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Abstract

Oncologic phase II trials that evaluate the activity of new therapeutic agents have evolved 

dramatically over the past 50 years. The standard approach beginning in the late 1960’s focused on 

individual studies that evaluated new anticancer agents against a wide range of both solid and 

hematopoietic malignancies often in a single ‘broad phase II trial’ that included hundreds of 

patients; such studies efficiently established the landscape for subsequent development of a 

specific drug with respect to likely disease focus, toxicity, dose and schedule. In the 1980’s and 

1990’s emphasis on histological context drove an explosion in the number of individual phase II 

trials conducted; despite this increase in trial activity, investigations based on histology per se 
failed to improve the success rate of new agents brought to the clinic. Over the past 20 years, 

evolution toward a molecular drug development paradigm has demonstrably improved our ability 

to select patients more likely to benefit from systemic treatment; simultaneously, technological 

advances have permitted initial attempts at the rapid assignment of therapy based on pre-defined 

molecular characteristics of tumor or germline in broad-based master protocols that are inclusive 

of many diseases and molecularly-characterized disease subsets, akin to but much more 

sophisticated scientifically than the broad phase II platforms of the past.
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The introduction of routine molecular tumor characterization into oncologic treatment 

planning that began approximately 20 years ago has markedly enhanced both the specificity 

and efficacy of systemic cancer therapy.1 The rapid application of biological selection 

criteria, both genomic and protein-based, has improved treatment for patients with a variety 

of advanced cancers, and led to the first ‘histology agnostic’ FDA approvals of anticancer 

agents.2-7 Over the past decade, the launch of effective, molecularly targeted and 
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immunotherapeutic molecules into oncologic practice has led to the discontinuation of 

nonspecific cytotoxic anticancer agent development.8

Application of the principles of precision medicine to cancer treatment9 relies on the 

measurement of a molecular characteristic in a specific patient’s tumor, a characteristic that 

suggests the potential utility of a specific molecularly-targeted therapeutic. This 

reorientation of the therapeutic paradigm, away from pleiotropic mechanisms of tumor cell 

killing, has advanced based on marked improvements in both biomarker discovery and 

validation, as well as the availability of sophisticated instrumentation capable of levels of 

diagnostic throughput that were inconceivable in the recent past. The field of precision 

oncology has also advanced, at least in part, through the development of several innovations 

in clinical trial design.10 The evolution of novel approaches to early phase precision cancer 

clinical trial development is a central topic of this review.11,12

In light of the early stage of development of such studies, the multiple operational 

challenges that they engender,13 and their modest clinical benefit to date,14 it seems 

reasonable to introduce this issue of the Cancer Journal by examining the historical 

precedents for the concept of the oncologic master protocol that includes basket, umbrella, 

and platform studies.15 Over the last ten years, such master protocols have been developed 

to provide an investigational framework for a coordinated evaluation of multiple therapeutic 

approaches in one or more molecularly-defined tumor types, with the goal of improving the 

efficiency of the cancer clinical trials process. Master protocols can be designed to provide 

sufficient information to support an application for new drug approval by the FDA, or, more 

frequently, to identify biomarker-selected drugs that can be more effectively predicted to be 

successful in the setting of a subsequent, definitive randomized study.

Evolution of the Oncologic Phase II Trial

For the most part, contemporary cancer clinical trials that fit under the rubric of a master 

protocol are designed to discover a signal of therapeutic activity in a group of patients 

selected by molecular subtype. These studies are most often not randomized trials and 

frequently employ an established drug dose and schedule defined previously in an early 

phase investigation.12 The goal of a master protocol is to develop an estimate of drug 

activity in the setting of a specific molecular characteristic of the cancer undergoing 

treatment.

Master protocols as a form of clinical investigation have developed through several 

evolutionary stages over the past 60 years. During the initial era of cancer clinical trials from 

the 1950s to the mid-1960s, the safety and modest efficacy of antimetabolites, alkylating 

agents, natural products, and corticosteroids were established, predominantly in 

hematopoietic malignancies.8 The number of trials conducted, predominantly with support 

from the National Cancer Institute (NCI), was small (Figure 1), but the notable development 

of combination programs for acute lymphocytic leukemia and early non-Hodgkin lymphoma 

trials demonstrated the feasibility of combining cytotoxic agents to produce modest, but 

definitive survival benefits in children and adults.16 The numbers of patients entered into 
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these non-randomized studies varied considerably (from 10–20 to over 100) and included 

both dose-seeking and activity-dependent endpoints.

