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Abstract

Background: Mechanical ventilation is common in critically ill patients. This life-
saving treatment can cause complications and is also associated with long-term
sequelae. Patient-ventilator asynchronies are frequent but underdiagnosed, and they
have been associated with worse outcomes.

Main body: Asynchronies occur when ventilator assistance does not match the
patient’s demand. Ventilatory overassistance or underassistance translates to different
types of asynchronies with different effects on patients. Underassistance can result in
an excessive load on respiratory muscles, air hunger, or lung injury due to excessive
tidal volumes. Overassistance can result in lower patient inspiratory drive and can
lead to reverse triggering, which can also worsen lung injury. Identifying the type of
asynchrony and its causes is crucial for effective treatment.
Mechanical ventilation and asynchronies can affect hemodynamics. An increase in
intrathoracic pressure during ventilation modifies ventricular preload and afterload of
ventricles, thereby affecting cardiac output and hemodynamic status. Ineffective
efforts can decrease intrathoracic pressure, but double cycling can increase it. Thus,
asynchronies can lower the predictive accuracy of some hemodynamic parameters
of fluid responsiveness.
New research is also exploring the psychological effects of asynchronies. Anxiety and
depression are common in survivors of critical illness long after discharge. Patients
on mechanical ventilation feel anxiety, fear, agony, and insecurity, which can worsen
in the presence of asynchronies. Asynchronies have been associated with worse
overall prognosis, but the direct causal relation between poor patient-ventilator
interaction and worse outcomes has yet to be clearly demonstrated.
Critical care patients generate huge volumes of data that are vastly underexploited.
New monitoring systems can analyze waveforms together with other inputs, helping
us to detect, analyze, and even predict asynchronies. Big data approaches promise to
help us understand asynchronies better and improve their diagnosis and
management.
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Conclusions: Although our understanding of asynchronies has increased in recent
years, many questions remain to be answered. Evolving concepts in asynchronies,
lung crosstalk with other organs, and the difficulties of data management make more
efforts necessary in this field.

Keywords: Patient-ventilator interaction, Asynchronies, Mechanical ventilation, Outcome,
Heart lung interaction, Psychological disorders, Cognitive, ICU, Critically ill, Big data

Background
Invasive mechanical ventilation is the most common means of life support applied in critical

care medicine. Although mechanical ventilation often helps save lives, the mortality associated

with this technique is very high. In addition, survivors of mechanical ventilation may experi-

ence significant long-term morbidity resulting in substantially reduced functional status and

ability to complete activities of daily living [1–3]. Optimal patient-ventilator interaction is cru-

cial to assure comfort with mechanical ventilation and to avoid poor outcomes [4].

Patient-ventilator asynchronies (PVA) are the consequence of a mismatch between patients’

needs and the assistance delivered by the ventilator. PVA can be classified depending on the

phase of the respiratory cycle in which they occur. The most frequent PVA are ineffective ef-

forts, followed by double cycling. Its causes, consequences, and management vary depending

on the type (Figs. 1 and 2) [5, 6]. This review article aims to summarize what is known about

patient-ventilator interaction and asynchronies in mechanical ventilation, to show its effects

on outcomes, and to describe new directions in research about these questions.

Fig. 1 Representation and description of the most common asynchronies. Ineffective efforts, double cycling,
reverse triggering, and inspiratory airflow dyssynchrony are graphically represented and described together
with their causes. Red arrows indicate where the asynchrony described is present
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Main text
Evolving concepts on patient-ventilator interaction and asynchronies

Patient-ventilator interaction has been investigated for years [5, 7, 8]. Authors have ex-

amined various factors related to ventilator mode, ventilator settings, and patient char-

acteristics that can affect patient-ventilator interaction [4, 5, 9], and have identified

many types of asynchronies. Some factors associated with different types of asyn-

chronies have been analyzed, and different mechanisms to reduce their incidence have

been studied [10]. Nevertheless, detecting PVA remains a challenge, requiring the ap-

plication of advanced knowledge about respiratory physiology to interpret ventilator

waveforms by analyzing their shape during different periods of the breath cycle (inspir-

ation, transition from inspiration to expiration, and expiration) [5, 6, 8, 11, 12]. Until

recently, such analyses required the physical presence of an expert physician at the bed-

side and were thus only possible during brief, intermittent periods.

