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Abstract
Eosinophils are currently regarded as versatile mobile cells controlling and
regulating multiple biological pathways and responses in health and disease.
These cells store in their specific granules numerous biologically active
substances (cytotoxic cationic proteins, cytokines, growth factors, chemokines,
enzymes) ready for rapid release. The human gut is the main destination of
eosinophils that are produced and matured in the bone marrow and then
transferred to target tissues through the circulation. In health the most important
functions of gut-residing eosinophils comprise their participation in the
maintenance of the protective mucosal barrier and interactions with other
immune cells in providing immunity to microbiota of the gut lumen. Eosinophils
are closely involved in the development of inflammatory bowel disease (IBD),
when their cytotoxic granule proteins cause damage to host tissues. However,
their roles in Crohn’s disease and ulcerative colitis appear to follow different
immune response patterns. Eosinophils in IBD are especially important in
altering the structure and protective functions of the mucosal barrier and
modulating massive neutrophil influx to the lamina propria followed by
transepithelial migration to colorectal mucus. IBD-associated inflammatory
process involving eosinophils then appears to expand to the mucus overlaying
the internal gut surface. The author hypothesises that immune responses within
colorectal mucus as well as ETosis exerted by both neutrophils and eosinophils
on the both sides of the colonic epithelial barrier act as additional pathogenetic
factors in IBD. Literature analysis also shows an association between elevated
eosinophil levels and better colorectal cancer (CRC) prognosis, but mechanisms
behind this effect remain to be elucidated. In conclusion, the author emphasises
the importance of investigating colorectal mucus in IBD and CRC patients as a
previously unexplored milieu of disease-related inflammatory responses.
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Core tip: Eosinophils are multifunctional granulocytes possessing readily releasable
stores of cytotoxic proteins, regulatory cytokines and chemokines in their specific
granules. In health eosinophils reside in the gut, exerting homeostatic functions including
protective mucosal barrier integrity maintenance and contribution to gut-associated
immunity. Eosinophils are important players in inflammatory bowel disease
pathogenesis (both Crohn’s disease and ulcerative colitis). These cells are also associated
with a favourable prognosis in colorectal cancer, however mechanisms of this
association remain obscure. The author presents a comprehensive analysis of the current
literature on eosinophils in the gut and highlights the importance of poorly investigated
immune responses occurring within colorectal mucus.
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INTRODUCTION
The eosinophil was first described in the middle of XIX century when these granul-
ocytes displaying a strong affinity to acidophilic dyes producing red staining of their
granules  were  first  identified.  The  honour  of  discovering  and  characterising
eosinophils belongs to Paul Ehrlich, who also made first assumptions regarding their
biological significance[1]. For many decades eosinophils were regarded as terminally
differentiated end-stage cells of innate immunity exerting cytotoxic effector defence
against parasitic helminths, but also capable of causing damage to host tissues in
allergic conditions[2-5]. That simplistic paradigm had to be fundamentally revised once
recent  research  advances  revealed  numerous  previously  unknown  eosinophil
functions,  comprising  inflammation  control,  epithelial  barrier  maintenance,
participation in tissue remodelling and linking innate and adaptive immunity[2-5].
Nonetheless, the whole range of roles played by these granulocytes in health and
disease remains to be elucidated.

This review focuses on eosinophil action in the distal gastrointestinal tract, both in
the normal physiological conditions and in pathology, especially in the context of
inflammatory bowel disease (IBD) and colorectal cancer (CRC). The declared task
looks timely since eosinophils, despite being recognised as important players in both
gut  homeostasis  maintenance  and  colorectal  disorder  pathogenesis,  are  often
overlooked when disease mechanisms are considered. It is remarkable that none of
recent comprehensive reviews on the pathogenesis of either IBD[6-10] or CRC[11-15] even
mentions possible eosinophil involvement in these complex processes. The author
decided  to  focus  on  analysing  literature  describing  research  in  humans,  but
experimental modelling, especially the use of genetically modified mice is one of the
key sources of new information in the field. For this reason, selected experimental
studies are considered as well, but caution is always required when results obtained
in murine models are extrapolated to humans.

EOSINOPHIL DEVELOPMENT AND MATURATION
Eosinophils are continuously generated in the bone marrow from pluripotent CD34+

stem  cells,  and  it  was  presumed  that  their  development  proceeds  through  the
granulocyte/macrophage  progenitor  (GMP)  in  mice  and  the  common  myeloid
progenitor (CMP) in humans[2,16-19]. However, using a mouse model, Drissen et al[20]

have recently identified a distinct myeloid differentiation pathway characterised by
GATA1 expression and giving rise to eosinophils, mast cells, megakaryocytes and
erythroid cells, but not to monocytes, neutrophils and lymphocytes. In any case, it is
generally accepted that the control of eosinophilopoiesis is exerted on the one hand by
transcription factors produced internally by the developing cells of the eosinophil
lineage, but on the other hand by cytokines secreted predominantly by other immune
cells (Figure 1).
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Figure 1

Figure 1  Eosinophil development in the bone marrow followed by mature eosinophil appearance in the
circulation and eventual migration to the gut in the normal conditions.

The analysis of cell transcriptome changes during eosinophil lineage commitment
followed by maturation has revealed a marked development-related increase in the
number of expressed genes[21]. Early stages of this process appear to be regulated by
cytokine IL33[22]  and are driven at the cellular level by a few transcription factors,
GATA1 being essential for eosinophil lineage commitment. Figure 1 illustrates the
necessity of the interplay between pro-differentiation transcription factors including
GATA1 (the key element), C/EBPs, PU.1 and IRF-8[16-19] and inhibitory influences of
FOG1, Id1 and Klf5 in generating eosinophil-restricted precursor (EoP) cells[16-19,23,24].
Importantly, the acquisition of surface receptor IL5Rα occurs at the EoP stage[25], thus
making EoP cells responsive to the external signalling by IL5, an eosinophil-targeting
cytokine secreted by type 2 innate immune cells (ILC2)[26]. Indeed, IL5, IL3 and GM-
CSF  are  recognised  as  the  three  cytokines  regulating  eosinophil  proliferation,
maturation  and  functional  activities  in  homeostasis  and  pathology[2,16,18].  Their
stimulating effect during eosinophil maturation is modulated by influences of several
transcription factors as well as protease activity regulator cystatin F and regulatory
miRNAs (Figure 1)[16-19,21,23,27,28].  It  is  notable that  terminally differentiated mature
eosinophils  produced  in  the  bone  marrow  have  fully  formed  specific  granules
essential for the functions of these cells (see below).