From the mid-1960s through the late 1970s, phase II trials designed to determine therapeutic 

activity expanded significantly, and basic rules defining the activity thresholds for new 

cytotoxics appropriate for further testing were defined by Gehan and colleagues.17 The 

intellectual framework for many of the trials conducted during this era was grounded on cell 

kinetic studies in murine leukemia models suggesting that disease eradication based on 

combinations of cytotoxic agents was, indeed, possible.8 However, the boundary between 

pilot and later-stage clinical trials in this era was loosely demarcated. It was not until the 

mid-1960s that the Eastern Cooperative Group defined three phases of cancer clinical trials, 

including phase II screening investigations designed to test drugs for activity in a variety of 

human tumors.16

When a novel compound emerged from the National Cancer Institute’s murine screening 

program, it was quite common at that time to initiate a “broad phase II” trial of that agent in 

which patients with a wide variety of both solid tumor and hematologic malignancies were 

treated. One notable example of such a study was a trial of the anthracycline antibiotic 

doxorubicin conducted by the Southwest Oncology Group.18 A single trial of 472 patients 

defined the encouraging activity of doxorubicin for patients with advanced breast, prostate, 

bladder, and endometrial cancer, non-Hodgkin lymphoma, soft tissue sarcoma, and small 

cell lung cancer, established the standard intermittent dosing schedule for the drug, and 

characterized all of the intrinsic toxicities of the agent (on the heart, mucosae, and bone 

marrow). The study was submitted for publication within 24 months of trial initiation. Other 

pertinent examples of phase II screening trials that established the clinical activity levels and 

toxicity profiles of novel anticancer cytotoxic agents across a histologically broad range of 

cancers are shown in Table 1. In each case, based on these screening studies, the agent in 

question was evaluated further in subsequent trials for specific histologies.

Despite the efficiency of the broad phase II trial as a screening tool, the cancer clinical trials 

field entered a third phase of clinical trial designs beginning in the early 1980s. It became 

standard dogma that the biologic activity of cancer therapeutics was substantively controlled 

by histologic context; and thus, investigators concluded that phase II trials should be 

conducted in a histologically-specific manner.19 As shown in Figure 1, the demise of the 

broad phase II trial led to “a growth industry” of single drug/single disease trials that would 

permit “a detailed description of patient characteristics within disease categories.”20 Phase II 

trials from the 1980s through the mid-1990s conformed to specific two stage designs.21,22 

They were only occasionally randomized and enrolled patients who had ‘measurable 

disease’ usually determined by radiologic evaluation and, if possible, who had been exposed 

to minimal prior therapy. Two trials in every major disease were conducted, each with 

adequate numbers of patients to estimate an objective response rate to a particular drug.

Despite attempts to standardize entry criteria, carefully define accrual requirements to ensure 

sufficient numbers of patients objectively evaluable for response, and refine the statistical 

input into phase II trial development, an historical analysis of phase II clinical trial outcomes 

conducted by the NCI in this time frame makes clear the limits of empirical cancer drug 
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development.23 Of 83 new cytotoxic agents developed during this period, 11 novel agents 

that were not analogs of compounds already known to possess clinical utility demonstrated 

response rates that were quite modest by standards of the times. As a consequence, there was 

a growing sense that the limits of cytotoxic drug discovery had been reached.16 Not 

unexpectedly, the fallacy of depending solely on histological specificity was also becoming 

clear by the late 1980s, both in then-current murine drug screening models as well as in 

clinical trials. Increasingly, investigators discussed the potential for molecular rather than 

histological drug targeting.24 Concurrently, the regulatory and administrative burdens of 

activating large numbers of disease-specific phase II trials for every agent or combination 

were becoming clear. The growing knowledge of the molecular (oncogenic) characteristics 

driving cancer progression propelled the beginnings of a remarkable transition across cancer 

drug discovery efforts in academia and industry focusing on translating cancer biology into 

therapeutics.