PVA occurs when there is a mismatch between the ventilator and the patient in terms

of demand or breath delivery timing. Recently, Pham et al. [6] proposed a classification

of PVA based on the appropriateness of the level of assistance provided by the

Fig. 2 Inspiratory airflow dyssynchrony. Sequence of airflow and airway pressure waveforms corresponding
to a same patient in the same day ventilated in assist volume control mode. Set airflow is insufficient for
the patient’s needs and originated different degrees of airflow dyssynchrony or starvation. a Mild airflow
dyssynchrony. b, c The progression of airflow dyssynchrony through a more severe stage. d The appearance of
double cycling secondary to a huge and large inspiratory effort
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ventilator. Assistance is deemed insufficient when the ventilator fails to meet the pa-

tient’s flow demand. Inspiratory airflow dyssynchrony due to insufficient ventilator air-

flow (also named flow starvation) results in the patient’s inspiratory effort continuing

beyond the ventilator’s inspiratory time. When the patient’s effort is strong enough, a

second breath can be triggered with no or minimal expiration (called double cycling or

breath stacking), resulting in a potentially dangerous increase in tidal volume. Inspira-

tory airflow dyssynchrony develops mainly when ventilators are set to deliver fixed flow

and/or lower tidal volumes in patients with high inspiratory flow demands that vary

from breath to breath [13, 14]. Potential consequences of low assistance are excessive

load on the respiratory muscles, air hunger promoting limbic, paralimbic, and cerebel-

lar activation in the brain [15], and ventilator-induced lung injury due to excessive tidal

volume. Moreover, strong inspiratory efforts can increase transvascular pressure gradi-

ents and tidal recruitment associated with pendelluft flow and regional lung overdisten-

sion [16, 17]. Vigorous spontaneous efforts impact non-dependent and dependent lung

regions differently, increasing inspiratory distension but also apparently worsening in-

jury in the dependent lung because diaphragm contraction is poorly transmitted to the

remainder of the pleural surface and is thus “confined” to the dependent lung [18]. It

can be difficult to detect asynchronies due to insufficient assistance.

By contrast, assistance is deemed excessive when the ventilator provides flow in

excess of the patient’s demand. Patients with low inspiratory drive due to sedation or

excessive ventilator assistance can develop ineffective efforts occurring during either in-

spiration or expiration, delayed or prolonged cycling, and reverse triggering [6]. The

concept of reverse triggering is evolving. Reverse triggering is a frequently

under-recognized form of PVA in which the patient’s respiratory center is activated in

response to a passive insufflation of the lungs. This PVA originates in respiratory

muscle contractions triggered by the ventilator [19]. The physiologic mechanism re-

sponsible for reverse triggering seems to be related with mechanoreceptors in the mus-

cles and/or chest wall or in complex spinal reflexes [6]. Passive insufflation of the lungs

activates the patient’s neurological respiratory center [20]. Recent research has found

that reverse triggering could occur not only in patients with acute respiratory distress

syndrome or diagnosed of brain death but in all patients receiving mechanical ventila-

tion. Since reverse triggering might be more frequent than expected and could be asso-

ciated with lung or diaphragm injury, the incidence and causes of reverse triggering

warrant urgent investigation [6, 21, 22]. Esophageal pressure monitoring can help to

identify this PVA in deeply sedated patients: a drop in esophageal pressure can be re-

lated to diaphragmatic contractions triggered by ventilator insufflations [19]. Reverse

triggering can result in stretching in the dependent lung. Proportional to negative intra-

thoracic pressure, stretching due to reverse triggering can be equivalent to that caused

by applying 15ml/kg tidal volume. Yoshida et al. [18] recently demonstrated how re-

verse triggering can worsen pre-existing lung injury through a pendelluft effect from

non-dependent lung areas toward dependent areas due to poor transmission of the dia-

phragm contraction across the pleural surface in an injured lung. Moreover, reverse

triggering can result in increased strain and stretch due to breath stacking during

double cycling caused by insufficient assistance [19, 23].

In a recent publication, we used the term double cycling to refer to both

reverse-triggered or patient-triggered mechanical breaths occurring at any point in
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mechanical ventilation [21]. Other authors [24] use double cycling only when the first

breath in a reverse-triggering event is a ventilator-programmed breath not triggered by

the patient. Only the breaths originated by a patient’s high inspiratory drive were con-

sidered as double triggering. Moreover, reverse triggering that does not cause double

cycling can be considered an ineffective effort during the different phases of inspiration.

Several authors have speculated that reverse triggering without double cycling can

cause lengthening contractions of the diaphragm and with double cycling

breath-stacking with increased tidal volume in assist pressure control mode, and both

tidal volume and airway pressure in assist volume control mode. Recent investigations

suggest that reverse triggering is common in critical patients. Interestingly, de Haro et

al. [21] found that one third of double-cycling breaths were reverse-triggered. Clinicians

must differentiate between double cycling due to insufficient assistance and double cyc-

ling due to reverse triggering because these phenomena call for different treatments.

