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Abstract
Hepatitis B virus (HBV) infection is one the leading risk factors for chronic
hepatitis, liver fibrosis, cirrhosis and hepatocellular cancer (HCC), which are a
major global health problem. A large number of clinical studies have shown that
chronic HBV persistent infection causes the dysfunction of innate and adaptive
immune response involving monocytes/macrophages, dendritic cells, natural
killer (NK) cells, T cells. Among these immune cells, cell subsets with suppressive
features have been recognized such as myeloid derived suppressive cells(MDSC),
NK-reg, T-reg, which represent a critical regulatory system during liver
fibrogenesis or tumourigenesis. However, the mechanisms that link HBV-
induced immune dysfunction and HBV-related liver diseases are not understood.
In this review we summarize the recent studies on innate and adaptive immune
cell dysfunction in chronic HBV infection, liver fibrosis, cirrhosis, and HCC, and
further discuss the potential mechanism of HBV-induced immunosuppressive
cascade in HBV infection and consequences. It is hoped that this article will help
ongoing research about the pathogenesis of HBV-related hepatic fibrosis and
HBV-related HCC.
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Core tip: We review that hepatitis B virus (HBV) induces suppressive function of the
innate and adaptive immune cells in chronic HBV infection, and highlight that immune
suppressive cascade contributes to the mechanism of HBV persistent infection. Further,
we analyze the potential effects of HBV-induced immunosuppression in HBV-related
fibrosis and hepatocellular carcinoma, thus providing underlying research directions for
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future studies into the pathogenesis of HBV-related disease.
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INTRODUCTION
Despite  the presence of  vaccines and therapeutic  drugs,  hepatitis  B virus (HBV)
infection  remains  a  major  global  health  problem.  More  than 350  million  people
worldwide are chronically infected with HBV, and about 1 million people die each
year from HBV-related complications[1]. Persistent HBV infection can lead to varying
degrees of liver damage, which eventually leads to hepatitis, fibrosis, cirrhosis, and
hepatocellular carcinoma (HCC)[2]. HBV belongs to the noncytopathic hepatic DNA
virus family which only infect  human and orangutan liver  cells,  and there is  no
evidence that the HBV can infect other non-hepatocyte cells[3]. HBV infection does not
cause direct hepatocyte lesions, and the host's immune response determines whether
it clears the virus or induces liver disease. In contrast that HBV-infected adults often
develop self-limiting and transient hepatitis, and 95% of infections end with virus
removal and the establishment of protective antibodies, the vast majority of neonatal
vertical transmission of HBV from mother to child develops into chronic infection[4].
While divergent factors are involved in its pathogenesis,  chronic HBV persistent
infection is a complex process involving the interaction of the host immune system
with the virus, which causes the incapacitation of the innate and adaptive immune
response[3].  How HBV regulates the innate and adaptive immune cells, leading to
persistent  virus  infection  and  further  consequences,  continues  to  be  a  research
hotspot.  Therefore,  in  this  review,  we summarize  recent  findings  regarding the
function  and impairment  of  innate  and adaptive  immune cells,  and discuss  the
potential mechanism of HBV-induced immune suppressive cascade in HBV infection
and HBV-related liver diseases.