Development of the Precision Oncology Paradigm: One gene, One Drug, 

One Disease 2000–2010

The beginnings of what we now refer to as precision oncology comprised a series of well-

known discoveries that, contemporaneously, appeared remarkable to both physicians and the 

lay public. Now, they are well-known stories to most practicing oncologists. These advances 

were noteworthy but also, in some ways, unpredictable and uniformly never sudden. Here, 

we discuss several case studies that highlight important issues in the early history of 

precision medicine, which focus on the development of agents targeting single molecular 

alterations critical to the pathogenesis of specific tumor histologies.

Labeling any development as representing “the first” in the history of precision oncology is a 

fraught task. Rather, the development of trastuzumab for the treatment of HER2 

overexpressing breast cancer is an important turning point, illustrating how the introduction 

of targeted therapies began to change the natural history of specific cancers. The 

overexpression of HER2, a tyrosine kinase receptor which activates multiple signal 

transduction pathways to regulate cell growth, was identified in the late 1980s by Dennis 

Slamon and colleagues at the University of California, Los Angeles.25,26 Between 1987 and 

1992, multiple investigators determined that HER2 overexpression could result in 

tumorigenesis, garnering interest in the protein as a potential therapeutic target.27-29 A 

humanized HER2 antibody, engineered at Genentech in 1992,30 was quickly introduced into 

multiple phase I and phase II clinical trials, the latter of which focused on enrolling only 

patients with increased HER2 expression by immunohistochemistry.31

Despite modest activity in a placebo-controlled phase 3 study, with an objective response 

rate of 15% in the intention-to-treat population,32 trastuzumab was hailed by the popular 

press as “ushering in a new era of cancer treatment that attempts to target the very flawed 

genetic mechanisms that cause the disease.”33 While trastuzumab did not dramatically 

improve outcomes on its own, its role as an important adjunct to chemotherapy in the 

metastatic,34 neoadjuvant,35 and adjuvant36 settings has been established. The identification 

of HER2 as a valuable therapeutic target spurred additional work resulting in the 
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development of trastuzumab emtansine, a novel antibody-drug conjugate targeting HER2,37 

and pertuzumab, a monoclonal antibody binding a different epitope of HER2.38

Whereas demonstrable HER2 expression was initially evaluated as a prognostic biomarker, 

indicating poorer outcomes regardless of therapy, it has now become a predictive biomarker, 

indicative of a subset of patients likely to respond to HER2-directed therapy. Moreover, the 

natural history of HER2-positive breast cancer has changed, and patients may no longer be 

at a survival disadvantage compared to patients with HER2-negative disease. Still, acquired 

resistance to HER2-directed therapy remains common, and cardiac toxicity is a very real risk 

for patients treated with trastuzumab.39

The development of imatinib for the treatment of chronic myeloid leukemia (CML) was also 

painted as a miracle by the press and by patients who learned of a pill that might forestall the 

development of accelerated phase disease and likely death.40 This was understandable. The 

phase I study of imatinib, a small molecule inhibitor of the BCR-ABL tyrosine kinase, 

identified no maximally tolerated dose (MTD), and 53 of 54 patients achieved a complete 

hematologic response;41 based on these results as well as those of three phase II studies, 

imatinib was granted accelerated approval by the FDA in 2001. The 72 days required for 

FDA review was the fastest agency approval in the history of anticancer agent development.
42 Compared to the 30 years of research required to identify the role of the BCR/ABL fusion 

oncogene in the pathogenesis of CML, this was a remarkably short time frame, an element 

of the imatinib story that is easy to overlook.43

The history of imatinib has been unusual in many ways, one of which is the durability of the 

responses produced by the drug. Resistance to therapy does develop and has spurred the 

introduction of second- and third-line agents. Still, patients with CML who are treated with 

BCR-ABL tyrosine kinase inhibitors can expect to live near-normal lifespans.44 The 

introduction of these drugs has altered the natural history of CML to the extent that the field 

is now exploring the potential of therapy discontinuation.45

However, the development of targeted therapies has rarely been so straightforward. Our 

understanding of the role of a putative molecular characteristic in oncogenesis may change 

over time, thus complicating efforts to target it therapeutically. The case of the epidermal 

growth factor receptor (EGFR) in lung cancer is instructive. Initial work on EGFR, which 

was known to play an important role in modulating proliferative cell signaling, was based on 

its overexpression in multiple tumor types. In one study, EGFR was highly expressed in over 