Double cycling due to insufficient assistance is associated with rapid respiratory rates,

low ventilator airflow, and short ventilator inspiratory time [21, 25]; by contrast, double

cycling due to reverse triggering is associated with deep sedation in patients not trig-

gering the ventilator. However, the mechanisms involved in reverse triggering are

poorly understood, so the best treatment approach remains to be determined [6]. At

present, detecting these types of PVA requires trained observers analyzing waveforms

on ventilator screens at the bedside.

Heart-lung interaction in patients with asynchronies

The heart and lungs are anatomically and functionally linked. The interactions between

cardiovascular and respiratory physiology are very complex and include effects related

to changes in intrathoracic pressure and lung volumes [26, 27]. Moreover, the

hemodynamic effects of ventilation and asynchronies depend on the hemodynamics’

stability and the previous status of the cardiopulmonary system.

In mechanically ventilated patients, the inspiratory increase in intrathoracic pressure

reduces venous return by increasing right atrial pressure and reduces left ventricular

afterload by decreasing transmural left ventricular systolic pressure. Conversely, it can

also increase the afterload of the right ventricle considerably. Increased right ventricu-

lar afterload results from progressive increases in transpulmonary pressure (difference

between alveolar pressure and pleural pressure) associated with increasing lung volume;

this effect can be especially important in patients with acute respiratory distress syn-

drome. Moreover, left ventricular preload can be affected by changes in right ventricu-

lar preload and by ventricular interdependence [26–28]. Interestingly, heart-lung

interactions may be useful to assess fluid responsiveness in critical care [28, 29].

urthermore, changes in heart load conditions can in turn lead to lung injury. In a re-

cent experimental study, Katira et al. [30] showed that abrupt deflation after sustained

inflation can cause acute lung injury; in critical patients, deflation could occur when

positive end-expiratory pressure is removed or the patient is disconnected from the

ventilator. Apparently, lung injury results from acute left ventricular decompensation

(increased left ventricular preload and afterload), which raises the pressure in the pul-

monary microvasculature, injuring the endothelium and causing edema, which is in

turn potentiated by the surge in pulmonary perfusion. Whether this phenomenon
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observed in experimental animals could occur in patients under mechanical ventilation

warrants further investigation.

Unfortunately, the hemodynamic effects caused by different PVA have not been ex-

tensively studied. In theory, ineffective efforts decrease intrathoracic pressure and could

consequently increase venous return and right ventricular filling. However, there are no

physiological data to confirm this hypothesis. On the other hand, our group recently

showed that the tidal volume accumulated during double cycling is very high, some-

times even doubling that of normal breaths in volume-targeted modes [21]. In addition,

the peak pressure of the second breath is generally greater than that of the first. Both

increased volume and pressure could significantly affect preload and afterload, but the

hemodynamic consequences of these effects have not been evaluated.

Although dynamic parameters based on heart-lung interactions such as pulse pres-

sure variation (PPV) and stroke volume variation (SVV) accurately predict fluid respon-

siveness in patients passively adapted to the ventilator, these parameters are not good

predictors of fluid responsiveness in patients with spontaneous respiratory activity

probably due to multiple causes such as increased preload induced by negative intra-

thoracic pressure during patient inspiration and the variability of the breathing pattern

[31]. In the presence of asynchronies, this effect could be magnified.

In a recent study examining whether PVA affected PPV’s ability to predict fluid re-

sponsiveness in patients receiving pressure support ventilation, Messina et al. [32] com-

pared 27 patients without PVA versus 27 with PVA as determined by visual inspection

of ventilator waveforms. The area under the receiver operating characteristic curve was

0.86 (CI 0.68–0.96) in patients without PVA but only 0.53 (CI 0.33–0.73) in those with

PVA (p = 0.018); PPV ≥ 13% predicted fluid responsiveness with 78% sensitivity and

89% specificity in patients without PVA but only 36% sensitivity and 46% specificity in

those with asynchronies. PVA significantly affected PPV prediction of fluid responsive-

ness (OR 8.8 [2.0–38.0]; p = 0.003). They hypothesize that PVA affect the cyclical

changes in intrathoracic pressure, resulting in unpredictable and persistent variations

of right ventricular preload and left ventricular stroke volume, thereby altering the reli-

ability of PPV in assessing fluid responsiveness. Nevertheless, more physiological and

clinical data are needed to determine the implications of these findings in clinical

practice.

Can asynchronies impact major outcomes?