HBV-INDUCED IMMUNE SUPPRESSION CONTRIBUTES TO
PERSISTENT INFECTION

HBV induces immune suppressive monocytes/macrophages
Monocytes/macrophages are important natural immune cells found in peripheral
blood and organ tissue, and play multiple roles in the innate and acquired immune
responses[5]. Monocytes/macrophage interact with lymphocytes through inhibitory or
activating surface molecules. HBV stimulates monocyte/macrophage secretion of
transforming growth factor β (TGF-β)[6] and interleukin-10 (IL-10)[7], while inhibiting
the  secretion  of  tumor  necrosis  factor  α  (TNF-α)  and  IL-12  induced  by  toll-like
receptor (TLR2)[8,9]. Our study of HBV infection in a humanized mice model found
that  HBV  induces  human  monocyte/macrophage  differentiation  into  M2
macrophages, expressing IL-10 and other inhibitory cytokines[10]. Recently, we found
that the anti-inflammatory cytokines (IL-10 and TGF-β) and inhibitory cell surface
molecules [Programmed death ligand 1 (PD-L1) and human leukocyte antigen (HLA)-
E] expressed in monocytes in patients with chronic HBV infection were significantly
higher than those of healthy control[11].  Further experiments in vitro showed that
HBsAg  or  HBV  directly  induced  the  expression  of  PD-L1  and  HLA-E  and  the
secretion of anti-inflammatory cytokines of monocytes from healthy adults[11]. Our
group recently reported that HBV induces monocyte production of inflammatory
cytokines via TLR2/MyD88/NF-κB signaling and STAT1-Ser727 phosphorylation and
inhibits interferon (IFN)-α-induced stat1, stat2, and ch25h expression through the
inhibition of STAT1-Tyr701 phosphorylation and in an IL-10-dependent, partially
autocrine manner[12]. Therefore, HBV-induced suppressive monocytes/macrophages
play a key role in the immune pathogenesis of chronic persistent infection.

HBV induces myeloid derived suppressive cells differentiation
Myeloid derived suppressive cells (MDSCs) are bone marrow-derived cell subsets
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with inhibitory functions, which can be divided into two main subgroups as M-MDSC
(CD11b+HLA-DRlow/-CD14+CD15-) and PMN-MDSC (CD11b+ CD14-CD15+) according
to their phenotypic and morphological characteristics[13]. MDSCs were first discovered
in tumor tissue and play a role in the development, metastasis and immune escape of
tumors[14]. Recent studies have found that MDSCs play a critical role in chronic HBV
infection. The level of peripheral MDSCs in chronic hepatitis B (CHB) patients was
significantly higher than that of healthy adults, and the percentage of MDSC cells had
a significant correlation with HBV load in the plasma of HBV patients[15]  and the
mouse model[16]. Moreover, HBV induces monocytes differentiation of into MDSCs
through the signal transduction pathway such as ERK/IL-16/STAT3/PI3K, thus
inhibiting the activation and function of lymphocytes[17]. Drugs that target MDSCs
could restore the responses of HBV-specific T cells from CHB patients ex vivo and
prevent the increase of viral load in HBV mouse models[18,19]. In vitro, MDSCs secrete
arginase and down-regulate the CD3ζ chain by missing arginine, thus inhibiting IFN-
γ secretion from HBV-specific T cells[20]. In addition, MDSCs produce suppressive
cytokines IL-10 to inhibit T-cell response in CHB patients[21]. MDSC not only directly
inhibits T cell  response through such mechanisms as arginase but also indirectly
influences immunomodulatory function by inducing regulatory T cells (T-reg)[22,23].

HBV impairs the maturation and function of dendritic cells
Dendritic cells (DCs) are the professional antigen presenting cells, which process and
present  antigen to  T  cells,  and are  involved in  the  production of  cytokines  that
influence T-cell polarization. The studies of DCs subsets in chronic HBV infection
have primarily been limited to myeloid DCs (mDCs) and plasmacytoid DCs(pDCs),
two populations isolated from the peripheral blood. The frequency of mDCs in CHB
patients shows a reduction which could be recovered by antiviral therapy[24]. There is
a  positive  correlation  of  intrahepatic  mDC  subsets  with  serum  alanine
aminotransferase (ALT) levels and a significant inverse correlation with plasma HBV
load[25]. The frequency of CD80+ and CD86+ mDCs showed slight differences between
CHB patients and healthy donors after in vitro maturation[26]. It was also reported that
PD-L1 expression on mDCs was  increased in  patients  with  active  hepatitis  B[27].
Increased ALT levels correlated with increased PD-L1 expression on mDCs, and
impaired IFN-α production by pDCs[28]. Although some studies have reported that the
function and frequency of pDCs were analogous between CHB patients and healthy
controls[24], it has been demonstrated that HBV infection in pediatric patients showed
a decreased frequency of pDCs, and the numbers of pDCs were restored by antiviral
therapy[29,30].  The  expression  of  the  OX40  ligand  was  reduced  in  highly  viremic
patients while the expression of CD40 and CD86 was elevated in pDCs from CHB
patients. Decreased expression of OX40L on TLR9-L-activated pDCs from viremic
patients with HBV blocks their ability to induce the cytolytic activity of natural killer
(NK) cells[31].  Monocyte-derived DCs (MoDCs) from HBV patients were impaired
resulting in a reduction in T cell production of IL-2, TNF-α, and IFN-γ because of
lower IL-12 secretion[32]. In vitro, cytokine-induced human MoDCs maturation in the
presence  of  HBsAg  or  HBV  contributed  to  a  significantly  more  tolerogenic  DC
phenotype as the reduced release of co-stimulatory molecules and IL-12 production as
well  as  a  T-cell  stimulatory  capacity,  as  evaluated  by  IFN-γ  production  and
proliferation of T-cells[33].