90% of NSCLC tumor specimens examined.46 Despite this observation, phase I trials of 

gefitinib, an inhibitor of the EGFR tyrosine kinase, were notable for the modest number of 

clinical responses observed,47-49 while the two phase II studies of gefitinib, which 

randomized patients to one of two dose levels, identified response rates of 9–19%.50,51 

Furthermore, a retrospective analysis of tumor specimens from these two phase II trials 

found no relationship between EGFR expression (as determined by immunohistochemistry) 

and clinical response.52 Still, gefitinib received accelerated approval by the FDA in 2003.53

Several groups of investigators sought to further characterize responders by analyzing tumor 

specimens from patients entered on the phase II studies as well as those treated on expanded 
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access programs. They identified several subgroups of patients with higher response rates: 

Japanese patients (compared to non-Japanese patients),51 women,50,54 never smokers,55,56 

and patients with adenocarcinoma histologies.54-56 In definitive studies done simultaneously 

by two groups at Harvard and a third group at Memorial Sloan Kettering and Washington 

University, the EGFR gene was sequenced in tumor specimens from gefitinib responders and 

non-responders. The tumors of almost all patients who had experienced a clinical response 

to gefitinib were characterized by mutations in the tyrosine kinase domain of EGFR, 

definitively establishing mutated EGFR as both the molecular target for gefitinib and a 

predictive biomarker for response.56-58

While EGFR-targeted therapies have become a success story in lung cancer, resistance to 

treatment is inevitable, and studies over the last ten years have focused on the development 

of second and third generation EGFR inhibitors which specifically target mechanisms of 

resistance to first generation inhibitors.59-63 Currently, the effort to characterize mechanisms 

of resistance to third generation inhibitors is ongoing with the aim of developing therapies 

that target these alterations or prevent their emergence.64

While resistance to targeted therapies may be due to so-called “on-target” molecular 

alterations, such as additional EGFR mutations, it often results from compensatory 

mechanisms, especially when a target is one member of a signaling pathway. Although the 

BRAF inhibitors vemurafenib and dabrafenib both improved progression free survival (PFS) 

in patients with untreated BRAFV600E mutated advanced melanoma compared to 

chemotherapy in two phase 3 studies, responses were short-lived, with a median PFS of just 

over 5 months for both drugs.65,66 Additional pharmacodynamic studies performed on 

patient tumor specimens from these and other trials found that acquired resistance to BRAF 

inhibitors was frequently associated with up-regulation of signaling in the MAPK pathway.
67-69 As a result, combinations of BRAF and MEK inhibitors were studied in multiple large 

phase 3 trials and were found to improve both PFS and overall survival (OS) compared to 

the use of BRAF inhibitors alone;70-73 these combinations now comprise standard of care 

therapy for patients with BRAF-mutated melanoma. These cases clearly demonstrate the 

limitations of the one gene, one drug, one disease model, and have led to recent efforts to 

identify promising combinations of targeted therapies.74

The Rapid Expansion and Concomitant Limitations of “Tumor Profiling”

In 2019, a patient’s tumor may undergo high throughput massively parallel DNA and RNA 

sequencing (often referred to as next generation sequencing, or NGS) over a matter of two or 

three weeks to identify potential therapeutic targets.75,76 Our ability to do so has developed 

over the last fifteen years, not only shortening the length of time required for such studies, 

but expanding the depth and character of available genomic analyses. Whereas technologies 

in the late 2000s and early 2010s were limited to PCR-based evaluations of mutational 

“hotspots” and immunohistochemical evaluations of protein expression, whole exome and 

whole genome sequencing is regularly performed on the tumors of patients treated at tertiary 

cancer centers. The recent announcement from the Centers for Medicare and Medicaid 