PVA are frequent but underdiagnosed, and they have been associated with worse prog-

nosis: discomfort; sleep disorders [33], which increase the need for sedatives [34]; pro-

longation of mechanical ventilation [7, 35]; increased intensive care unit (ICU) and

hospital stays [33]; and increased mortality [4]. Thus, it seems crucial to take action to

reduce their incidence [5]. Nevertheless, a direct causal relation between poor

patient-ventilator interaction and worse outcomes has yet to be clearly demonstrated,

and there is no direct evidence to demonstrate that reducing PVA guarantees better

outcomes.

To clarify whether PVA are a direct causative factor of worse outcomes, it is neces-

sary to identify and quantify the occurrence of PVA throughout the entire period of

mechanical ventilation. To this end, monitoring systems have recently been developed
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to enable such analyses, and these systems are helping elucidate the potential harmful

physiological effects of different types of PVA [36, 37].

Monitoring systems have made possible to analyze the magnitude of PVA and how

they are distributed over time, which are crucial factors in the evaluation of the impact

of PVA on clinical outcomes. In a secondary analysis, Blanch et al. [4] found that al-

though patients with an asynchrony index > 10% had similar rates of reintubation and

tracheostomy compared to those with lower rates, an asynchrony index > 10% was as-

sociated with higher ICU and hospital mortality and with a trend toward longer dur-

ation of mechanical ventilation. Beyond the frequency of PVA, Vaporidi et al. [38]

focused on the presence of clusters of ineffective efforts as well as their power and dur-

ation, finding that all these aspects were associated with prolonged mechanical ventila-

tion and higher hospital mortality and highlighting the need to examine different

dimensions of patient-ventilator interaction. Finally, Rue et al. [39] used Bayesian joint

modeling of bivariate and competing risks data to investigate the added value of adding

information about the rate of PVA to Sequential Organ Failure Assessment (SOFA)

scores to predict outcomes. They found an association between the asynchrony index

and live discharge, but including this information did not improve the accuracy of the

prognosis of the SOFA score alone. They concluded that a more detailed analysis of

PVA, together with other multidimensional data, would be necessary to confirm a

causal role on ventilated patients’ outcomes and comorbidities. It also remains to be

demonstrated whether strategies to optimize patient-ventilator interactions improve

outcomes.

De Haro et al. [21] analyzed the incidence, mechanisms, and physiologic implica-

tions of double cycling in 67 adults continuously monitored while undergoing vari-

ous modes of volume- and/or pressure-targeted mechanical ventilation for more

than 24 h. They found that, as previously observed by others, the volume of

stacked breaths resulting from inspiratory airflow dyssynchrony can double the set

tidal volume in volume-controlled ventilation [21]. This higher-than-expected tidal

volume exceeds the optimal value set for protective ventilation and could harm

lung tissue and respiratory muscles [21, 25], thus contributing to

ventilation-associated lung injury [21, 24, 25, 40, 41].

Regarding neuropsychological outcomes, new research is exploring how mechan-

ical ventilation is linked to psychological disorders observed in critically ill patients

[42, 43]. Anxiety is one of the most common psychological symptoms reported by

critically ill patients [44], affecting between 30 and 80% of all patients [45]. Pa-

tients on mechanical ventilation report worries about breathlessness, choking, or

being left alone [46], and up to 47% of ICU survivors report having felt anxiety

and/or fear during mechanical ventilation [47]. It seems that, even after tracheot-

omy, levels of anxiety do not decrease [44]. However, the direct link between anx-

iety and asynchronies in mechanically ventilated patients has not been explored

yet. Nevertheless, respiratory difficulties, including synchronizing with the respir-

ator, cough, and dyspnea [45, 46], are considered potent drivers of anxiety, agony,

and insecurity. Anxiety has been independently associated with dyspnea in critically

ill patients undergoing mechanical ventilation, and when ventilator settings are ad-

justed, dyspnea is reduced in at least a third of patients [48]. Therefore, asyn-

chronies and anxiety in ICU patients could be, somehow, potentially related.
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Anxiety is a state of psychological distress and physiological discomfort that, if

prolonged, delays healing and predisposes to difficulties in weaning from mechan-

ical ventilation [44]. Jubran et al. [49] also found that mechanically ventilated pa-

tients with depressive symptoms were three times more likely to experience

weaning failure and death. Furthermore, high levels of anxiety often prompt profes-

sionals to apply higher sedation doses or restraints, leading to immobility, de-

creased level of consciousness, and loss of protective reflexes [46].