DISTINCTIVE FEATURES OF MATURE EOSINOPHILS

Morphological characteristics
Mature human eosinophils  can be easily morphologically distinguished by their
bilobed nuclei and the presence of specific cytoplasmic granules stained red by eosin.
These specific (also called crystalloid, secretory or “secondary”) granules are unique
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organelles  that  consist  of  a  dense  central  crystalloid  core  and  an  outer  matrix
surrounded by a trilaminar membrane[4,29,30]. Although earlier publications sometimes
mention the existence of both large “primary” granules lacking the crystalloid core
and rich in Charcot-Leyden crystal  protein and “small”  granules,  recent  studies
suggest  that  the  coreless  large  granules  are  simply  immature  specific  granules,
whereas  the  “small”  granules  are  membrane-bound  vesiculotubular  structures
associated with eosinophil secretory activity[31]. Thus, there is only one granule type
present  in  human  eosinophils,  and  these  specific  granules  store  pre-formed
biologically  active  substances  comprising  cytotoxic  cationic  proteins,  cytokines,
growth factors, chemokines and enzymes[4,32,33]. Other eosinophil-specific organelles
are lipid bodies[34]  charged with the synthesis of lipid mediators of inflammation
(cysteinyl  leukotrienes,  thromboxanes  and  prostaglandins)  and  pleiomorphic
vesiculotubular  carriers  (eosinophil  sombrero  vesicles)[35].  Like  all  somatic  cells,
eosinophils also have mitochondria, endoplasmic reticulum and Golgi bodies.

Arsenal  of  secretory substances and cell  surface markers expressed by eosi-
nophils
Specific  granule  formation and maturation associated with  the  accumulation of
cationic  granule  proteins  is  essential  for  eosinophil  development,  function  and
survival[4,5,32,33]. Table 1 presents key biomolecules secreted by human eosinophils, and
it is evident that, in addition to the well-known cationic proteins, these cells contain
pre-formed stores of numerous regulatory molecules including cytokines, chemo-
kines, growth factors and enzymes. Studies in murine models also demonstrated that
parallel de novo synthesis of cytokines occurs in mature eosinophils[40-42], however the
relationship between pre-formed and de novo synthesised regulatory factors remains
to be elucidated.

In addition to secretory substances, eosinophils express a considerable number of
surface markers comprising receptors for adhesion molecules, cytokines, chemokines,
growth factors, lipid mediators as well as pattern recognition receptors (PRRs) and Fc
receptors. Table 2 lists hitherto identified eosinophil surface markers. Notably, stores
of  receptor  molecules  were  also  identified  within  the  specific  granules[55],  and
membrane receptors for cytokines and chemokines located on the surface of these
granules  enable  them  to  act  as  receptor-mediated  secretory  organelles  even
extracellularly[56,57]. The abundance of receptors and cell surface-associated molecules
defines eosinophil ability of participating in an extremely wide range of physiological
and pathological processes. More details on eosinophil surface markers can be found
in a few recent reviews (Rosenberg et al[5], Ravin et al[43] and Gangwar et al[44]).

Types of secretion/degranulation observed in human eosinophils in relation to their
functional activities
The current view on the versatility of eosinophil action in health and disease was
concisely formulated by Lee et al[3]  in their LIAR (Local Immunity And/or Remo-
delling/Repair)  hypothesis.  Expanding this  notion,  eosinophil  functions  can  be
classified into the following four categories: (1) Terminal effector functions; (2) Main-
taining  homeostasis  and supporting  tissue  repair/remodelling;  (3)  Immunomo-
dulatory role; and (4) Cooperative interactions with other immune cells[4]. Essentially,
all functional activities of eosinophils in both normal and pathological conditions are
exerted  through  the  secretion  of  their  specific  products.  Although  classical  or
compound exocytosis implying granule fusion with the plasma membrane followed
by extracellular release of entire granule contents[58] may be occasionally employed by
eosinophils attacking multicellular helminths[33,59], this secretory mechanism is rarely
observed during inflammatory and allergic responses, when immediate but selective
release of pre-formed granule-stored factors is required. Extensive investigation of
eosinophil  degranulation modes has  shown that  either  piecemeal  degranulation
(PMD)  or  cytolysis  followed  by  whole  granule  release  clearly  prevail  in  most
situations associated with human disease[33,59,60].

PMD is  characterised by stimulus-dependent  (receptor-mediated)  differential
packaging of selected granule-derived proteins into secretory vesicles that are then
transported to the cell surface and expelled through it. During this process specific
granules are partially emptied but otherwise remain intact[60]. Being highly selective
and rapid, PMD is typically employed for cytokine secretion by eosinophils. It is the
most common secretion type observed in the context of inflammation and allergy in
humans[5,33,59,60].

Recent reports imply that cytolysis or primary lysis of human eosinophils[61] is the
second most frequently observed degranulation mode in inflammatory and allergic
conditions[33,60,61]. Cytolysis is now regarded as a regulated mechanism of rapid cell
death (distinct from apoptosis and necrosis) that is characterised by chromatin de-
condensation and dissolution of nuclear and plasma membranes as well as the release
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Table 1  Secretory substances produced by eosinophils

Substance Characteristics Pre-prodiced or de novo
synthesysed Main functions Ref.

Located within the core of specific (crystalloid) granules

Major basic proteins 1 and 2
(MBP1 and MBP2)

Small highly cationic proteins
(MBP2 is less basic)

Pre-produced Highly cytotoxic to host cells,
antihelminthic, antibacterial
(MBP1 is more potent and
associated with EETosis)

[2,4,32,36]

Located within the matrix of specific (crystalloid) granules

Eosinophil cationic protein
(ECP)

Small highly cationic protein
with a weak ribonuclease
activity (ribonuclease 3)

Pre-produced Highly cytotoxic to host cells,
neurotoxic, antihelminthic,
antibacterial, antiviral,
associated with EETosis

[2,4,32,36]

Eosinophil-derived
neurotoxin

Small basic (less cationic than
MBP1 and ECP) protein with
a ribonuclease activity
(ribonuclease 2)

Pre-produced Cytotoxic to host cells,
neurotoxic, strongly antiviral,
antibacterial,

[2,4,32,36]

Eosinophil peroxidase Highly cationic heme-
containing haloperoxidase

Pre-produced Generates ROS exerting
potent antibacterial and
antihelminthic effects

[2,4,32,36]

Charcot-Leyden crystal
protein (CLC, galectin-10)

Small slightly acidic protein Probably pre-produced Unclear, but involvement
EETosis and a role in
interactions between
eosinophils and T-cells are
suggested

[31,32,36-38]

Most likely stored within specific granules, but some may be synthesised de novo in the cytoplasm

IL1β, IL2, IL3, IL4, IL5, IL6,
IL10, IL11, IL13, IL16, IL18,
IL25 (IL17E), IFNγ, GM-
CSF, TGFα, TNFα, TNFβ,
leukaemia inhibitory factor

Cytokines Mostly pre-produced; some
may be de novo synthesised

A wide range of signaling
and regulatory functions

[4,5,32,39]

HB-EGF-LBP, NGF, PDGF,
SCF, EGF, VEGF, APRIL

Growth factors Pre-produced or de novo
synthesised

Signalling functions related
to cell proliferation and
differentiation

[4,5,32]

CCL3, CCL5, CCL6, CCL7,
CCL8, CCL9, CCL11
(eotaxin-1), CCL13, CXCL1,
CXCL8, CXCL10, CXCL12

Chemokines Pre-produced or de novo
synthesised

Cell migration regulation
[4,5,32,39]