Services that Medicare will cover next-generation tumor profiling of patients with advanced 
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cancer, coupled with FDA approval of the Foundation One NGS platform, means that such 

profiling is now accessible to patients treated in the community.77

Genomic and proteomic analyses now have the capacity to detect a variety of aberrations 

including point mutations, insertion and deletion mutations (indels), copy number 

alterations, chromosomal rearrangements and gene fusions, DNA methylation patterns, 

transcript levels, and levels of protein expression.76 Analysis of a patient’s tumor is typically 

paired with evaluation of matched normal cells, most often from a buccal swab or peripheral 

blood, to distinguish somatic aberrations found only in a tumor from germline abnormalities.
78 More recently, examinations of circulating tumor cells (CTCs) and circulating tumor 

DNA (ctDNA) have been investigated as a means of dynamically and non-invasively 

assessing tumor burden as well as evaluating the changing genomic landscape of a tumor 

throughout a patient’s treatment, with an eye to better understanding mechanisms of drug 

resistance.79-81 While these circulating tumor materials may offer additional insights into the 

mutational load at metastatic sites compared to the primary tumor,82 the quantity of tumor 

material is often small and the specificity of such assays compared to analysis of the primary 

specimen itself is under active investigation.83

These advances have enabled the detection of low frequency mutations and have fostered the 

development of many new targeted therapies. However, complex challenges remain. Reports 

from extensive sequencing efforts may list the molecular aberrations identified in a patient’s 

tumor, but only a minority at best may be “targetable” with approved or experimental agents. 

Moreover, such reports may neglect to describe the allelic frequency of such aberrations or 

distinguish between driver mutations – those which induce tumorigenesis – and passenger 

mutations, which are not themselves pathogenic.76,84,85 Tumor heterogeneity is well 

established, and analyzed specimens may not represent the dominant phenotype. While 

driver mutations are commonly present in early clones, tumor evolution, especially in 

response to therapeutic pressures, may abet the emergence of clones that do not carry the 

driver mutation or that express subclonal alterations which are not sensitive to targeted 

therapy approaches.86,87 More broadly, efforts to target tumor molecular aberrations have 

been hampered by the almost universal development of on- or off-target resistance.84 This 

has led to a recent focus on evaluating combinations of agents to delay the emergence of 

such resistance, for example by inhibiting a signaling pathway at more than one level.70

Co-Development of Drugs with Predictive and Pharmacodynamic 

Biomarkers

As precision oncology moves beyond the “one gene, one drug, one disease” approach, it is 

critical that drugs and biomarkers are developed together. In the past, such efforts have often 

been retrospective; the efficacy of cetuximab for KRAS wildtype colorectal cancers88-90 and 

of gefitinib for EGFR mutant non-small cell lung cancers (NSCLC)57,58 were determined by 

tissue analysis of responders and non-responders to these agents in unselected clinical trials. 

The co-development of drugs and biomarkers is not straightforward and runs the risk of 

excluding populations that might benefit from an agent, especially if it has more than one 
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target. However, potential benefits include more efficient and less costly drug development.
79

Predictive biomarkers present in a tumor indicate likelihood of response to a given therapy, 

which may or may not target the molecular aberration in question. They may be used to 

select patients who will benefit from a given therapy or, as in the case of KRAS mutations 

and cetuximab, indicate those who will not.91 Preclinical investigation of new agents should 

include the development of putative predictive biomarkers in vitro and in vivo; functional 

testing using patient-derived xenograft (PDX) models, organoids, and other novel 

approaches may predict for patient sensitivity to targeted agents.92 After a recommended 

phase II dose is identified in a phase I trial, expansion cohorts can be utilized to enrich for 

patients whose tumors express the biomarker of interest to preliminarily evaluate efficacy 

and further explore toxicity. Prior to a phase II study, additional biomarker validation can be 

performed using patient samples from the dose escalation portion of the trial. If the 

predictive value of the biomarker is unclear, later phase trials can enroll patients whose 

tumors may or may not express the biomarker and stratify analysis by presence or absence 

of that biomarker.93,94 Expansion cohorts and biomarker enriched arms on phase II trials can 

be added or removed based on evolving estimates of benefit, with early stopping rules for 

efficacy and toxicity.94

While much research in precision oncology in the last twenty years has focused on the 

development of predictive biomarkers, particularly the presence of single mutations or 

genetic alterations, it is imperative that the development of pharmacodynamic (PD) 

biomarkers be pursued with equal vigor. Recent efforts to enhance the range of applicable 

