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Abstract
Brains perform complex tasks using a fraction of the power that would be required to do the same on a conventional computer.
Newneuromorphic hardware systems are nowbecomingwidely available that are intended to emulate themore power efficient,
highly parallel operation of brains. However, to use these systems in applications, we need “neuromorphic algorithms” that can
run on them. Here we develop a spiking neural network model for neuromorphic hardware that uses spike timing-dependent
plasticity and lateral inhibition to perform unsupervised clustering.With this model, time-invariant, rate-coded datasets can be
mapped into a feature space with a specified resolution, i.e., number of clusters, using exclusively neuromorphic hardware.We
developed and tested implementations on the SpiNNaker neuromorphic system and on GPUs using the GeNN framework. We
show that our neuromorphic clustering algorithm achieves results comparable to those of conventional clustering algorithms
such as self-organizing maps, neural gas or k-means clustering. We then combine it with a previously reported supervised
neuromorphic classifier network to demonstrate its practical use as a neuromorphic preprocessing module.

Keywords Neuromorphic hardware · Self-organizing map · Data clustering · Unsupervised learning · Spiking neural
networks · Classification
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1 Introduction

Spiking neural networks in brains can solve many challeng-
ing problems while consuming surprisingly little energy.
Their biological components run relatively slowly but rely
upon very high parallelization alongside powerful informa-
tion coding and network topologies, which have emerged
through evolution. Highly parallel and power-efficient “neu-
romorphic platforms,” which mimic these biological mech-
anisms, have been developed as a basis for brain-like
computing in the domain of machine learning and artifi-
cial intelligence (AI), for example TrueNorth (Merolla et al.
2014), SpiNNaker (Khan et al. 2008; Furber et al. 2013),Neu-
rogrid (Benjamin et al. 2014), Minitaur (Neil and Liu 2014),
Loihi (Davies et al. 2018), DYNAPs (Moradi et al. 2018)
and the “BrainScaleS” system (Schemmel et al. 2010). These
systems support the simulation of up to millions of modeled
spiking neurons and billions of synapses in real time, i.e., at
the same speed that neurons operate in the brain. The Brain-
ScaleS platform even operates 104 times faster than real time
and thus supports accelerated network simulations.

“Neuromorphic algorithms” are being developed that
leverage these platforms to solve new and old computing
problems from the fields of AI and data mining. One class of
such problems is clustering. To date, there are no definitive
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solutions for neuromorphic hardware that could compare to
classical algorithms such as self-organizing maps, neural gas
or k-means clustering (Xu andWunsch 2005). This may par-
tially be due to the constraints on network connectivity and,
more importantly, learning rules, which currently available
hardware imposes. The most commonly supported learn-
ing rule, for instance, is spike timing-dependent plasticity
(STDP), which updates synaptic weights based on the tem-
poral relationship of pre- and post-synaptic spikes (Gerstner
et al. 1996;Markramet al. 1997;Bi andPoo1998, 2001). The
input to the learning rule is hence strictly local to the synapse.
Spiking self-organizing maps have been proposed (Choe and
Miikkulainen 1998; Ruf and Schmitt 1998; Behi and Arous
2011), but their weight update rules depend on non-local
information and are hence not compatible with STDP rules
that are available on current neuromorphic platforms. There
is, however, a body of previous work (Nowotny et al. 2005;
Masquelier et al. 2009; Nessler et al. 2013), carried out using
conventional simulations of neurons and relying only on
local STDP, that suggest potential neuromorphic-compatible
solutions.

In this study, we demonstrate a neuromorphic imple-
mentation of a self-organizing network that learns typical
activation patterns (“prototypes”) in a multivariate dataset,
relying only on local STDP. We show that correlations
between similar inputs are sufficient to drive fully unsu-
pervised learning that leads to individual output neurons to
“represent” particular prototypes. Lateral inhibition plays
a critical role in the self-organized learning process as it
supports a (potentiallymultiple)winner-take-all (WTA) con-
dition between neurons. Together with the employed STDP
rule, this causes input synapses of the neurons that respond
strongest to a given input pattern to potentiate, effectively
reinforcing the neurons’ affinity to the input pattern. Like-
wise, neurons that respond weaker are inhibited from firing
and, consequently, reduce their affinity to the pattern. The
result is a set of disjoint subpopulations within the pop-
ulation of output neurons, which approximately represent,
through their input weights, centroids of inherent clusters in
the space of inputs. We demonstrate the operation of the self-
organizing network on theGeNNGPU-accelerated simulator
and the SpiNNaker neuromorphic hardware system, learning
prototpyes of handwritten digits in theMNISTdataset (http://
yann.lecun.com/exdb/mnist/).

2 Methods

Neuromorphic algorithms are essentially computational
models of neuronal networks, and we here use standard
computational neuroscience models to build neuromorphic
algorithms for clustering.

Neuron and synapse models Our model for unsupervised
clustering and subsequent classification was implemented in
both the GPU-enhanced neuronal network (GeNN) frame-
work (Yavuz et al. 2016; Nowotny et al. 2014) and the
SpiNNaker platform (Khan et al. 2008; Furber et al. 2013).
We used different neuron and synapse models for the GeNN
and SpiNNaker platforms. On one hand, this was done
because of restrictions in the two systems that constrain the
preferred choice of model. On the other hand, we think that
replicating the same behavior with different models empha-
sizes the robustness and reproducibility of the proposed
functional network model. Neuron and synapse models are
detailed in Diamond et al. (2016a, b).

In brief, inputs to the network were described by Poisson
processeswith ratesλi that depend on the identity of the input
i . The relationship between the rates and the input identity is
described inmore detail in the “Networkmodel” section. The
Poisson processes were approximated as Bernoulli processes
with pi = λi · Δt for fixed time steps Δt , where Δt = 1 ms
for SpiNNaker and Δt = 0.5 ms for GeNN.