Matrix metalloproteinases
MMP9 and MMP17, acid
phosphatase, collagenase,
arylsulfatase B, histaminase,
phospholipase D, catalase,
non-specific esterases

Enzymes Pre-produced or de novo
synthesised

Inflammation-related effector
functions including
cytotoxicity, extracellular
matrix modification and
phagocytosis

[4,5,32]

Produced within the lipid bodies

Leukotrienes C4, D4 and E4,
Thromboxane B2,
Prostaglandins E1 and E2,
15-hydroxyeicosatetranoeic
acid, platelet-activating
factor

Lipid signalling factors,
mostly eicosanoids

De novo synthesised A broad range of effects in
inflammatory and allergic
responses

[4,5,34]

of  intact  specific  granules  retaining  their  functionality [33,56,57,59].  It  was  later
demonstrated that eosinophil cytolysis is often accompanied by the formation of
“extracellular traps”, i.e., web-like nets composed of extruded histone-coated strands
of  DNA and specific  granules  released from the same lysed cells[62-64].  The latter
phenomenon is similar to the formation of bactericidal NETs (neutrophil extracellular
traps) by neutrophils first described in 2004 by Brinkmann et al[65] and often defined as
a unique form of cell death initially called NETosis[66]. It is, however, more appropriate
to call this phenomenon ETosis since it is not neutrophil-specific and was observed in
eosinophils[62-64], mast cells[67], basophils[68], monocytes[69], macrophages[70] and even B
and  T  lymphocytes[71].  Moreover,  an  alternative,  “non-lethal”,  mechanism  of
extracellular DNA trap generation by eosinophils was described by Yousefi et al[72],
who  observed  a  catapult-like  release  of  mitochondrial  DNA  from  eosinophils
remaining alive. The released DNA formed extracellular traps that also contained
eosinophil granule proteins apparently secreted through PMD[72]. In the context of
eosinophil effector functions, the association of released (by either mechanism) DNA
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Table 2  Cell surface markers expressed by eosinophils

Group of surface markers Markers identified for eosinophils Ref.

Cytokine and growth factor receptors IL-2R, IL-3R, IL-4R, IL-5R, IL-9R, IL-10R, IL-13R,
IL-17R, IL-23R, IL-27-R, IL-31R, IL-33R (ST2),
TSLPR, GM-CSFR, KIT, IFNγR, TGFβR

[5,43-45]

Chemokine and chemoattractant receptors CCR1, CCR3, CCR4, CCR5, CCR6, CCR8, CCR9,
CXCR2, CXCR3, CXCR4, FPR1, FPR2, C3aR, C5aR

[5,43,44,46]

Lipid mediator receptors Platelet-activating factor receptor, DP1
prostaglandin receptor, DP2 prostaglandin
receptor (CRTH2), EP4 prostaglandin receptor, E2
prostaglandin receptor, Leukotriene B4 receptor,
Lysophosphatidylserine receptor P2Y10, S1P
receptors

[5,43,44,47]

Fc receptors FcαR, FcγRII, FcγRIII, FcεRI, FcεRII
[5,43,44]

Adhesion molecule receptors Integrin αLβ2 (LFA1), Integrin αMβ2 (CR3), Integrin
αXβ2 (CR4), Integrin α4β1 (VLA4), Integrin α6β1,
Integrin αDβ2, Integrin α4β7 (LPAM), cell surface
adhesion receptor CD44, CD62L (L-selectin),
PSGL1 (P-selectin lipoprotein ligand), CD34,
CD244 (2B4)

[5,43,44,48,49]

Pattern recognition receptors TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7,
TLR9, TLR10, NOD1, NOD2, RIG-1, RAGE

[5,43,44]

Other receptors and surface markers PIRB, SIGLECs, SIRPα (shown for mice), LAIR1,
Cannabinoid receptor CB2, Kinin B1 and B2
receptors, Histamine receptors, PAR1 or PAR2,
CD80 or CD86, CD48, CD300 receptors (a and f),
MHC class II

[5,43,44,50-53]

fibres  and  functional  specific  granules  (or  their  proteins)  certainly  provides  a
formidable defensive weapon that can be effectively used against infective agents
(bacteria,  viruses,  fungi)  or  multicellular  parasites  (helminths)[64].  However,
extracellular traps generated by eosinophils are highly cytotoxic and can damage host
tissues.  Both  defensive  and  host-damaging  effects  of  eosinophils  are  especially
important for barrier tissues including the gut and will be discussed in more detail in
further sections of this review.

MIGRATION OF MATURE EOSINOPHILS TO THE GUT
According  to  generally  accepted  views,  upon  maturation  in  the  bone  marrow
eosinophils  enter  the  circulation  and  migrate  to  the  gastrointestinal  tract,  their
accumulation in the gut mucosa commencing during embryonal development[73,74].

IL5  and possibly  GM-CSF stimulate  the  release  of  eosinophils  from the  bone
marrow into the circulation[2,16,32]. Mouse eosinophils can stay in circulation for up to
36 h[75],  and this  estimate  has  later  been shown to  be  close  to  their  average 25-h
intravascular presence in humans[76]. Eosinophil trafficking from the circulation to the
gut and other peripheral target tissues (such as thymus, uterus and mammary gland
in the normal  conditions)  is  a  complex multi-step sequence of  events.  As for  all
leukocytes, it comprises tethering, rolling, adhesion and transendothelial migration
followed by polarisation and amoeboid movement in the interstitial  space[73,77-81].
Alongside chemokine and cytokine signalling,  the interaction between adhesion
molecule receptors expressed by eosinophils and corresponding adhesion proteins of
endothelial cells is crucially important for efficient eosinophil trafficking. Although
leukocyte  extravasation  is  better  studied  in  inflammatory  conditions,  it  can  be
assumed that in health the initial adherence (tethering) of eosinophils to endothelial
cells and the initiation of rolling motion are selectin-dependent,  whereas further
rolling, firm adhesion and transendothelial migration are mediated by integrins[77-79].
In the context of eosinophil homing in the intestinal lamina propria  (schematically
shown in Figure 1), binding of the integrins α4β7 and α4β1 expressed by eosinophils to
endothelial adhesion molecules MAdCAM1 and VCAM1 respectively is especially
important,  and interactions  of  αLβ2  and αMβ2  with  ICAM1 appear  to  lead to  the
eventual  transmigration  from  capillaries[48,82,83].  Further  interstitial  migration  of
eosinophils to their destination in the lamina propria is believed to be governed mostly
by  chemokine  eotaxin-1  interacting  with  its  CCR3  receptor  on  the  surface  of
eosinophils[2,74]. Eotaxin-2 and eotaxin-3 may also contribute to the chemotaxis, but
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appear to be less eosinophil-specific[2,74]. In the human colon eotaxin-1 concentration
gradient directing eosinophil migration depends on the secretion of this chemokine
by intestinal  macrophages and epithelial  cells[84-86],  while IL13 produced by ILC2
cells[26] stimulates macrophage eotaxin-1 expression (Figure 1).