PD assays will ensure that targets are not only identified as potentially predictive 

biomarkers, but that drugs interacting with these targets do so with greater specificity. PD 

biomarkers may impart information about proof-of-mechanism (is the drug engaging its 

intended target?), proof-of-concept (does engaging the target result in changed tumor 

biology, such as apoptosis?), an agent’s biologically effective dose, and mechanisms of 

resistance. They may assess a range of molecular events, including protein phosphorylation, 

proliferation, apoptosis, cell cycle regulation, and epigenetic regulation.80

The approach to demonstrating a targeted agent’s mechanism of action has also changed 

over the recent past. A preclinically validated mechanism of action can often now be 

validated in patients in multiple steps. Primary PD biomarkers assess the engagement of a 

drug with its presumed target, while secondary PD biomarkers examine its downstream 

effect, for example on signaling pathways. Tertiary PD biomarkers evaluate the effect of an 

agent on cell biology, such as its impact upon cell cycle progression or apoptosis.95 Ideally, 

PD biomarkers from all three categories should be incorporated into drug development, 

although this is not always possible. Increasingly, multiplex assays are being developed to 

measure multiple biomarkers simultaneously on the same tumor specimen. While this 

approach requires additional target validation, it may increase the efficiency and reliability 

of biomarker development. Groups of related biomarkers may be interpreted together, 

decreasing the chance that a single errant biomarker measurement will bias interpretation of 

drug effect.96,97
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PD biomarkers can and should play a role in the determination of the ideal dose and 

schedule of a novel therapy. Dose-finding efforts for nonspecific cytotoxic chemotherapies 

have traditionally been based on a putative dose-response relationship, seeking to identify 

the maximum tolerated dose (MTD) as the recommended dose for further study. This 

approach is less relevant with respect to evaluating targeted therapies, however, as they may 

not have a straightforward dose-response or dose-toxicity relationship. For example, there 

may be minimal toxicity until a target is saturated, after which there could be extensive 

toxicity.98 In the case of very effective agents like imatinib, clinical efficacy may be 

observed well before the MTD is reached.99 For targeted therapies, investigators have 

increasingly worked to identify the biologically effective dose, defined as the minimum dose 

and schedule of an agent required to engage the target consistently to produce antitumor 

activity.95 Doing so requires the investigator to establish the relationship between plasma 

drug concentration and the primary PD biomarker in question, which provides confidence 

that plasma concentration may be used as a proxy for tissue concentration.95

Effective PD biomarker development is complex; challenges include tumor specimen 

quality, tumor heterogeneity, assay reproducibility and standardization, and tissue 

acquisition and analysis with respect to dosing.96 Phase 0 trials, in which a non-toxic dose of 

a novel agent is given to a small number of patients with the aim of utilizing tumor biopsies 

to analyze the agent’s pharmacodynamic effects, provide a means of evaluating the 

properties of a drug and developing PD biomarkers in patients without the concomitant 

toxicity seen in phase I clinical trials.100 For example, the knowledge gained from a phase 0 

study of veliparib was used to determine a biologically effective dose which has since been 

evaluated in multiple phase II studies of the drug.95,101 While PD biomarker development 

may be expensive and time-consuming, it is also costly to conduct large, unsuccessful 

clinical trials on unselected patient populations; hence, PD endpoints should be incorporated 

routinely into the development of targeted agents.

Novel Methods for Evaluating Targeted Therapies Using “Master Protocols”

While the widespread adoption of tumor sequencing has resulted in a proliferation of data, a 

persistent question has been how to best exploit this data to improve patient outcomes.85 In 

the early 2010s, efforts focused on analyzing tissue from exceptional responders to novel 

therapies102 and N of 1 trials, in which a patient’s response to a therapy that had been 