For all other elements, we used the most lightweight
neuron and synapse models available on each of the two plat-
forms. For GeNN, all neurons that are not Poisson processes
were modeled as “map” neurons (Rulkov 2002),

V (t + Δt) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V 2
spikeα

Vspike(1+y)−V (t)−β Isyn(1−m)
if V (t) ≤ 0 mV

V = Vspike(α + y) if 0 < V (t) ≤ Vspike(α + y),

V (t − Δt) ≤ 0

−Vspike otherwise

(1)

m(t + Δt) = (1 − aΔt)m(t) (2)

A spike is emitted when V = Vspike(α + y) (3)

On spike, m �→ m + b(1 − m), (4)

where Vspike = 60 mV scales the spike amplitude (= Vspike ·
(1+α+ y) = 91.92 mV top to bottom), β = 0.0165 mV/nA
reflects the input resistance of the neurons, y = −2.468
regulates the intrinsic excitability of neurons and α = 3
regulates the spike shape. m implements a form of spike rate
adaptation where the neurons become less sensitive to inputs
if they spike frequently. a = 10−4 (ms)−1, b = 0.02 and
Δt = 0.5 ms.

Synapses were all modeled as conductance-based
synapses,

Isyn = gS(V − Vsyn) (5)

where g is the maximal synaptic conductance of each
synapse, S is its activation and Vsyn is the synaptic poten-
tial, Vsyn = 0 mV for excitatory and Vsyn = − 92 mV for
inhibitory synapses. Activation is governed by
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S(t + Δt) =
⎧
⎨

⎩

S(t) + 1 if presynaptic spike
(
1 − Δt

τsyn

)
S(t) otherwise

(6)

The entire network model was simulated with a global
timestep of 0.5 ms, as dictated by the Rulkov map neurons
(Rulkov 2002).

On SpiNNaker, neurons were modeled as leaky integrate-
and-fire (LIF) neurons (Rast et al. 2010).

dV

dt
= 1

τm
(Vrest − V + IsynR) (7)

with membrane time constant τm = 20 ms and Vrest =
−66 mV. If V ≥ − 65 mV, a spike is emitted and V is reset
to Vreset = − 70 mV. The neuron is then kept at Vreset for a
refractory period of 2 ms.

Synapses were described by exponential current-based
synapse models, i.e.,

dI

dt
= − I

τsyn
+ gsynδ(tspike) (8)

where tspike denotes the time of a presynaptic spike and δ is
the δ distribution. gsyn is measured in nA and represents the
synaptic strength. The equations for neurons and synapses are
integrated in a variant of an Euler algorithm within SpiN-
Naker’s bespoke 32-bit/16-bit fixed point arithmetic (Rast
et al. 2010). On SpiNNaker, the model was simulated with a
1 ms integration time step.
Spike timing-dependent plasticity STDP was implemented
in excitatory synapses for both the unsupervised learning
between input and the first neuron layer and the reinforced
learning from this layer to association neurons, which repre-
sent the output of the network (see below). The change Δg
applied to the conductance g of a synapse between a pre- and
a post-synaptic neuron depends on the interval between their
firing ΔT = tpost − tpre,

Δg =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 0.0125 µS if 20 ms < ΔT ≤ 200 ms

− 0.0117µS
msΔT + 0.223 µS if 2 ms < ΔT ≤ 20 ms

− 0.0025 µS if − 200 ms < ΔT ≤ 2 ms

0 µS otherwise

(9)

The relationship ofΔg to the firing interval ΔT is illustrated
in Fig. 1, and the motivation for its shape is detailed in the
model explanation below.

Synapse conductancewas clipped at an upper limit gmax =
0.25 µS and at a lower limit of gmin = 0 µS.

3 Networkmodel

Self-organized clustering is achievedwith a simple two-layer
network of input and output neurons, connected by STDP
synapses (layers “IN” and “RN” in Fig. 2b, and “IN” and
“CN” in Fig. 2c, d). All functional units of the network are
small populations of individual model neurons that we refer
to as groups. In order to test the performance of the neu-
romorphic self-organized mapping produced by our model,
we also created a classifier stage adapted from an existing
design that had employed offline machine learning to per-
form equivalent data clustering (Schmuker and Schneider
2007; Diamond et al. 2016a, b; Schmuker et al. 2014).

Figure 2a illustrates the original model (Schmuker et al.
2014). The first layer comprises groups of receptor neu-
rons (RNs) encoding multivariate, real-valued data samples
s ∈ R

d into a population-based, positive, bounded, firing-
rate representation λ ∈ R

NRN+ . Each RN was modeled as a
Poisson process with firing rate

λi = λmax

(

1 − d(s,pi ) − dmin

dmax − dmin

)

(10)

where d(s,pi ) = ∑d
j=1 |s j − pi, j | is theManhattan distance

(L1 metric) between an input s and the coordinates pi of the
i th “virtual receptor” (VR). This terminology was motivated
by the similar functional role of receptors in the olfactory
system. dmin and dmax are theminimal andmaximal distances
observed in the dataset from anyVR, so that λi ranges from 0
to λmax = 40 Hz. The coordinate vectors pi of the VRs were
determined up front using a neural gas clustering algorithm
(Martinetz and Schulten 1991) to partition the input space
to a specified resolution. Effectively, this approach encodes
the data using cone-shaped radial basis functions with large,
overlapping receptive fields. Each group of RNs excites a
matching group of “projection neurons” (PNs) in the second
layer, which inhibits all other PN groups by lateral inhibition.
This reduces correlation between VR channels and sparsens
the representation of the multi-dimensional pattern.