EOSINOPHILS IN HEALTHY GASTROINTESTINAL TRACT
Mouse experiments demonstrated that eosinophil homing in the gut occurs in the
foetal life, i.e., independently of later intestinal colonisation by microbiota[73]. In the
normal human gastrointestinal tract the presence of eosinophils increases in the distal
direction (oesophagus < stomach < small intestine < colon) reaching its peak in the
caecum and ascending colon[87-89]. As already mentioned, in the normal gut eosinophils
are primarily located in the lamina propria of the mucosa rather than in the surface
epithelium[82,90].

Unfortunately, functions of human gastrointestinal eosinophils in health remain
poorly investigated, mouse models being the main source of available information.
Still, recent progress in this complex field allows making some generalisations.

Eosinophil presence in the gut was previously believed to simply constitute an
effector element of the innate host defensive barrier, but it is now becoming clear that
resident intestinal eosinophils continuously monitor and modulate complex immune
responses and tissue remodelling throughout the huge surface of the gastrointestinal
tract[3]. It is remarkable that, unlike their circulating counterparts, gastrointestinal
eosinophils  exhibit  an  activated  phenotype  suggesting  permanent  functional
activity[4,91].  Participation in the following physiological  mechanisms is  currently
attributed to these gut-dwelling cells: (1) Maintenance of gastrointestinal mucosal
barrier function; (2) Provision of immunity to pathogens present in the gut lumen; (3)
Interactions  with  the  enteric  nervous  system;  (4)  Linking  innate  and  adaptive
immunity[4]. These functions are discussed in more detail hereafter.

Eosinophil participation in the maintenance of gastrointestinal mucosal barrier
function
The  intestinal  epithelium  acts  as  a  uniquely  important  body  interface  with  the
environment. In addition to its physical barrier function that prevents underlying
tissues from contacting harmful microbiota and dietary antigens of the gut lumen, this
epithelium regulates the selective absorption of nutrients, water and electrolytes[92].
The epithelial surface throughout the gut is covered by the glycocalyx of enterocytes
and colonocytes[93] and abundant mucus rich in mucin 2 (MUC2) produced by goblet
cells. The utmost importance of this mucus became evident only recently, and it is
now established that the structure of the mucus layer throughout the intestine is not
uniform.  The  small  intestine  has  a  single  and  relatively  loose  layer  of  mucus
populated by microbiota, whereas the colon has a two-layered system with a dense
inner layer firmly attached to the mucosal surface and an outer layer permeable for
bacteria (Figure 2)[94,95]. It is remarkable that this structure essentially excludes any
direct contact of bacteria with the colonic epithelium. The protective role of the mucus
is further enhanced by the presence of antibacterial substances, such as α-defensins
and lysozyme secreted by Paneth cells of small intestinal crypts[96] and IgA produced
by plasma cells of the lamina propria[97,98].

Interestingly, it has recently been shown that intestinal mucus layer maintenance
depends on eosinophil presence in the lamina propria since eosinophil-deficient mice
had significantly decreased numbers of mucus-secreting goblet cells in the small
intestine[98].  This is not surprising since eosinophils are known to directly induce
mucin production in airway epithelial cells by activating EGFR cascade[99]. Moreover,
although possible interactions between eosinophils and Paneth cells remain obscure,
the  transcription  factor  Xbp1  is  important  for  the  development  of  the  both  cell
types[27], and, like Paneth cells, human eosinophils were demonstrated to produce α-
defensins[100].  It  was  also  reported that  eosinophils  are  required for  maintaining
mucosal IgA production by plasma cells in the lamina propria[97,98,101], probably through
mechanisms involving IL1β[98] and TGFβ[97,100] signalling.

Taken together, this information suggests that eosinophils are intimately involved
in the maintenance of the protective intestinal mucus in the normal conditions.

Eosinophil participation in the provision of immunity to pathogens in the gut lumen
The immune system of the gut is an extremely complex entity, analysis of which is
beyond the scope of this review, but eosinophil impacts are highlighted herein. It is
obvious that in the normal homeostatic conditions immune surveillance focused on
sampling and assessing luminal antigens occasionally contacting the mucosal surface
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Figure 2

Figure 2  Schematic representation of eosinophil interactions with other cells and tissues in the small intestine (A) and colon (B). Black asterisks indicate gut
microbiota. Although one M-cell is shown in the colon, little is known about the presence of M-cells in healthy human colon.DC: Dendritic lells; E: Eosinophils; Fb:
Fibroblasts; GobC: Goblet cells; L: Lymphocytes; M: M-cells; Mcr: Macrophages; Ne: Nerves; PanC: Paneth cells; PC: Plasma cells.

is of utmost importance. The gut-associated lymphoid tissue (GALT) is believed to be
responsible  for  luminal  antigen sampling.  In  the  small  intestine  this  function is
primarily  associated  with  microfold  (M)  cells[102-104]  located  in  the  epithelium
overlaying Peyer’s patches (Figure 2) and capable of communicating with immune
cells comprising B lymphocytes, T lymphocytes, macrophages and dendritic cells. M-
cells are also believed to be present in the epithelium overlaying lymphoid follicles in
the colon[103], but their location and functions in the normal human colon remain very
poorly investigated. M-cells exert luminal antigen transcytosis followed by antigen
transfer to the relevant immune cells of the lamina propria,  but alternative antigen
capture mechanisms appear to exist as well. Dendritic cells were shown to sample
bacterial antigens by extending their dendrites to penetrate the epithelium and reach
the lumen[105,106]. In addition, goblet cells can deliver low molecular weight intestinal
antigens  to  the  underlying  dendritic  cells  of  the  lamina  propria[107].  The  latter
mechanism shown for the normal small intestine[107] may be especially important for
the colon, where it becomes activated only when mucus barrier, luminal microbiota
balance or microbial sensing by goblet cells are disturbed[108]. Given that the stratified
mucus layer securely protects colonic epithelium from any contact with gut contents
in the normal conditions, it is likely that immune cells located in the colonic lamina
propria may be completely unaware of luminal antigens until the protective barrier is
damaged[108].  Although the role of eosinophils in luminal antigen recognition and
presentation at baseline remains poorly investigated, it should be noted that these
granulocytes promote the development of Peyer’s patches[98]  and are known to be
closely involved in regulating dendritic cell activation and migration[109]. In addition,
intestinal eosinophils can express antigen presentation-associated markers, including
MHCII and CD80[91] as well as activating receptor FcγRIII[110]. Their possible antigen-
presenting function has not been demonstrated in the normal gut and remains to be
investigated.