“matched” to a specific tumor alteration was compared to that patient’s response to a 

previous standard of care agent.94 Many cancer centers have developed molecular tumor 

boards in which a patient’s tumor profiling data is discussed and a recommendation is made 

for a standard therapy (either on- or off-label) or a clinical trial.6,75

In efforts to evaluate the concept of precision oncology more broadly, several academic 

cancer centers have conducted studies examining the concept of matching patients to 

targeted therapies based on tumor profiling. While in several cases the proportion of patients 

who could be assigned a matched standard or investigational therapy was small, these 

studies demonstrated that a precision oncology approach was feasible.103 Moreover, several 

studies found that patients treated on trials utilizing a molecularly-matched agent had 
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improved outcomes compared to those who did not, although these studies were not 

randomized.104-107

SHIVA, the first randomized trial of precision oncology as an approach, was a phase II study 

that randomized patients with multiple tumor histologies to receive either 1) one of 11 

molecularly targeted agents based on the presence or absence of aberrations in the hormone 

receptor, PI3K/AKT/mTOR, and RAF/MEK pathways or 2) physician’s choice of standard 

therapy.108 While no difference in PFS was observed, the study used only a limited range of 

targeted therapies and did not account for differing levels of evidence regarding the 

relevance of each patient’s pathway aberration. Such data, which may implicate a mutation 

as a known driver with therapeutic implication but may also identify a variation without any 

known pathogenic consequence, must be considered when designing precision oncology 

trials. In one study of 860 patients with metastatic lung adenocarcinoma, 37% of whom 

received a targeted therapy guided by molecular profiling of their tumor, the level of 

evidence supporting the use of that therapy for the patient’s particular mutation was 

predictive of clinical response.109

The development of master protocols to organize the testing of patients with multiple tumor 

histologies and/or tumor molecular aberrations creates an infrastructure with which a variety 

of hypotheses may be tested simultaneously, and tumors organized by genomic or other 

“omic” changes, in addition to/or instead of histology. Master protocols have been defined as 

“coordinated efforts to evaluate more than one or two treatments in more than one patient 

type or disease within the same overall trial structure.”15 Classically, master protocols have 

been described as falling into one of two categories: basket studies, which seek to treat 

patients across multiple histologies whose tumors share the same alteration, and umbrella 

studies, which assign patients with one tumor type to one of several therapies based on 

tumor profiling data.15 While such studies may be registration trials in intent, they are more 

often signal-finding trials intended to identify potentially interesting therapies worthy of 

further study in certain patient populations.

Several basket studies have led to FDA approvals for new indications of drugs already 

approved for use in different settings. A study of vemurafenib in patients with advanced 

BRAFV600 mutated malignancies (exclusive of melanoma) found an overall response rate 

(ORR) of 42% of patients with NSCLC and 29% of those with anaplastic thyroid cancer.110 

While few or no responses were observed in multiple other tumor types, this data led to FDA 

approvals for dabrafenib in patients with V600E-mutated NSCLC111 and anaplastic thyroid 

cancer.112 A phase II study of pembrolizumab, an anti-programmed death 1 (PD-1) 

antibody, in patients with mismatch repair-deficient and proficient tumors demonstrated the 

susceptibility of these tumors to immune checkpoint inhibition.113 A subsequent phase II 

study of pembrolizumab in patients with 12 tumor types whose tumor demonstrated 

mismatch repair deficiency found a 53% response rate across histologies114 and led in 2017 

to the first tissue agnostic approval of a drug by the FDA.115

Umbrella trials have, to date, primarily served as exploratory signal-finding studies. They 

often operate using adaptive designs, wherein new arms may be added based on new 

evidence or removed based on lack of response, and patients may be assigned to a therapy 
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based on an algorithm that utilizes evolving data to account for that patient’s likelihood of 

response.13 The BATTLE studies, which assigned patients with advanced NSCLC to 

treatment arms based on molecular profiling of their tumors, demonstrated the feasibility of 

obtaining on-trial biopsies in heavily pretreated patients and using molecular 

characterization to assign patients to treatment arms in real time.116,117

The terms “basket trial” and “umbrella trial” are useful heuristics but may not adequately 

describe all large platform precision oncology trials.12 For example, the CREATE study 

examined crizotinib in patients with multiple tumor types and alterations in both ALK and 

MET genes.118 The ongoing NCI-MATCH (Molecular Analysis for Therapy Choice) study 

uses on-study biopsies to assign patients with any histology to a broad range of therapies 

based on their tumor molecular alterations.119 Both basket and umbrella trials may treat 

patients with multiple histologies whose tumors harbor multiple mutations or other 

alterations; such ‘hybrid’ designs conform to the overall concept of a master protocol while 

demonstrating the evolving definitions of umbrella or basket trials.12

Beyond terminology, master protocols present numerous challenges. They are time-

consuming, require significant coordination among multiple stakeholders, and can be costly.
15 The Lung Master Protocol, or Lung-MAP, an umbrella study of patients with advanced 

