS-2B Chen et al., 
2016

H3K27me3 Down K2CrO4 5–10 uM 1 hr A549 Sun et al., 
2009

H3K4me2 Up K2CrO4 10 uM 1 hr A549 Sun et al., 
2009

H3K4me3 Up K2CrO4 10 uM 1 hr A549 Sun et al., 
2009

H3K9me2 Up K2CrO4 5–10 uM 1 hr A549 Sun et al., 
2009

H3K9me3 Up K2CrO4 5–10 uM 1 hr A549 Sun et al., 
2009

H3R2me2 Down K2CrO4 5–10 uM 1 hr A549 Sun et al., 
2009

H3K27me3 Up K2Cr2O7 .25 uM 20,40 wk BEAS-2B, 16HBE Wang et al., 
2018

H3K9me2 Up K2Cr2O7 .25 uM 20,40 wk BEAS-2B, 16HBE Wang et al., 
2018

H3ac Down K2CrO4 2.5–5 uM 24 hr 16HBE Xia et al., 
2014

H4ac Down K2CrO4 2.5–5 uM 24 hr 16HBE Xia et al., 
2014

H3K4me3 Up K2CrO4 0.5–10 uM 24 hr A549 Zhou et al., 
2009
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Table 3.

Summary of miRNAs altered by Cr(VI)

Gene Name Direction of change Chromium compound Dose Length of exposure Tissue type Reference

miR-1-3p Up K2Cr2O38 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-10-3p Up K2Cr2O29 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

mR-10-5p Up K2Cr2O28 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-1002-5p Up K2Cr2O16 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-12-5p Up K2Cr2O10 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-13b-3p Up K2Cr2O12 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-143 Down Na2Cr2O7·2H2O 1 uM 6 mo BEAS-2B He et al., 2013

miR-184-3p Up K2Cr2O36 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-21 Up K2Cr2O7 2.5–5 uM 24 hr BEAS-2B Pratheeshkumar 
et al., 2016

miR-2493-5p Up K2Cr2O15 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-2494-5p Up K2Cr2O14 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-252-3p Up K2Cr2O40 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-276a-3p Up K2Cr2O25 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-277-3p Up K2Cr2O17 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-279-3p Up K2Cr2O11 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-281-2-5p Up K2Cr2O35 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-289-5p Up K2Cr2O19 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-2a-3p Up K2Cr2O30 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-2b-3p Up K2Cr2O31 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-306-5p Up K2Cr2O32 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-314-3p Up K2Cr2O8 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-31a-5p Up K2Cr2O27 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-34-5p Up K2Cr2O24 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-375-3p Up K2Cr2O26 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015
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Gene Name Direction of change Chromium compound Dose Length of exposure Tissue type Reference

miR-389-3p Up K2Cr2O39 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-3940-5p Down Cr(VI) 5 IQR 3–10 yr Human blood Li et al., 2014

miR-3940-5p Down Na2CrO4 5–10 uM 0, 12 hr 16HBE Li et al., 2016

miR-7-5p Up K2Cr2O33 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-79-3p Up K2Cr2O9 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-8-3p Up K2Cr2O23 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-954-5p Down K2Cr2O7 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-956-3p Up K2Cr2O18 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-959-3p Up K2Cr2O41 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-964-5p Up K2Cr2O42 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-970-3p Up K2Cr2O37 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al., 
2015

miR-986-5p Up K2Cr2O13 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-998-3p Up K2Cr2O34 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-9a-3p Down K2Cr2O20 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015

miR-9a-5p Up K2Cr2O21 5–20 ug/mL 24, 48 hr Drosophila mid-gut tissue Chandra et al, 
2015

miR-9c-5p Up K2Cr2O22 5–20 ug/mL 24, 48 hr Drosophik mid-gut tissue Chandra et al., 
2015
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