Eosinophil role in the provision of interactions with the enteric nervous system
Eosinophil influences on the nervous system were extensively studied in the context
of asthma and allergic respiratory inflammation[111,112]. It is also known that human
eosinophils  can produce nerve growth factor  in abundance[113].  Eosinophil-nerve
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interactions  in  the  gut  were  demonstrated experimentally[114],  and accumulating
evidence indicates that eosinophil impact on the enteric nervous system may often be
exerted through mast cells residing in the lamina propria[115]. Indeed, eosinophils and
mast  cells  are  often found in  close  proximity  to  each other.  Physical  interaction
between them can induce a hyperactivation state accompanied by soluble mediator
release[116,117]. Mast cells and eosinophils in the gut are often located near sensory nerve
fibres and are known to be involved in the pathogenesis of functional gastrointestinal
disorders  accompanied  by  motility  changes,  hyperalgesia  and  diarrhoea[115,118].
Concerted  action  of  eosinophils  and  mast  cells  can  produce  multiple  effects  in
addition to interactions with the nervous system, being among major factors in allergy
and responses to infections[119], which are beyond the scope of this review.

Eosinophil role in linking innate and adaptive immunity in the intestine
It  is  now  recognised  that  eosinophils  can  modulate  T  cell-mediated  immune
responses,  owing to  their  ability  to  rapidly  produce  cytokines,  chemokines  and
growth factors[3-5], but little is known about their regulatory functions in the normal
intestine. Although eosinophils are able to secrete cytokines associated with both Th1
and Th2 cells[86], in the gut they appear to be primarily associated with Th2 immunity,
being producers of Th2-inducing cytokines IL4 and IL13[120]. It is remarkable that IL13
was detectable in a considerable fraction of these cells in the normal human duodenal
lamina propria[121]. Recent demonstration of significantly increased Th1 cell presence in
the  gut  of  eosinophil-deficient  transgenic  mice  corroborates  organ-specific  Th1
immunity suppression by these granulocytes[122].

It is assumed that eosinophils may regulate the magnitude and Th2 polarisation of
immune responses through interactions with B and T lymphocytes[86]. However, there
are many unanswered questions regarding types of cell-mediated immune responses
and corresponding cytokine profiles, and a view advocating the existence of three
rather than two types of effector immunity has recently emerged[123]. Only further
intense research in this dynamic area will lead to better understanding of eosinophil
interactions with other immune cells in the human gut.

Clearly, the four topics highlighted above do not entirely cover all activities of
intestinal eosinophils. For instance, experimental studies have revealed eosinophil
influences on smooth muscle cells[74,124], fibroblasts[74,125] and capillary endothelium[74],
but these roles remain to be investigated for the normal human gut.

EOSINOPHIL IMPACT IN THE PATHOGENESIS OF MAJOR
COLORECTAL DISEASES (IBD and CRC)
The author opted not to address eosinophil-associated gastrointestinal  disorders
(EGID) comprising eosinophilic  oesophagitis,  eosinophilic  gastritis,  eosinophilic
enteritis  and  eosinophilic  colitis  as  well  as  gastrointestinal  manifestations  of
hypereosinophilic  syndromes.  These  relatively  rare  conditions  were  extensively
reviewed elsewhere[83,86,126,127]. The concluding part of this review is focused on two
major colorectal diseases: IBD and CRC.

Eosinophils in the pathogenesis of IBD
IBD is represented mainly by two major conditions: ulcerative colitis (UC), which
affects  exclusively  colonic  mucosa[10],  and  Crohn’s  disease  (CD),  a  transmural
asymmetrical inflammation that can involve the entire gastrointestinal tract[9]. These
diseases are highly prevalent all over the world[128-131]. Both UC and CD are chronic
relapsing  disorders  with  complex  and  not  entirely  understood  mechanisms  of
development.  IBD  etiopathogenesis  is,  however,  believed  to  include  genetic
predisposition, environmental/microbial impacts, intestinal barrier dysfunction and
dysregulation  of  the  mucosal  immune  system  of  the  gut[6-10,132].  The  latter  two
pathogenetic components can certainly be influenced by eosinophils, the abundance
of which, correlating with disease severity, is well documented in the gut mucosa of
patients  with  UC[133-140]  and some CD cases[135,137,141,142].  The  increased presence  of
eosinophils in the mucosa of these patients apparently results from an enhanced
production  of  eotaxin  1  in  the  lamina  propria[84,143-145]  by  colonocytes[84,136],  macro-
phages[84,145]  or  B  lymphocytes[144].  Furthermore,  Manousou et  al[146]  described  an
elevated expression of eotaxin receptor CCR3 in colonic biopsy samples from UC
rather than CD patients. Although the authors interpreted this finding as a sign of the
accumulation of CCR3-expressing T cells, it is likely that lamina propria eosinophils
expressing  the  same receptor  could  be  at  least  equally  responsible  for  this  UC-
associated change. Conversely, serum eotaxin levels were reported to surge in active
IBD[141,147,148], but the increase looked more pronounced in CD patients compared to UC
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cases[147,148]. The contrast between UC and CD becomes even more evident in view of
different  patterns  of  colonic  eosinophil  activation  described  by  Lampinen  et
al[84,136,137,145,170,186,188]  and indicating that  in disease remission activated eosinophils
persisted in the lamina propria of UC, but not CD patients[136,137].

The observed differences in colonic eosinophil presence and activity between the
two  IBD  types  are  not  surprising  because  it  is  traditionally  accepted  that  CD
pathogenesis,  which  has  a  stronger  genetic  component[6],  is  dominated  by  Th1
cytokine  profile  (combined  with  Th17  influences)[149-152],  whereas  Th2  immune
response tends to characterise UC[150-153]. Given recent advances in the understanding
of immune response types, involved cell populations and cytokine profiles[123,154,155],
this  straightforward  division  may  now  look  simplistic,  but  the  association  of
eosinophils  with  Th2  immunity  is  well  proven[120].  Therefore,  their  role  in  UC
pathogenesis looks more evident and easier to explain.

Before further discussing the role of eosinophils in IBD development it will be
useful  to  briefly  address  gut  barrier-related  aspects  of  disease  onset.  Although
numerous  factors  admittedly  contribute  to  IBD  pathogenesis[6-8,156],  the  precise
mechanism of disease initiation remains elusive. Multiple lines of evidence indicate
that in most cases IBD can be triggered by an initial contact of the gut microbiota with
the  mucosal  immune cells  followed by the  development  of  inadequate  immune
responses. It is probable that preconditions for this initial contact are associated with
functional deficiencies of the protective barrier of the gut mucosa, and they are likely
to differ between CD and UC. Indeed, the loose mucus layer of the small intestine
may be easily penetrated by microorganisms that then directly contact the epithelium,
particularly mucosal M-cells[102-104] of the ileum. Such events can be facilitated by α-
defensin deficiency caused by Paneth cell dysfunction that is frequently observed in
CD patients, including those genetically predisposed to the disease[157,158]. In contrast,
M-cells in the normal colonic mucosa can hardly be reached by microbiota since two
layers of mucus, especially the dense inner one[93-95], exclude any bacterial contact with
the  epithelium (Figure  2B).  The  protective  role  of  the  inner  mucus  layer  is  well
illustrated by spontaneous colitis development in MUC2-deficient mice[159,160]. Bacterial
penetration through the inner mucus layer was observed in UC patients[161], but it is
not entirely clear what triggers the initial change of inner mucus layer properties.
Mouse models suggest MUC2 secretion deficiency[159,160] or goblet cell depletion[162] as
probable  causes,  and  goblet  cell  numbers  in  UC  patients,  indeed,  tend  to  be
reduced[163]. Some authors believe that unresolved endoplasmic reticulum stress and
the unfolded protein response are early events leading to goblet cell disfunction and
mucus layer  impairment  in  UC[164,165].  Altered eosinophil  behaviour may well  be
associated with these phenomena, but this possibility remains to be investigated.
Alternatively, the inner colonic mucus layer can be primarily damaged by mucus-
degrading  bacteria  of  the  gut  lumen[166].  The  latter  process  may  potentially  be
modulated by dietary factors since it was experimentally demonstrated that dietary
fibre deficiency leads to switching of the gut microbiota on using mucus glycoproteins
as a nutrient source and eventual erosion of the mucus barrier[167]. All the pathogenetic
components discussed above may contribute to IBD initiation in humans, but further
research in the area is obviously needed.