The third layer of “association neuron” (AN) groups acts
as a readout for the classifier, whereby each AN population
is assigned to signal the presence of a given class in the
input. Patterns of PN activity are trained to correlate with
firing of the correct output association neuron (AN) group
by linking them with plastic connections and activating the
correct output group during training. Connection strengths
gPNAN are altered using spike timing-dependent plasticity
(STDP) (see above).

Figure 2b illustrates the fully neuromorphic model that is
the subject of this paper. The VR proximity function is now
replaced with an initial processing stage that is neuromor-
phic. The model receives the raw input data s in their full
dimensionality d. The entries of s j ∈ [0, 1] of s are the gray
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Fig. 1 Configuration of spike
timing-dependent plasticity
(STDP). The blue trace shows
conductance changes—i.e.,
synapse potentiation (green
zone) or depression
(red)—applied across the
pertinent range of spike intervals
between firing of a presynaptic
neuron and a downstream,
connected post-synaptic neuron

levels of pixels of the 28x28MNIST images, and each group
of input “neurons” IN (Fig. 2b) contains Poisson processes
with rate λ j = λmaxs j . STDP in IN to RN connections and
lateral inhibition between RN groups leads to RN, and hence
PN groups to respond to a representative range of input pat-
terns, after one or more initial passes over the training set.

The STDP curve (Fig. 1) was constructed such that each
group of RN neurons eventually responds selectively to a
common representation or rendering of one of the classes
(digits 0–9 in this case) in the training dataset. The IN-RN
weights are initializedwith a random, but high, value. During
self-organized clustering, synapses fromactive INs (dark pix-
els) are potentiated, but more importantly, synapses from less
active INs (white pixels) are strongly depressed. As a result,
the weights migrate toward a “mirror-image” in weight space
of the class prototype that is represented by the RN group in
question.

For the learning curve, this implies that, as in earlier work
(Nessler et al. 2013), synapses are only potentiated in a short
window (∼ 20ms) when post-synaptic firing closely fol-
lows presynaptic firing. As with classic STDP, the slope
recognizes the fact that causality becomes less likely as
the interval increases. If post-synaptic firing occurs later,
it is treated as non-causal and synapses are depressed by
a fixed amount (Δg = − 0.0125µS). If post-synaptic fir-
ing precedes presynaptic firing, then it is also considered
non-causal and synapses are always depressed by a small
amount (Δg = − 0.0025µS). In the classic STDP rule (Bi
and Poo 1998), strong depression is applied for very close
post-then-pre spiking. However, when using populations of
noise-driven neurons, many coincidental, close spike pair-
ings between disparate neurons are generated and the order of
pre- and post-synaptic spiking is quite variable. Over time, a
symmetrical depressionwindow for post-then-pre spike pair-
ings as in the original STDP rule results in a net depression

of all synapses. In effect, all weights fade away. For similar
reasons, we did not apply depression for large ΔT exceed-
ing 200ms in duration. Without this limit, irrelevant spike
pairings across different input presentations tend to cause
long-term depression of all synapses and hence learned con-
nections gradually fade away.

The result of this strategy is that input patterns will
be stored in the input weight space of a responding neu-
ron group. The initial high weighting, the lateral inhibition
between groups and the length of presentation can all be
configured and tuned to minimize overlearning—“burning
in”—of a single input pattern and to allow activity to switch
to alternative groups for novel input patterns.

As a result of learning at this initial stage, the input is
mapped into NRN = NPN dimensions, where NRN and NPN

are the number of RN and PN groups, respectively.
It is evident from Fig. 2b that the RN and PN layers are

implementing a very similar function with the primary dif-
ference that the strength of lateral inhibition is set for two
different purposes. For the RN layer, it is set to high values in
order to implement effective WTA during the self-organized
mapping.

For the PN layer, once the representation in RNs is
established, inhibition is then used to only mildly reduce
correlations between clusters and sparsen the representation
of the multi-dimensional patterns. A strict WTA behavior is
no longer necessary or, indeed, desirable. Figure 2c shows
how we can significantly reduce the model size (neuron and
synapse count) by combining RN and PN layers into one,
which we label simply “cluster neurons” (CNs). After unsu-
pervised training of the input mapping via the input weights,
the role of CNs can be switched by decreasing the inhibitory
weights before embarking on the second supervised stage of
training the output layer.
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Fig. 2 Neuromorphic self-organized mapping and spiking classifier
model. a Previous conceptual neuromorphic algorithm for a generic
multivariate classifier design based on the insect olfactory system.
Inputs were clustered using a (unsupervised) neural gas algorithm on
a standard PC up front leading to VR1 to VRN . b Adapted conceptual
model using the neuromorphic self-organized mapping (unsupervised
learning stage). The previously used clustering of the input space to pro-
duce a set of virtual receptor points is replaced with the self-organizing
set of RN neurons that are tuned to represent prototypes in the input
space during a first pass through the training set. c The new model opti-
mized for size whereby the RN and PN layers are merged into a single

self inhibiting layer, now labeled CN (cluster neurons). d The final
implemented model optimized further: Layers are now implemented
as single populations with subpopulations demarcated by connectivity
and the biologically correct inhibitory interneuron populations aremade
redundant by using direct inhibitory synapses between subpopulations.
An additional population of Poisson neurons was added to implement
supervised learning during the second phase of training, by exciting or
inhibiting designated output subpopulations depending on the class of
the presented input (“teaching signal”). The number of output neurons
reflects the number of classes, e.g., 10 for the MNIST dataset; only 2
are shown in the figure for simplicity