HBV impairs NK cell function and induces NK cell differentiation
NK cells are another important innate immune cell, which can effectively and quickly
identify and remove virally-infected cells without MHC restriction. NK cells are the
major lymphocytes in the liver, accounting for about 30% of liver lymphocytes[34]. In
the HBV transgenic mouse model, CD3-NK1.1+NK cells were found to be the main
infiltrating lymphocytes of liver inflammation[35]. Functional defects of NK cells were
found in CHB patients, showing a deactivation state[36]. The high level of inhibitory
cytokine  IL-10  in  chronic  HBV infection has  an obvious  inhibitory  effect  on the
production of IFN-γ by NK cells[37]. The function of NK cells can be restored by IL-10
and TGF-β neutralizing antibodies in CHB patients[38].

The immunomodulatory function of NK cells has received much attention in recent
years. The IFN-γ secreted by NK cells promotes the function of CD4+  T cells and
enhance Th1 polarization[39]. However, under appropriate stimulation conditions, NK
cells secrete immunomodulatory factor IL-10[40,41]. IL-10+ NK cells secrete TGF-β and
IL-13,  but  do  not  secrete  IFN-γ[42].  Our  study  found  that  the  anti-inflammatory
cytokines (IL-10) and inhibitory cell surface molecules (PD-1 and CD94) expressed by
NK cells in patients with chronic HBV infection were significantly higher than those
of healthy adults. Further, in the co-culture experiment of monocytes and NK cells,
HBV-induced suppressive monocytes were found to induce NK cell differentiation
into regulatory NK cells (NK-regs) expressing anti-inflammatory cytokines IL-10 by
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PD-L1/PD-1 and HLA-E/CD94 conjugates[11]. The regulatory NK cells could not only
directly inhibit the antiviral function of NK cells, but also inhibit HBV-specific T cell
function by reducing the proliferation of T cells[11]. It has been reported that removing
NK cells from peripheral blood can enhance the antiviral function of CD8+T cells[43].
These studies show that HBV-induced suppressive monocytes inhibit HBV-specific T-
cell immune response by educating regulatory NK cells, which then leads to a chronic
persistent infection of HBV.

HBV induces T cell exhaustion and regulatory T cell differentiation
Early studies have determined that the adaptive immune responses, especially HBV-
specific CD4+ and CD8+ T cell immune responses, play a crucial role in virus removal
and the immune pathogenesis of hepatitis B[3]. CD4+T cells promote CTL responses
and  the  production  of  neutralization  antibodies,  while  CD8+  CTLs  remove
hepatocytes that are infected with HBV. IFN-γ and TNF-α secreted by T cells are
critical cytokines that inhibit HBV replication[44,45].  In CHB infection, HBV-specific
CD4+ and CD8+T cells did not respond adequately, also known as T cell exhaustion[46],
showing a significant  increase in the expression of  co-inhibitory receptors  PD-1,
CTLA-4,  TIM-3 and CD244 on the surface compared to a substantial  decrease in
cytotoxicity  and  cytokine  secretion  capacity.  The  long-term  exposure  to  a  high
concentration of viral antigens is the direct cause of T cell immune tolerance and
specific T cell exhaustion. Virus-specific T cells become gradually more exhausted
with rising viral load and exhibit weakened effector function[47]. Viral load reduction
restores the proportion of T cells and the function of HBV-specific T cells[48].