Whatever scenario causes IBD initiation, there is little doubt that bacterial antigen
interaction with the gut-associated lymphoid tissue triggers complex cascades of
inadequate immune responses leading to disease development.  In these circum-
stances, activated eosinophils present in the lamina propria predominantly start acting
as effector cells, excessive protective response of which can cause serious damage to
the host through several mechanisms. Activated eosinophils accumulating in the gut
of IBD patients[133-142] have an extended lifespan[168], and their degranulation leads to a
massive release of both cytotoxic granule proteins and pro-inflammatory cytokines.
Gut epithelium is one of the key targets of cytotoxic eosinophil proteins as it was
demonstrated  that  MBP  alters  colonic  epithelium  barrier  function[169].  Another
mechanism of eosinophil contribution to colonic barrier dysfunction in UC involves
muscarinic receptors expressed by these granulocytes. Wallon et al[170] showed that
cholinergic  signals  received  by  the  muscarinic  receptors  caused  corticotropin-
releasing factor (CRF) production by eosinophils, and CRF induced degranulation of
neighbouring mast  cells  that  led to  an increase  in  mucosal  barrier  permeability.
Concerted action of eosinophils and mast cells may have multiple endpoints in IBD as
the both types of cells are important sources of cytokines comprising TNFα that,
intriguingly, induces M-cell appearance in the mouse colon during inflammation[171].
Moreover, cooperation between eosinophils and mast cells was demonstrated in CD-
associated  fibrosis  development  at  later  stages  of  the  disease[172].  Inflammation
intensity can also be aggravated by human gut eosinophils through blocking anti-
inflammatory interleukin 22 (IL22)[173] by overproducing IL22-binding protein in both
CD and UC patients[174].
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Interactions of gut eosinophils with other immune cells, especially lymphocytes,
are  very complex and poorly investigated in  IBD patients.  There is  no room for
discussing  all  of  them here,  but  crosstalk  between  eosinophils  and  neutrophils
deserves to be mentioned. Neutrophils are not present in the lamina propria in the
normal  conditions  but  are  rapidly  attracted  there  when inflammatory  response
develops (Figure 3). It is believed that chemokines, especially CXCL8, produced by
gut  epithelium in  inflammation  trigger  neutrophil  chemotaxis[175].  Interestingly,
eosinophil impact in this process is now becoming evident since they can synthesise
CXCL8[176]. Also, eosinophils were demonstrated to cooperate with colonic epithelium
in producing a  wider  range  of  neutrophil  chemoattractants[177].  In  conclusion of
discussing the role of lamina propria eosinophils in IBD it needs to be noted that the
presented facts are mostly related to human disease. There is a considerable body of
additional  information  obtained  in  murine  models  which  has  been  reviewed
elsewhere[178].

Until recently, pathogenetic mechanisms of IBD were considered only at the level
of events occurring within the gut wall. However, it is now becoming evident that gut
mucus layer presents another, poorly investigated but potentially highly important,
battlefield for innate immune responses. Although massive neutrophil influx to the
mucosa, often leading to crypt abscess formation, is recognised as a hallmark feature
of IBD, the importance and mechanisms of immune cell migration through mucosal
epithelia  remain  poorly  understood  and  insufficiently  investigated [ 1 7 9 , 1 8 0 ].
Transepithelial  neutrophil  migration involving a  chain of  molecular  events  that
include initial attachment to the basal surface of epithelial cells, movement through
paracellular space (passing by desmosomes, adherens junctions and tight junctions)
and eventual contact with the apical membrane of the epithelium is relatively well
understood[179,180]. Moreover, it is known that following transmigration neutrophils
release MMP9-rich microparticles that disrupt epithelial junctions facilitating further
transmigration[182]. Rapid eosinophil migration through tracheobronchial epithelium
in experimental conditions was also reported[181], but remains unexplored in the gut.
The process  is,  thus,  well-defined,  but  the  final  destination of  cells  crossing the
epithelial barrier remains obscure, being often indicated simply as “gut lumen”[179,180].
Neutrophil-associated markers of inflammation are, indeed, easily detectable in faeces
of most patients with active UC and CD, as the popularity of faecal diagnostic tests,
particularly stool calprotectin,  proves[183,184].  Similarly,  the presence of eosinophil
markers  in  stool  or  colorectal  perfusion  fluid  of  IBD  patients  was  repeatedly
reported[184-188].  It is, however, apparent that any cells or biomolecules leaving gut
epithelium surface should first enter mucus barrier already discussed above, and only
its occasionally separated fragments can be incorporated into the faecal matter. The
author of the present review previously hypothesised that colorectal mucus retains
these  highly  informative  cells  and  molecules  and  can  be  conveniently  used  for
diagnosing colorectal diseases[189]. Studies of our group convincingly demonstrated
the abundance of inflammatory cells, predominantly neutrophils, in colorectal mucus
collected from IBD patients either intrarectally[190,191] or non-invasively[192,193]. Common
eosinophil presence in this material was also noted[191,193], especially in UC patients[193],
and dramatically increased EDN levels were determined[191,194], typically with higher
values in UC compared to CD[194].  Detailed cytological  analysis  of  these samples
demonstrated that colorectal mucus from patients with active IBD commonly contains
not  only  huge  amounts  of  neutrophils,  but  also  eosinophils,  macrophages,
erythrocytes as well as occasional plasma cells, lymphocytes and basophils[193]. Most of
these  cells  are  viable  and  functionally  active  as  our  frequent  observations  of
phagocytosis by neutrophils and macrophages indicate[193]. Furthermore, it appears
that signs of ETosis were also present in colorectal mucus from IBD patients[193]. These
findings allow hypothesising that  gut  mucus acts  in  IBD as  a  unique additional
milieu, where immune responses expand from the mucosa. It is apparent that the
abundance of active cells, especially granulocytes releasing contents of their granules,
considerably  loosens  the  inner  mucus  layer  in  the  colon,  thus  making  it  both
permeable for gut microbiota and facilitating further immune cell transmigration and
movement  through the  mucus.  These  circumstances  should favour  antibacterial
activity of the effector cells, but extensive collateral damage of host epithelium is
highly likely. ETosis exerted by neutrophils, eosinophils and other immune cells[62-72]

may be especially important in this context. Figure 3 reflects the author’s opinion on
the extent of inflammatory process in the human gut.