Figure 2d shows the implemented final model, which
incorporates optimizations to further reduce the model size,
and the Poisson population that enables supervised training
of the readout association layer (AN) (see below).
Connectivity and population sizesAs already mentioned, the
model was implemented in both the GPU-enhanced neuronal
network (GeNN) framework (Yavuz et al. 2016; Nowotny
et al. 2014) and the SpiNNaker platform (Khan et al. 2008;
Furber et al. 2013). For efficient definition on both platforms,
each layer was implemented as a single population contain-
ing neuron groups demarcated solely by their connectivity.
Following the unsupervised training of the map, the subse-

quent supervised association training of the output layer is
undertaken in order to encourage firing in the correct output.
To induce appropriate associative potentiation of synapses
when an input of a given class is presented, a further 40 neu-
ron Poisson input population with a constant λteach = 60Hz
firing rate is employed, effectively generating a teaching sig-
nal consisting of excitation and inhibition onto the ANs. By
injecting additional excitatory synaptic current from thePois-
son population, we increase the likelihood that the correct
AN group will spike in response to the current CN activity.
The resulting correlated firing of CN and AN neurons causes
STDP-based weight potentiation in the corresponding CN-

123



428 Biological Cybernetics (2019) 113:423–437

AN synapses. Conversely, sending the spikes of the teaching
population via inhibitory synapses to incorrect AN groups
discourages output firing, preventing incorrect associations.
The teaching signals are removed during testing.

Input (IN) groups contain 10 neurons each, and output
(AN) groups contain 40 neurons each to ensure effective
WTA (Diamond et al. 2016a, b). CN group sizes varied and
were investigated between 10 and 60 neurons.

Connectivity between subpopulations, either within or
across layers, is universally random with probability of con-
nection pc = 0.5, except for the IN-CN input connections
which have probability pIN CN

c = 0.75.

Initial weights STDP synapses are initialized to a high con-
ductance value (i.e., strongly weighted) by selecting weights
from a uniform distribution between gmax

2 and gmax. In con-
junction with the STDP rule described above, this choice
ensures that when a CN neuron group begins to represent a
prototype input pattern, its average synaptic strength remains
comparable to, if not lower than, that of naive CNgroups, and
hence, dissimilar input patterns will be represented by other
CN groups. Inhibitory WTA synapses are fixed at 0.025 µS,
while the CN layer is first exposed to inputs to ensure that
typically only one CN neuron group will respond to each
input pattern at this stage. When the CN layer has developed
a representation of the input space, the CN-CN synapses are
reduced to 0.015 µS to producemore gentle lateral inhibition
and a multiple WTA representation.

Training and test regimes Inputswere presented by setting the
appropriate firing rates in the INs. A “silence” gap of 50 ms
(simulated) was introduced between each presentation of an
input pattern to ensure that inter-spike intervals triggering
weight plasticity do not occur between spikes relating to two
different input patterns.

During training, each input is presented until the num-
ber of spikes generated in the CN layer reaches a specified
limit. This setting can be varied usefully between 20 and 200
spikes and has a significant effect on the performance of both
clustering (mapping) and eventual classification (see Sect. 4).
We introduced this mechanism because if a well-established
input pattern is presented, this causes an immediate spiking
response in one or more well matched AN groups. Using the
spike limit allows to reduce the amount of additional synap-
tic plasticity that occurs before switching to the next input.
Conversely, a novel input will initially trigger only low, or no,
spiking and it is useful to leave the input pattern in place until
the response has built up to a more commensurate degree. As
a result, the system skips rapidly over known inputs applying
only minor modifications to synapses that unknown stimuli
are presented longer, which favors learning novel inputs. The
net effect in terms of mapping the input space is to pull the
emerging “map” of clusters toward less charted areas of fea-
ture space.

During testing, the spike-limited switching is replaced by
a time-based regimewhere each input is presented for exactly
50 ms. This allows all output subpopulations the same time
to generate sufficient spikes to allow consistent classifica-
tion. Retaining the low CN spike count limits used in the
training stage as a driving mechanism was found to lead to
insufficient output activity for reliable classification or WTA
action between AN subpopulations.

The classification decision of the model is calculated by
determining the AN group with the most spikes in the time
window from the input presentation until the end of the
subsequent 50ms silent period imposed on the INs. This is
important as there is a delay between spikes appearing at
the IN layer and the spike response at the final AN output
layer.

The training set is presented to the network exactly two
times. The first epoch is used to allow self-organization of
the CN layer (IN to CN weightings). For the second epoch,
the lateral inhibition is reduced to 0.015 µS, as described in
Methods, and the association layer (CN to ANweightings) is
also trained. During this stage, a teaching signal is introduced
from the teacher population that activates the correct output
neurons for each input. While learning in the brain is more
likely to be gated by neuromodulatory signals acting on the
synapses (Urbanczik and Senn 2009), activating an appro-
priate output neuron in conjunction with a Hebbian learning
mechanisms to implement supervised learning is a well-
known technique in artificial neural networks. On GeNN, the
routing of the teaching signal to the output AN populations
is implemented by switching the appropriate excitatory and
inhibitory synapse conductances to either 0 µS or 0.5 µS.
On SpiNNaker, changing weights mid-simulation is not sup-
ported. Instead, separate 10neuron input populations (oneper
class) are used to pass in the teaching signal (see Diamond
et al. 2016a for details). During the test stage, all teaching
signals are disabled.