NSCLC, is the result of a complex public-private partnership including the National Cancer 

Institute, the Foundation for the National Institutes of Health, SWOG, and Friends of Cancer 

Research, among others.120 Due to their complexity, master protocols provide a difficult 

format for sponsors hoping to achieve registration and create significant work for regulatory 

officials and institutional review boards faced with numerous amendments.13 They are rarely 

randomized, making it difficult to draw conclusions about the efficacy of an agent.12 

Questions also remain about the statistical design of master protocols. For example, some 

basket studies are designed as a series of Simon two-stage studies, treating each arm as a 

separate trial for statistical purposes, whereas others allow aggregation of data from similar 

arms, which permits investigators to deem a therapy effective earlier.121

Despite these challenges, master protocols offer many opportunities for both patients and 

investigators. They enable patients with rare cancers to participate more readily in clinical 

trials and may lead to new therapeutic options. For example, the phase I/II basket study of 

larotrectinib which ultimately led to the drug’s tissue agnostic FDA approval in 2018122 

found an ORR of 75% in patients with infantile fibrosarcoma, a rare tumor which often 

results in limb amputation.7 They efficiently group patients with heterogeneous tumors 

(histologically, molecularly, or both), are adaptable, and enable large collaborations, 

centralizing the work of designing and administering a clinical trial.13,15 They also can 

provide access to laboratories performing validated assessments of specific, treatment-

defining molecular alterations in patients’ tumors. Once established, furthermore, the 

infrastructure for these trials can speed the screening of new therapeutic agents across a wide 

range of both common and understudied malignancies—in a fashion similar to, but much 

more sophisticated than, the “broad phase II” clinical trial platforms of the past.
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Overview of this Issue of the Cancer Journal

This issue of the Cancer Journal is an attempt to provide an overview of the evolving field of 

master protocol development in the service of precision oncology. Following the 

introductory chapter that traces the lineage of basket and umbrella trials from their modest 

beginnings as an attempt to efficiently screen new agents under development by the NCI in 

the 1970’s using an histology-inclusive approach known as the “broad phase II trial’, the 

administrative, regulatory, and biostatistical underpinnings of master protocol conduct are 

outlined. This is followed by a description of the workings of the molecular characterization 

laboratories that are at the heart of efforts to ‘match’ patient treatment to genomic features of 

a patient’s germline and/or tumor. Next, colleagues from the ECOG-ACRIN network group 

define the elaborate clinical trial and information technology platform that supports the 

ongoing NCI-MATCH study, which permitted the largest master protocol ever conducted in 

oncology to proceed using an evidence-based, automated patient assignment algorithm 

rather than relying upon an expert evaluation case by case. The subsequent contribution 

provides an overview of the entire NCI precision medicine clinical trials portfolio including 

the LUNG-MAP, ALCHEMIST, and MPACT trials. Investigators from the MD Anderson 

Cancer Center then describe their own major precision medicine platform and how it has 

been used to develop novel early phase clinical trials at their institution. Because a major 

initial stimulus for the development of the field of precision oncology was the demonstration 

that next generation tumor sequencing could drive the choice of effective systemic therapy in 

an individual patient, the NCI’s effort to understand the biology underlying ‘exceptional 

responders’ to both targeted and cytotoxic treatments is reviewed. Finally, future approaches 

to the field of precision oncology are described in terms of the efforts of plan for a new 

generation of master protocols that will inform the use of immunotherapy and combinations 

of targeted therapies in patients whose tumors are resistant to current standards of care.
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Figure 1. 
Number of published phase II cancer treatment trials from 1965 to 2015 found by searching 

the PubMed database.
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Table 1.

Cancer Drug Development Employing Broad Phase II Trials

Study Patients Accrued Reference

Phase II Study of Hexamethylmelamine 257 123

CCNU in the Treatment of Cancer. Phase II Study 141 124

Phase II Evaluation of Bleomycin: A Southwest Oncology Group Study 382 125

Phase II Study of 5-Azacytidine in Solid Tumors 172 126
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