Protection from invading microbiota appears to be the main biological  aim of
ETosis since histones enveloping released DNA are antibacterial[195], and the addition
of DNA strands may increase mucus viscosity, thus mechanically compensating for
MUC2 degradation. Further antibacterial action is provided by granule proteins of
both neutrophils[196,197]  and eosinophils  (Table 1).  However,  ETosis  in the mucus,
especially combined with the release of intact  eosinophil  granules,  can seriously
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Figure 3

Figure 3  Schematic representation of human colonic mucosa and overlaying mucus during inflammatory
bowel disease (ulcerative colitis) flare-ups. Rapid influx of neutrophils results in severe neutrophil infiltration of the
lamina propria. Further massive transepithelial migration of neutrophils and other immune cells (especially
eosinophils in ulcerative colitis) eliminates mucus layer structure, enables bacterial contact with the epithelium,
causes epithelial cell death, ulcer formation and bleeding. Mucus infiltration with neutrophils and eosinophils is
accompanied by abundant ETosis and release of both granule proteins and free eosinophil granules. Active
inflammation also induces M-cell appearance in the epithelium overlaying lymphoid follicles[171]. Cell images
correspond to those used in Figure 2. Erythrocytes are presented by red circles. Small red dots correspond to free
eosinophil granules.

damage enterocytes or colonocytes. Eosinophil-derived extracellular DNA traps have
already been shown to injure airway epithelium in chronic obstructive pulmonary
disease[198] and chronic rhinosinusitis[199], where MBPs released from specific granules
were especially toxic[200]. This phenomenon is still poorly investigated in relation to
UC and CD, but interest in IBD-associated ETosis is emerging. In addition to our
results discussed above, NET presence has been demonstrated in biopsy samples
from IBD patients[201-203], notably within crypt abscesses[201], i.e., beyond the mucosa.
Although the significance of immune responses occurring within colorectal mucus
remains  to  be  elucidated,  it  is  impossible  to  exclude  that  eosinophil-generated
extracellular  DNA threads,  loaded with entrapped specific  granules that  release
cytotoxic cationic proteins, can cause a continuing colonocyte damage leading to
sustained ulceration. This so far unexplored mechanism may constitute an important
pathogenetic factor in UC and, to some extent, in colonic CD. On the other hand, it
should not be forgotten that transepithelial migration of immune cells is a major
factor  in  mucosal  disease  resolution,  as  demonstrated  for  airway diseases[204,205].
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Indeed, the presence of both inflammatory cells and biomarkers associated with them
significantly decreased in colorectal mucus samples from successfully treated IBD
patients[194].  It  is,  therefore,  probable  that  gradual  distal  movement  of  colorectal
mucus[189] creates favourable conditions for eliminating dead or obsolete immune cells
from the surface of colonic epithelium if inflammation is successfully resolved.

The presented analysis  of  literature on eosinophil  impact in IBD pathogenesis
reveals  that  eosinophils  are  closely  involved in  this  process  through regulatory
activities, interactions with other cells and tissues and effector functions that can often
be excessive and damage the host. The impact of eosinophils appears to be especially
important in altering the structure and protective functions of the mucosal barrier.
The author also tried highlighting an interesting new research direction related to
exploring poorly investigated immune responses occurring in the protective mucus
layer of the gut. It is, however, apparent that our understanding of IBD pathogenesis,
including eosinophil  participation in  it,  remains  fragmentary and needs  further
thorough investigation.  For  this  reason,  it  would  be  premature  to  speculate  on
possible therapeutic interventions targeting eosinophils in IBD.

Eosinophils in the pathogenesis of CRC
CRC is one of the most frequent oncological conditions with estimated global figures
of 1801000 new CRC cases and 861700 deaths due to this disease in 2018[206]. Although
there are many good reviews addressing various aspects of CRC pathogenesis[11-15],
possible role of eosinophils in this process is usually overlooked despite the existence
of reports deserving attention and briefly discussed below.

Eosinophil infiltration is often observed in malignancies, but for different tumours
it  was  reported  as  either  prognostically  favourable  or  unfavourable[3,4,207-210].
Nevertheless, the presence of eosinophils in CRC patients is strongly linked with a
decreased  disease  risk,  better  prognosis  and extended patient  survival.  Indeed,
elevated blood eosinophil counts were associated with a decreased CRC development
risk[211] as well as better prognosis[212-214]. Eosinophil infiltration of colorectal tumours is
a common phenomenon, and higher numbers of infiltrating eosinophils detected both
in the tumour tissue[215-217]  and peritumourally[218-220]  were repeatedly shown to be
prognostically  favourable.  Despite  these  seemingly  cogent  findings,  the  quoted
descriptive clinical  studies  could not  provide any direct  evidence of  anti-cancer
eosinophil action, and possible mechanisms of CRC growth inhibition by eosinophils
remain poorly understood.

Tumour-associated inflammation is  currently  recognised among hallmarks  of
cancer[11]. Eosinophil accumulation accompanying inflammation-related cancer cell
death and proliferation in CRC is one of its components that probably reflects Th2
immune responses enhanced at the expense of Th1 immunity[3]. Besides, eosinophils
are likely to stimulate tissue remodelling and tumour-related angiogenesis[3,221]. The
latter MBP-modulated effect may in theory promote tumour growth, however only
non-cytotoxic MBP concentrations enhanced angiogenesis in vitro[221], and significant
eosinophil infiltration in CRC is likely to produce high MBP concentrations. Ellyard et
al[222]  argued that some components of Th2-driven inflammation in cancer can be
associated with anti-tumour activity of CD4+ Th2 cells collaborating with tumour-
infiltrating granulocytes, especially eosinophils that exert regulatory functions. In any
case, it is now becoming clear that there are several mechanisms driving eosinophil
attraction to tumours and defining their influence on malignant tissue. In particular, it
was demonstrated in vitro that eosinophil chemotaxis could be induced by necrotic,
but not viable cells of neoplastic intestinal epithelium[223]. Experiments in a xenograft
mouse  model  indicated that  eosinophil  infiltration developed rapidly,  involved
mostly tumour necrotic areas or capsule regions and was not associated with the
presence of CD4+ T cells[224], thus suggesting that eosinophil chemotaxis depended on
tumour-derived factors,  such as damage-associated molecular pattern molecules
(DAMPs)  including the nuclear  protein high mobility  group box 1  (HMGB1)[225].
Notably, the presence of cell-free cytotoxic MBP was confined to the necrotic areas of
tumours[224].  There are also reports describing expression of eosinophil  attractant
ecalectin (variant of galectin-9) by human colorectal carcinoma cell lines[226] and of
eotaxin 1 in tumours resected from CRC patients[227].  The latter phenomenon was
recently investigated further in a mouse model by Hollande et al[228], who found that
IL33 expressed by tumour cells induced eotaxin 1 production that led to eosinophil
recruitment  and  degranulation-dependent  suppression  of  tumour  growth[228].
Interestingly, eotaxin 1 concentration is negatively regulated by serine protease DPP4,
and treatment with DPP4 inhibitor sitagliptin was shown to result in an increase in
eotaxin  1  level[228].  Sitagliptin  is  a  drug  already  approved  by  the  US  FDA  for
hyperglycaemia treatment,  and it  may potentially be re-purposed as a new anti-
tumour agent promoting tumoricidal action of eosinophils[228,229]. Coming back to IL33,
its role as an influential modulator of early stages of eosinophil development[22], was
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noted in the beginning of this review, but it  is  also a potent eosinophil  activator
stimulating their degranulation[230]. Moreover, it was reported that IL33-deficient mice
had gut microbiota dysbiosis and were highly susceptible to both colitis and colitis-
associated cancer[231],  which could also  be  related to  impaired eosinophil-driven
responses. Hence, multiple parallel pathways are likely to be involved in generating
eosinophil infiltration of colorectal tumours and direct killing of malignant cells, a
phenomenon already proven experimentally. In vitro studies by French investigators
assessing  tumoricidal  activity  of  eosinophils  against  Colo-205,  a  human  colon
carcinoma cell line, have shown that this effect was mediated by eosinophil-produced
ECP,  TNFα and proteolytic  granzyme A[232].  The same group later  reported that
eosinophil attachment to Colo-205 cells depended on interaction between adhesion
molecules LFA-1 and ICAM-1 that was upregulated by IL18[233]. Direct tumoricidal
effect of tumour-infiltrating degranulating eosinophils was also observed in model
experiments using genetically modified mice[234].  It  is,  however,  obvious that  the
tumoricidal action of eosinophils in vivo may involve multiple interactions with other
immune cells. Notably, there is evidence that eosinophils can promote either Th2 or
Th1 immune responses, depending on varying cytokine profiles[86,235]. Carretero et al[236]