Note that all plasticity mechanisms remain in place
throughout training and testing. This is partly imposed by
inflexibility in both platforms which do not allow for struc-
tural model changes during a contiguous run. However, it is
also not necessarily unrealistic compared to biological learn-
ing, where there is no clear distinction between training and
testing. The only exceptions to continuous learning in our
model are that output CN-AN weights are reset following
the first training set exposure and that the lateral inhibition
between CNs is reduced during the second presentation of
the training set. The supervised learning in CN-AN connec-
tions hence is only relevant during the second exposure, and
the competition between CN neurons is less pronounced
in this phase. Initial investigations showed that markedly
improved results are obtained if self-organization in the CN
layer reaches a certain level of completion first before ANs
begin to develop their receptive fields.
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Implementation For GeNN, the compiled CUDA-based
model and initial data were uploaded to the GPU and stepped
atmaximum speed under control of the host workstation. The
desired spiking rates for Poisson populations were uploaded
as a block and revised at will. For GeNN, we used a work-
station (8-core, 3.7Ghz Intel Pentium Xeon, 32GB RAM)
installed with an NVIDIA Titan Black GPU card (2880
cores, 6GB memory). This is classified as a high end con-
sumer/gamingproduct, connected internally viaPCI-Express
bus. Note that a second small video card was used to drive
the workstation’s main display, freeing up themain GPU.We
used NVIDIA CUDA 7.0 and the GeNN 2.1 software release
suppliedbyUniversity ofSussex (Nowotny et al. 2014;Yavuz
et al. 2016). Simulation speed ranged from 5 to 20 times real
time, depending on the model size. Spike count data of inter-
est were downloaded from the GPU device between steps.

For SpiNNaker, the model was defined using the PyNN
modeling toolkit (Davison 2008) on the host workstation.
When the simulation was invoked, the model was compiled,
uploaded and set to run in real time (1 simulated second = 1
elapsed second),managed by the sPyNNaker toolset (Rowley
et al. 2015). As there is no stepping or pausing, the training
and test stages were performed contiguously in a single run;
multi-channel (28×28 dimensions) input spikes were passed
in real time from the hostmachine using the live spikingUDP
package interface. Spikes produced by the CN layer neurons
(needed for spike count limiting) and the AN layer neurons
(needed for the classifier’s verdict in testing) were collected
live on the host using the UDP output spiking interface. Note
that the real-time multi-channel input and output is handled
by host-based software we developed for SpiNNaker simu-
lations with datasets larger than can be usefully handled by
the spike source file interface. This software is available on
GitHub (Diamond 2016).

We used a “SpiNN-5” board hosting 48 SpiNNaker chips
with 18 ARM9 cores each. The board was connected directly
to the same workstation as was used for the GPU simulations
via 100Mbps Ethernet. The SpiNNaker board was provided
by Steve Furber’s group, University of Manchester, UK. We
used the sPyNNaker software base supplied by Manchester
(Rowley et al. 2015), release “Little_Rascal.”
Test dataset for validation To test the model, we used
the benchmark MNIST digit classification task (http://yann.
lecun.com/exdb/mnist/). This was chosen, firstly, as a stan-
dard non-trivial classification problem, which must handle
both a relatively high number of samples (tens of thousands)
and also high dimensionality (images are grayscale, 28 ×
28 pixels = 784 dimensions) as far as this model is con-
cerned (see earlier discussion around pixel independence).
Secondly, by choosing an image-based task, we are able to
meaningfully visualize and thus report the details of the incre-
mental learning taking place within the weight space of the
model’s synapses.

By default, MNIST digits are encoded as horizontal rows
of pixels, moving from top left to bottom right. These are
mapped as neurons 0 to (10 × 784) in the input layer, using
groups of 10 neurons per pixel as described above.

Initial investigations showed that a larger number of CN
groups necessitates more input data in order to train them
usefully. For the results shown here, we used Ntrain = 0.4K
training digits per class for K CN groups, motivated by an
initial parameter sweep. For mapping with 100 CN groups,
this implies a training set of 40 digits per class. For each
of 5 runs, test digits were presented stratified (0,1,2. . .). In
order to avoid over-fitting (Nowotny 2014), all initial inves-
tigations and parameter adjustments were performed using
cross-validation on a randomly chosen subset of the MNIST
training set and the final results reported here are based on a
subset of the entirely separate MNIST test set. In this case,
10,000 digits (training 1600 × 5, test 400 × 5) were drawn
randomly from the corresponding MNIST datasets.

4 Results

We tested our model by comparing its clustering perfor-
mance against conventional machine learning before seeking
to demonstrate its practical use as a neuromorphic data pro-
cessing module with our published generic neuromorphic
linear classifier (Schmuker and Schneider 2007; Schmuker
et al. 2014; Diamond et al. 2016a, b).

4.1 Clustering performance

Figure 3 shows the development of 100 clustering points
across the course of a training run consisting of two presenta-
tions of 1600 trainingdigits. Toobtain a visual “pseudo-digit”
representation that reflects graphically where the cluster is
positioned in feature space, we have used the average weight
from each input pixel to each CN group. If an input image
comprises × by Y pixels, where each input pixel is repre-
sented by a group of KI neurons, the blackness Zxy (value
0–255) of the point (x, y) in the pseudo-digit representation
for the corresponding CN group C is given by

Zxy =
(∑KI

i=1

∑KC
j=1 gxyi j

K I KC

)
Zmax

gmax
(11)

where gxyi j is the conductance of the synapse connecting
the i th of KI neurons representing input pixel (x, y) with
the j th of KC neurons representing CN group C . gmax is the
maximum conductance, and Zmax = 255 is the maximum
blackness of an MNIST pixel.