T-regs are a special subset of CD4+T cells that play a critical role in establishing and
maintaining immune tolerance. It  was reported that the proportion of peripheral
CD4+CD25+Foxp3+T-reg cells in CHB patients was higher than that in healthy control
and self-clearance of acute HBV infection[49,50],  and was positively correlated with
serum HBV load[51].  In addition,  the proportion of  hepatic infiltrating T-reg cells
increased in  CHB infection[52].  Multiple  molecules  participate  in  T-reg mediated
immunosuppression, including CTLA-4, IL-10 and TGF-β. For example, IL-10 secreted
by HBcAg-specific T-reg inhibited the secretion of IFN-γ from HBV-specific CD4+T
cells, and blockade of IL-10 restored the secretion of IFN-γ of HBV-specific CD4+T
cells[53]. T-regs from CHB patients could inhibit the proliferation and IFN-γ production
of autologous peripheral blood mononuclear cells (PBMC) mediated by HBV antigen
stimulation ex  vivo[54].  Therefore,  MDSCs and T-regs  secrete  a  variety of  effector
molecules, directly or indirectly inhibiting T-cell responses, resulting in a chronic,
persistent HBV infection.

Therefore, the innate immune cells (monocytes/macrophages, DCs, NK cells) and
adaptive immune cells (CD4+, CD8+T cells) are dampened in chronic HBV infection.
As shown in Figure 1, HBV induces immune suppressive cells, such as MDSCs, NK-
reg,  and T-reg cells,  to  form an immunosuppressive  cascade through inhibitory
molecules, such as PD-L1, PD-1, IL-10, which contributes to chronic and persistent
HBV infection.

DOES HBV-INDUCED IMMUNE SUPPRESSION
CONTRIBUTE TO LIVER FIBROSIS?
Liver  fibrosis,  which  is  a  major  global  health  problem  for  the  lack  of  effective
treatment, is caused by chronic liver injury of any etiology such as viral infection,
alcoholic liver disease, and NASH[55]. The associated signals of liver injury cause the
activation of hepatic stellate cells (HSCs), the activated HSCs trans-differentiate into
myofibroblasts,  and become the main source of  extracellular  matrix  in  the liver,
leading to liver fibrosis. It is thus generally believed that HSCs are essential in the
progression of liver fibrosis[56]. HBV is the leading risk factor for liver cirrhosis and
HCC. Liver fibrosis is the early stage of liver cirrhosis and HCC, and can be reversed.
Therefore, many studies are focusing on the immunopathogenesis of chronic HBV
infection and the related liver fibrosis[57].  There have been few reports  about the
impact of HBV-induced immune suppression on fibrosis.

HBV-induced suppressive monocyte/macrophage in liver fibrosis
HBV interacts with receptors such as TLR2/4, which are expressed on Kupffer cells to
produce a large number of inflammatory cytokines and chemokines (TNF, CCL2)
causing  liver  damage[58,59].  These  inflammatory  mediators  induce  peripheral
monocytes  to  infiltrate  into  the  liver,  and then proliferate  and differentiate  into
macrophages  and  exacerbate  the  production  of  inflammatory  cytokines  and
chemokines, further inducing the development of liver inflammation and fibrosis[60-62].
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Figure 1

Figure 1  The schematic outline of hepatitis B virus-induced immune suppression network. The infected
hepatocytes release hepatitis B virus virion to induce suppressive monocytes (Myeloid derived suppressive cells) and
dendritic cells (tolerogenic dendritic cells), which initiate directly inducible T-reg to inhibit T cell activation or mediate
indirectly by educating natural killer cell (NK) cells differentiation into NK-reg. HEP: Hepatocytes; MDSC: Myeloid
derived suppressive cells; DC: Dendritic cells NK: Natural killer cell; T-reg: Regulatory T cell.