have recently shown in experiments with xenograft-bearing mice that tumour-homing
eosinophils secreted chemoattractants that guided CD8+ effector T cells to tumours,
eventually  causing tumour rejection.  Thus,  it  is  apparent  that  different  immune
response scenarios can be involved in anti-CRC action of eosinophils.

Completing this final section of the review, the author is tempted to briefly mention
already discussed ETosis as another possible, but hitherto poorly investigated factor
in  CRC.  One  interesting  link  here  is  provided  by  recently  published  results
implicating inflammation-induced ETosis in extracellular matrix remodelling and
awakening  of  dormant  cancer  cells[237].  As  tumour-associated  inflammation  is  a
characteristic feature of CRC, and significantly increased extracellular trap formation
in these tumours is now proven[238,239], it looks probable that previous reports of CRC-
associated increase in the amount of DNA in stool[240,241] or on the surface of colorectal
mucosa[190,242]  at least partially reflected abundant ETosis occurring within mucus
layers  contacting  tumour  surface.  In  essence,  cellular  presence  in  the  mucus
overlaying colorectal tumour surface is quite similar to that depicted by Figure 3, the
abundance of exfoliated malignant cells being the only major difference[190]. Although
today there  is  no  published evidence  of  eosinophil  contribution in  CRC-related
ETosis, this evidence is very likely to emerge soon. In contrast to anti-cancer effects of
eosinophils in fully developed tumours, which were discussed above, it is impossible
to  exclude carcinogenicity  of  eosinophil-derived DNA traps  loaded with highly
cytotoxic released granules damaging colonic mucosa. Such a carcinogenic action
could be involved at early stages of CRC development, especially in IBD-associated
context[243,244].  Conversely,  eosinophil-driven ETosis  may prevent  further  tumour
expansion at later stages of advanced tumour growth.

The presented analysis of literature establishes a link between eosinophil presence
and favourable CRC prognosis, but functional versatility of these multifaceted cells
may  comprise  both  anti-cancer  and  tumour-promoting  features.  Only  several
experimental  studies addressing eosinophil  roles in cancer could be highlighted,
however it already becomes transparent that alternative mechanisms involving both
direct effector action of eosinophils and complex cooperation with other immune
cells,  especially  T lymphocytes,  can be engaged in different  circumstances.  This
fascinating area still poses numerous unanswered questions requiring further intense
investigation.

CONCLUSION
Upon  the  presented  analysis  of  the  current  literature  it  can  be  concluded  that
eosinophils are now regarded as multifunctional mobile cells routinely involved in
controlling and regulating a range of biological  pathways and responses in both
health and disease. The versatility of eosinophils largely depends on the availability of
numerous  biologically  active  substances  (cytotoxic  cationic  proteins,  cytokines,
growth factors, chemokines, enzymes) stored in their specific granules and ready for
rapid release. The lamina propria of the human gut is one of the main destinations of
eosinophils produced and matured in the bone marrow and transferred through the
circulation. In the normal physiological conditions, the most important functions of
gut-residing eosinophils appear to be their participation in the maintenance of the
protective mucosal barrier and interactions with other immune cells, particularly in
providing immunity to microbiota inhabiting the lumen of the gut. In health the latter
regulatory role may be more important in the small intestine compared to the colon,
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mostly due to structural differences of mucus layers covering epithelial surfaces of
these two segments of the intestine. Eosinophils are proven to be closely involved in
the development of inflammation in IBD, when their uncontrolled cytotoxic effector
functions cause damage to host tissues. However, their roles in CD and UC differ.
While eosinophil impact in UC pathogenesis largely corresponds to Th2 immune
response pattern,  the involvement of these cells  in CD pathogenesis is  less clear.
Eosinophils in IBD appear to be especially important in altering the structure and
protective functions of the mucosal barrier and modulating massive neutrophil influx
to the lamina propria followed by transepithelial migration to colorectal mucus. The
author  believes  that  accumulating  evidence  suggests  that  IBD-associated
inflammatory process expands to the mucus overlaying the internal gut surface, and
the presence of eosinophils in this mucus is well documented. It can be hypothesised
that colorectal mucus presents a previously unexplored unique milieu for disease-
related inadequate immune responses in the gut. These responses involving cytotoxic
effects and ETosis exerted by both neutrophils and eosinophils on the both sides of
the colonic epithelial barrier act as additional pathogenetic factors leading to colonic
epithelium ulceration in IBD. However, further research is needed for testing the
proposed hypothesis.  Literature  analysis  also  highlights  an association between
elevated eosinophil levels and better CRC prognosis. Mechanisms behind this link
may involve both direct anti-tumour action of eosinophils and complex cooperation of
eosinophils  with  T  cells  but  remain  to  be  elucidated.  This  challenging area  still
presents an important goal for future research.

It should be admitted that addressing all interesting topics related to eosinophil
role in the gut was impossible for obvious reasons.  A huge amount of  literature
covering  gut  immunity  in  health  and disease  exists,  and certain  selectivity  was
inevitable. Nonetheless, the author would like to specifically emphasise his opinion
on the importance of investigating colorectal mucus in the context of major colorectal
diseases including IBD and CRC.
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