123

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


430 Biological Cybernetics (2019) 113:423–437

Fig. 3 Visualization of stages in
self-organized mapping out of
100 cluster points in MNIST
feature space over the course of
presentation of 1600 training
digits. The left column shows, at
4 stages, the average weight of
plastic synapses from each
rate-coded input pixel to each of
the 100 neuron subpopulations.
The right column shows the
learned cluster points (black
crosses) in a 2D PCA projection
of feature space overlaying the
set of data points presented up to
that stage (colored digits). As
inactive pixels in the input will
retain their high initial
weighting, we first masked out
(neglected) the least active 10%
of pixels across the training set
in order to meaningfully plot the
clusters’ points against the input
dataset
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The four 10 × 10 grids in the left-hand column illus-
trate a representative evolution of the synaptic weights of
the CNs across the course of training at four time points. A
representative video of the process is provided in the Sup-
plementary Information. It is evident how the initial, high
random weights are pared away for low or non-firing white
pixels in the input, where post-spikes are not directly pre-
ceded by pre-spikes. High firing (black) pixels in the input
lead to potentiated weights. It is evident that learning is not
restricted to a subset of CN groups but spreads around the
full set as responding CNs are net weakened compared to as
yet unused peers. It is also evident how prototypes represent-
ing variations of all 10 digits appear in the grid. However, it
also clear that the distribution is not completely uniform, and
it appears that sparser patterns with less overlap with other
digits (e.g., the digit “1”) are somewhat favored over more
populated patterns that are more likely to overlap with other
digits (e.g., “0”). This is likely a consequence of not imple-
menting any matching on white “off” pixels (see Sect. 5).

By transforming weights back into feature space, we can
view clustering performance in feature space using a PCA
projection and use a numerical metric to compare to other
clusteringmethods. The right column of Fig. 3 shows, at each
snapshot stage, the learned cluster points (black crosses) in
a 2D PCA projection of feature space overlaying the set of
data points presented up to that stage (colored digits). Note
that input pixels that are not used in any input pattern retain
their high initial weightings, potentially leading to amislead-
ing weight-based rendering in feature space. We, therefore,
masked out (neglected) the least active 10% of pixels across
the training set. The figure shows clearly how points leave
the initial closely grouped configuration andmove out across
feature space creating an unsupervised, self-organizing map
of it.

Figure 4a illustrates the final state of self-organization
following two passes of the training dataset, while Fig. 4b
shows the same image with masking in place, as used for the
PCA plot. Compared to the earlier snapshots, the final result
has qualitatively reached a distribution closer to the set of
100 cluster points in feature space generated by the neural
gas algorithm (Fig. 4c) and by k-means clustering (Fig. 4d)
against the same training set. Figure 4e plots all three sets
of cluster points against the combined full training set using
the 2 first components of a PCA. The figure qualitatively
shows how the self-organized model has distributed its own
cluster points across the whole of the feature space with rep-
resentation in the region of each digit. To establish a more
quantitative measure of clustering quality, we undertook two
further checks. Firstly, the raw clustering ability was com-
pared using a simplification of the model description length
(Grünwald 2000; Rissanen 1978) metric; namely, we ascer-
tained the average distance (in feature space) from each data
point to the nearest cluster point:

dcluster = 1

Ndata

Ndata∑

k=1

d(xk,p j(k)) (12)

j(k) = argmin
i

(d(xk,pi ) (13)

where d is again the Manhattan distance as in (10) and we
use the pseudo-MNIST digit representation with blanked out
10% least active pixels for the cluster centers pi of our net-
workmodel. Thismetric reduces in both cases, trivially,when
there are more cluster points but also later in training, when
they become increasingly better placed. Figure 4f shows how
the metric reduces over the course of self-organization in our
model as the 100 cluster points are mapped out. The final
value can then be compared with the same metric applied to
the results of neural gas and k-means clustering on the same
set of inputs. Figure 4g shows the metric for the three dif-
ferent clustering methods as the number of cluster points is
varied. Performance of the spiking model can be reasonably
summarized as comparable yet lower. It is, however, difficult
to establish to what degree this is a fair comparison given the
imprecision of the masking approach and the fact that, for
the model, it is neuronal spiking that ultimately determines
the response, not an implied pseudo-digit rendering based
on average weight values. We therefore moved to a second
quantitative test where we judge the clustering quality purely
in terms of its effectiveness in the context of a neuromorphic
classifier.

4.2 Testing clustering quality with the classifier
model

Wecombined the self-organized clustering stagewith our lin-
ear classifier (Schmuker et al. 2014; Diamond et al. 2016a)
(see Fig. 2d). Figure 5a shows representative spike raster
plots of the model during the presentation of 30 digits one
each from (i) early training, (ii) late training and (iii) test-
ing. The fourth (iv) raster plot shows a 250ms representative
detail from late training.