HBV-induced  suppressive  monocytes/macrophage,  on  the  one  hand,  produce
immunomodulatory molecules (IL-10, TGF-β, PD-L1/2) that inhibit the anti-fibrotic
effects of NK cells and T cells; on the other hand, they secrete cytokines such as PDGF
and TGF-β to activate HSC, prompting HSC survival[63,64]. A recent report showed that
peripheral and ascitic MDSC numbers increase in cirrhosis and HCC, but its role in
such pathology was not determined[65]. Conceptually, HBV-induced MDSCs impair
the anti-fibrotic function of both T cells and NK cells by inhibiting IFN-γ secretion
through PD-L1 or CTLA-4[66]. MDSC also inhibited cytotoxicity of NK cells through
PD-L1 or TIGIT[67,68], thus protecting activated HSC from NK cell killing.

HBV-induced suppressive NK cells in liver fibrosis
NK cells secrete IFN-γ that inhibit HSC activation by abrogating profibrogenic TGF-β
signaling and induce activated HSC apoptosis[69,70]. In addition, NK cells play a key
role in the limitation of liver fibrosis through cytotoxicity of activated HSC[71]. Our
recent study found a novel mechanism by which NK cells kill HSCs through TRAIL-
involved degranulation  manner[72].  In  HBV infection,  HBV-induced suppressive
monocytes induce NK cell differentiation into NK-reg with decreased production of
IFN-γ and increased IL-10[11]. Thus, it seems that HBV-induced NK-reg could promote
HSC activation. But there is no evidence of the interaction between NK-regs and HSC,
although  it  has  been  reported  that  HSCs  modulate  NK  cells  through  a  TGF-β-
dependent emperipolesis in chronic HBV infection[73].

HBV-induced T cell immunosuppression in liver fibrosis
IL-2 secreted by CD4+ T cells is important in mediating the anti-fibrotic function of
NK cells, and is impaired in HIV/HCV co-infection, which causes rapid progression
of liver fibrosis[74]. More likely, HBV-induced T cell immunosuppression may also
impair  the  anti-fibrotic  function  of  NK  cell.  T-regs  directly  suppress  NK  cell
degranulation of HSCs through CTLA-4, TGF-β1 and IL-8, and indirectly protect
HSCs from NK cell killing by inhibiting MICA/B expressed on HSCs through IL-8
and TGF-β1[75]. In HBV-infected patients undergoing surgery for HCC, hepatic Th17
cells and T-reg were heightened in patients with advanced-stage HBV-related hepatic
fibrosis[76]. On the other hand, T-regs could attenuate liver fibrosis by suppressing
inflammation[77].  The role  of  HBV-induced T-regs  in  fibrosis  needs  to  be  further
determined.

DOES HBV-INDUCED IMMUNE SUPPRESSION LEAD TO
HCC?
HCC is the fifth most prevalent cancer in men and the second principal cause of
cancer deaths worldwide[78]. HCC prevalence is very high in China, but the morbidity
of HCC has also rising in the United States over the past few decades[79,80].  Early
diagnosis and surgical resection are still the key to potential treatment, however, most
patients with HCC have advanced-stage tumors with poor prognosis. HBV is one of
the major risk factors for HCC, especially in areas where HBV is endemic, such as
China[81].  The clinical  scope of  chronic HBV infection ranges from asymptomatic
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carrier status to CHB, which may evolve into liver cirrhosis and liver cancer[82]. It is
estimated that 8%-20% untreated CHB adults develop cirrhosis of the liver within 5
years[83], and 2%-8% of those with cirrhosis develop HCC annually[84].

HBV  prompts  HCC  development  through  direct  and  indirect  mechanisms[85].
Chronic liver inflammation, insertional mutagenesis, and the host gene activation (cis’
effect) and transactivation by HBx and S proteins and oncogenic co-operativity (trans’
effect)  were  proposed  as  underlying  mechanisms  of  HBV-related  HCC
development[86-88].  However, the underlying immunopathogenesis of HBV-related
HCC development and progression is still not clear. There is a consensus that the
immune system is critical in determining the clinical fate of HCC patients[89]. Viruses
may also reprogram their immune microenvironment to induce immunosuppression
and peripheral tolerance during chronic infections and eventually, tumourigenesis[90].
A meta-analysis of two immunosuppressed populations (transplant and HIV/AIDS
patients) revealed a significantly increased incidence of several types of cancer, most
of which were pathogen-driven[91]. Immunodeficiency, rather than other risk factors, is
responsible for the increased incidence of cancer. The microenvironment of HBV-
related HCC is  more immunosuppressive  than that  of  non-viral-related HCC[92].
Therefore,  HBV-induced  immune  suppression  may  play  a  crucial  role  in  HCC
development and progression.