The lower region of the plots, colored brown and corre-
sponding to the IN layer, illustrates the rate-coded represen-
tation of the training digits. The plot confirms how sparsely
the MNIST pixels are employed at the top and bottom of the
digits (recall that MNIST digits are encoded as horizontal
rows of pixels, moving from top left to bottom right). More
interestingly, we clearly see the effect of the CN spike count
limit as a trigger to move to the next digit. In the early stage
of training [Fig. 5a(i)], where more novelty is present in the
digits, we see numerous occasions where the presentation is
extended in time (horizontal black streaks) until the spike
count builds up to the limit for an output spike. As a result, it
takes a longer period of time to traverse the 40 presented dig-
its. In late training [Fig. 5a(ii)], these extended presentations
are shorter and much less frequent, as the classifier recog-
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Fig. 4 Visualization of
completed VR mapping
following exposure to 1600
training digits. a The averaged
weight of plastic synapses from
each rate-coded input pixel to
each of 100 neuron
subpopulations after a second
exposure to the training set. b
As 4A but including the
masking out of the least active
10% of pixels across the 1600
training digits. This allows the
learned VR points to be plotted
meaningfully against the
dataset. c Visualization of the
equivalent 100 points in feature
space mapped out using the
standard “neural gas” algorithm
against the 1600 training digits.
d As c, but using the k-means
clustering algorithm to place
100 cluster points. e The 3 sets
of learned points (black crosses
= model, magenta Xs = neural
gas, blue Xs = k-means) in a 2D
PCA projection of feature space
overlaying the set of 1600
training data points (squares
color-coded by class). f
Quantitative comparison of
effective cluster point (VR)
placements across the course of
training. The plot shows the
average Manhattan distance (in
feature space) from observations
to the closest of the set of 100
VR points during the
self-organization process. The
final average distance (black +)
achieved is comparable to that
achieved by neural gas (magenta
X) and k-means (blue X) trained
for 100 clusters on the same
dataset. Error bars show the
standard deviation across 5 runs.
g As f but comparing the final
converged result for a range of
VR numbers (numbers of cluster
points) from 50 to 300
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Fig. 5 a Representative examples of spike raster plots comparing spik-
ing activity in the three model layers for 30 data presentations at three
stages; (i) early training, (ii) late training and (iii) testing. Training
and test datasets were drawn randomly from the corresponding MNIST
datasets but presented stratified in class order. A perfect “stepped” pat-
tern in the output layer thus represents correct classification. The fourth
raster plot (iv) shows a 250ms representative detail from late training
covering 3 input presentations. The red and blue superimposed arrows
highlight the CN cluster responses to the second and third digit presen-
tations included in the plot. b Comparing classifier performance for the
previousmodel (Diamond et al. 2016a) (offline neural gas = blue dashed
trace) and newmodel (online STDP self-organization = red trace) as the
specified number of cluster points (aka virtual receptors) is varied. Ten
thousand digits (training 1600 × 5, test 400 × 5) were drawn randomly

from the correspondingMNIST datasets. For each of 5 runs, digits were
presented stratified in class order. Performance is plotted as the average
percentage correctly classified according to maximum output spiking
activity across the 5 runs. Error bars indicate the standard deviation.
The CN spike limit imposed on training was set at 20 spikes maximum,
and CN cluster size was set at 30 neurons. c Test regime as in b, but
investigating the performance impact of the CN spike limit imposed on
training digit presentation in the newmodel. One hundred cluster points
were specified, and CN cluster size was set at 30 neurons. d Test regime
as in b, but investigating the performance impact of the CN cluster size
employed in the newmodel. One hundred cluster points were specified,
and the CN spike limit imposed during training was set at 20 spikes
maximum
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nizes and responds to most variations. For the most part, the
presentations are rapidly traversed, with only minor modifi-
cations as a result. The testing stage [Fig. 5a(iii)] shows the
use of a fixed time presentation with each digit for the same
amount of time. The detail plot [Fig. 5a(iv)] shows presenta-
tions of three different durations during late training.

The center region of the plots, colored light blue and
corresponding to the CN layer, shows the expected sparse
response, where lateral inhibition between clusters is block-
ing spiking from all but the most responsive cluster(s). The
detail plot [Fig. 5a(iv)] in particular provides some interesting
detail. Here we see that, for the second of the inputs (MNIST
training digits), the presentation was relatively short-lived.
We surmise that the response was elicited by an input similar
to one previously presented for which some learning (weight
plasticity) has already taken place and the CN spike limit
was therefore quickly reached. In this particular example,
we see that a CN response was obtained in two clusters (red
arrows), which compete to undertake further learning and
adjustment from the new input. These two clusters appar-
ently have both learned representations of the same digit,
which was confirmed by inspection of the weight learning
visualization. By contrast, we see that the third of the inputs
illustrated in Fig. 5a(iv) is sustained for much longer until
plasticity has acted in the single closest CN cluster and has
begun to evoke an increasing response (blue arrow), which
prevents activation of other clusters through lateral inhibi-
tion. The presentation ends when the CN response finally
reaches the spike limit. This input must have been relatively
novel to the network at that stage.

The upper region of the plots, colored light green and
corresponding to the AN output layer, should ideally respond
to the stratified class presentation with perfect “saw-tooth”
patterns as inputs of each class are presented in turn.We see in
the training stage (i–ii) that the supervised teaching signal is
reliably triggering firing in the correct output subpopulation.
However, in the testing stage (iii), when the teaching signal is
off, there are examples where classification is incorrect, and
the spiking switches to an alternative dominating cluster.

Figure 5b compares the classification results across a
range of clustering resolutions for the neuromorphic model
directly against those for the previous (offline neural gas-
based) model. It is evident that performance of the new
model consistently matches that of the previous model at
higher resolutions and exceeds it at the poorest resolutions,
for example, when organizing into just 10 cluster points,
one for each class. This performance comparison is inter-
esting given that the previous model has at least two distinct
advantages. Firstly, using proximity (by offline Manhattan
distance calculation) in feature space to generate the input
rate codes means that data about which inputs are low or off
are incorporated into the information used for classification.
For example, for MNIST digits, the presence of white in the

image center makes identification of a “zero” easier. The new
classifier does not currently have this information, and only
active inputs play a role in generating an output signal. We
will return to this point in Discussion. Secondly, the proxim-
ity function curve (in effect, mapping distance to a rate code)
is fully specifiable offline and can be precisely optimized for
best performance. This function is only implicit in the new
model, resulting from the spiking behavior triggered by the
lateral inhibition settings of the model.

Figure 5c and d illustrate how the performance varies with
two important parameters, theCNspike count limit set during
training (5c) and the size of CN groups. The results indi-
cate that performance drops as more spikes are allowed to
occur during a presentation. This suggests that for smaller
spike count limits overlearning is reduced and information
from a wider dataset can be assimilated before the clusters
become “burned in.” It is interesting that this advantage can
be retained by simply limiting the amount of spiking in com-
bination with a high learning rate and strong initial weights,
rather than using longer exposures with a very low learning
rate and weak initial weights. The results therefore suggest
that, with the right configuration, learning can be acceler-
ated, covering a wide dataset with short exposures while
maintaining performance. We note that the performance is
consistently higher when the spike limit is reduced, right
down to just 20 CN spikes allowed, before falling steeply.
This is likely where there are insufficient spikes across the
CN layer to allow the important lateral inhibition to function
effectively.