HBV-induced MDSCs in HCC
An increased frequency of CD14+HLA-DR-/low MDSCs was reported in both peripheral
blood and tumor tissue of HCC patients[93]. Depletion of MDSCs restores production
of granzyme B by CD8+ T cells and increases the number of IFN-γ producing CD4+ T
cells in HCC patients[66],  suggesting that HBV-induced MDSCs inhibit T cell anti-
tumor effect.  However,  the frequency of  CD14+PD-L1+  MDSCs is  only positively
correlated with HBV DNA load at the HCC stage[94]. Because of higher levels of PD-1+

CD8+  T  cells  in  tumor  tissues  compared  to  nontumor  tissues  in  HCC[95],  PD-L1
expression  induced  by  either  HBV  or  HCC  on  monocytes/  MDSCs  could  be
associated with impaired T-cell function in HBV-related HCC[66,96] although it has not
been demonstrated whether HBV-induced suppressive monocytes were involved in
pathogenesis.

HBV-induced NK-reg cells in HCC
NK cells from healthy donor PBMCs have significant cytotoxic function to HCC cell
lines, and HepB3 cells transplanted in mice deficient of lymphocytes and NK cells
(NOD/scid IL2RGnull) are significantly ostracized by i.p. administered NK cells in an
NKG2D-dependent manner[97,98]. It has been reported that PD-1 is highly expressed on
peripheral and tumor-infiltrating NK cells from HCC patients, suggesting NK cell
exhaustion and poorer survival[99]. Since NK cells play a key role in immunological
surveillance,  HBV-induced  NK  cell  suppression  may  play  a  crucial  role  in  the
pathogenesis  of  HBV-related  HCC.  As  our  recent  findings[11],  PD-L1/PD-1  and
CD94/HLA-E signaling control NK cell  differentiation to NK-regs which in turn
inhibit the anti-viral function of T cells and NK cells. Whether HBV-induced NK-regs
are correlated with immune pathogenesis of HCC remains unclear.

HBV-induced T-reg in HCC
Both the absolute numbers and proportion of CD4+CD25+  T-reg cells significantly
increase in the edge region of the tumor, compared to the non-tumor region[100]. In
vitro, Huh7 cells inhibit CD4+CD25- T-cell proliferation, promote CD4+CD25+ T-cell
proliferation, and enhance their suppressor ability[101]. It seems that the induction of T-
regs could be effected by not only the HBV infection but also by the HCC, because the
increased CD4+CD25+ T-regs population and upregulated T-regs-related genes are
induced by HepG2.2.15[102]. A decreased infiltration of CD8+ T cells concurrent with
abundant accumulation of T-regs was found in tumor regions compared with non-
tumor regions[103].  Increased Foxp3+  T-regs not only means poor survival, but also
presents a prognostic predictor in patients with early-stage HCC[104]. It indicates that
HBV-induced T-regs might be involved in immune pathogenesis of HBV-related
HCC.

CONCLUDING REMARKS
Immune suppression induced by HBV infection has been well described by a number
of  different  mechanisms for  the  different  immune cells[10,11,15,27,36,53].  HBV induces
immune suppressive cells,  such as  MDSCs,  NK-reg,  and T-reg cells,  through an
immunosuppressive cascade. The excessive immunosuppression could contribute to
an HBV persistent infection and the progression of liver fibrosis and HCC[105]. Better
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understanding the immunopathogenesis of HBV-related hepatic fibrosis and HCC
will be helpful for the intervention and management of HBV progression and the
treatment of related end-stage liver diseases in the clinic.
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