The results (Fig. 5d) also show that the group size of CNs
needs to be set to at least 30 neurons to retain effective WTA
inhibition between groups. We note that, beyond 50 neurons,
performance also appears to dip, perhaps due to excess net
inhibition between clusters.

5 Discussion and conclusion

The model performed reliably as a neurmorphic clustering
“algorithm” with low variance in clustering across multiple
trials and is configurable in important properties such as res-
olution and learning rate. These quantities are very relevant
for the versatility of the model, e.g., with respect to differ-
ent levels of hardware capacity, numbers of features (data
dimensionality) and sizes of available training datasets.

From the results with smaller subsets with less specified
clusters, it is clear that this design does not necessarily require
very extensive training data to function and there is the poten-
tial to set it up for fast learning, or to rapidly assimilate
smaller datasets, by specifying fewer clusters. Furthermore,
when compared to the “one large neuron cloud” approaches
(Nowotny et al. 2005; Nessler et al. 2013), the mechanism by
which it develops and adjusts clusters is relatively transparent
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and repeatablewhichmeans improvements can potentially be
designed and added.

When combined with the neuromorphic linear classifier
introduced earlier (Diamond et al. 2016a, b), the neuromor-
phic clustering presented here led to the same performance
as achieved earlier, when using a neural gas algorithm on a
classical computer for preprocessing. This suggests that the
classifier performance is not affected by the subtle differ-
ences in clustering observed between the two methods.

At first glance, subpopulation sizes of 10–40 neurons for
each functional unit in the model might appear excessive, in
particular when datasets are very high-dimensional and/or
have a large number of clusters and hence need a large
number of CN groups. It would appear that models may
quickly become overly large and difficult to implement and
run on neuromorphic systems. However, massive parallelism
of large models at low cost is at the core of modern neuro-
morphic computing (Merolla et al. 2014; Khan et al. 2008;
Schemmel et al. 2010), such that model size and neuron and
synapse numbers are only a secondary concern. The main
concern is to find functional models that perform well on
existing neuromorphic hardware, which has been achieved.

During training of the unsupervised clustering stage, we
presented each input until a specified number of spikes was
generated in the CN layer (see Sect. 4). Our results suggest
that prioritizing novel inputs, which lead to less spikes ini-
tially, in this way is productive for generating a usable cluster
map in a timelymanner. However, this approach requires that
spikes must be fed back constantly from the neuromorphic
device to the host, which then can count the spikes and con-
trol when the input to the network is updated. While there
is sufficient bandwidth in the tested devices to support the
necessary communication without noticeably slowing down
the model, this diverges from the neuromorphic ideal where
the model should take on the entire task, thus drawing low
power and having low dependency on connection bandwidth.
A possible means to stay on-device was suggested by Deis-
eroth et al. (2016), where input spiking is self-inhibited, by
what is, in effect, a negative feedback loop. Although this
was constructed to implement a spike timing code, this prin-
ciple could nevertheless be a solution that could be adapted
to automatically throttle back spiking after a pre-specified
number of spikes has occurred; even though the lack of feed-
back to the host would probably mean that the possibility to
move through the data at slower or faster pace depending on
the degree of novelty would likely be lost.

We presented the input to the network as Poisson pro-
cesses. Spiking in biological neurons is not Poissonian but
more regular (Nawrot et al. 2008; Mochizuki et al. 2016;
Riehle et al. 2018). Earlier work on the neuromorphic classi-
fier used for the final classification in this paper (Schmuker
et al. 2014) found that switching to more regular gamma
processes instead of Poisson input improved the classifica-

tion performance. Investigating the role of (ir)regularity of
input spike trains for the performance of the combined sys-
tem investigated here is an interesting direction for future
work.

In the model description, we noted that all plasticity
remains active throughout both training and testing. We
did not test scenarios where plasticity is modulated, e.g.,
removed sequentially as layers are trained, or removed
wholly during the test stage. Whether this approach is
“correct” or “best” may depend on the biological realism
required although the model was certainly functional in this
configuration with little to suggest that performance was
being degraded. One exception is that initial investigations
showed that markedly improved results are obtained if self-
organization in the input layer is allowed to reach a certain
level of completion before associated outputs are “burned
in.” To exploit this, CN-AN weights were reset following
the first epoch of training and supervised learning in the out-
put synapses then began afresh in parallel to the continuing
refinements in the first layer during the second epoch. Over-
all, we would like to suggest that our implementation reflects
a relatively natural situation where learning is always active,
in particular whenever novel information is presented.

The interest in neuromorphic hardware is driven by a
desire for faster and less energy-intensive computing. We
have in this paper demonstrated a neuromorphic algorithm
that is able to perform unsupervised clustering on a similar
level as a neural gas or k-means standard machine learning
algorithm but entirely executed as a spiking neural network
on neuromorphic hardware systems. The results of clustering
are comparable to the standard methods and can be com-
bined with a simple neuromorphic linear classifier presented
earlier (Diamond et al. 2016a, b) to perform a standard bench-
mark classification task. This demonstrates that algorithms of
general use can be implemented on neuromorphic hardware
systems. Readers interested in the speed gains and power sav-
ings that can be achieved on these platforms are referred to
recent work that focuses on this particular aspect (Diamond
et al. 2016a; Knight and Nowotny 2018).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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