Despite the importance of the early detection of adverse psychological outcomes dur-

ing ICU stay, neither anxiety nor depressive symptoms are routinely assessed in mech-

anically ventilated critically ill patients. In fact, most of the little information available

about psychological disorders derives from the studies in ICU survivors [46]. After ICU

discharge, 23 to 50% of survivors have generalized, nonspecific anxiety [2, 50, 51], and

although it improves over time, anxiety levels in ICU survivors are higher than those

observed in medical inpatients (5 to 20%) [2]. Nevertheless, 15 to 43% of survivors con-

tinue to have symptoms of anxiety 6 months [51] and 1 year [52] after discharge, and

60% also have other mental health problems such as post-traumatic stress disorder

(PTSD) [53–55] and depression [50, 56]. These long-term mental health problems in

ICU survivors are often associated with worse quality of life [2, 3].

Big data techniques applied to large observational databases to improve the

management of ventilated patients

In medical research, pragmatic research attempts to approach problems from a broad

and, in a sense, a realistic perspective. For example, observational studies of medical in-

terventions may more closely reflect daily clinical practice [57]. However, the main

drawback of observational studies is the potential bias and confounding factors, being

difficult to establish an independent association between methods/strategies/treatments

and outcome variables. The access to large databases of heterogeneous populations

with high levels of complexity is key for observational studies to the extent researchers

are aware of confounding and able to measure them.

Mechanically ventilated critically ill patients continuously generate huge volumes of

data of varying complexity and temporal resolution [36, 58]. Some data (e.g., physio-

logic waveforms) are generated at very high temporal resolutions, while others are gen-

erated at much lower temporal resolutions. Whereas data about laboratory test results

might be generated on a daily basis, two medical devices (e.g., multiparameter monitor

and ventilator) connected to a mechanically ventilated patient record about 10 different

waveforms (electrocardiographic, plethysmographic, capnographic, respiratory, arterial

blood pressure, airway pressure, gas flow, volume) at 200 points per second or more,

thus producing a total of 172.8 million data points each day or 1.04 billion over the

average duration of mechanical ventilation. Traditionally, most of these data are under-

exploited, becoming unavailable immediately or within 24 to 48 h [58, 59]. Thus, the

potential to discover new patterns and extract valuable information to support diagno-

sis or to predict the time course of a patient’s condition is lost.

During mechanical ventilation, patient-ventilator interaction alternates between pe-

riods of complete synchrony and periods with clusters of frequent asynchronies [38].

Yet, physicians optimize mechanical ventilation by assessing waveforms on bedside
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monitors based on their understanding of the physiological principles involved and evi-

dence from previous studies; however, today’s guidelines for ICUs derive from a scant

evidence base, considering the potential evidence base given the massive data generated

in the ICU [59]. It should come as no surprise that most physicians perform poorly at

managing patient-ventilator interactions and do not recognize common forms of

patient-ventilator asynchronies [11], but an equally important problem is that even the

most highly skilled professionals can observe only a small proportion of these wave-

forms, thus increasing the probability of misinterpretation due to sampling errors.

For this reason, there is an urgent need for technological and analytic tools to deal

with these pragmatic observational data. Big data promises to help refine our approach

to PVA, improving our understanding of the various phenomena, their detection, and

their treatment. At present, the continuous and automatic detection of asynchronies is

an emerging technological area. Table 1 shows a comparison of some automated

methods for patient-ventilator asynchrony detection [60]. However, it can be challen-

ging to implement big data solutions in ICUs. These solutions involve new ethical is-

sues; require investments in technical deployment to resolve problems related to

interoperability, network connections, digital storage, etc.; depend on active

Table 1 Comparison of some automated methods for patient-ventilator asynchrony detection

Type of PVA Algorithm Performance

Gholami
et al. (2018)
[69]

Cycling asynchrony (premature
and delayed cycling)

ML: Random forest and k-fold cross
validation
Pressure and airflow signals
N = 11 patients (1377 breaths)

Se 89–97%, Sp 93–
99%, Kappa index 0.9

ventMAP
platform
Adams
et al.
(2017) [70]

Double-trigger and breath
stacking

Rule-based algorithm
Pressure and airflow signals
Derivation cohort, N = 16 patients
(5075 breaths); validation cohort,
N = 17 patients (4644 breaths)

Se 94–96.7%, Sp 92–
98%, Acc 92.2–97.7%
(on the validation
cohort)

NeuroSync
index
Sinderby et
al. (2013)
[71]

Patient-ventilator interaction
classification (asynchronous,
dyssynchronous or synchronous)

Rule-based timings algorithm
EAdi and pressure signals
N = 24 patients

ICC 0.95 vs. Colombo
et al. (2011) [5]

Better
Care®
system
Blanch et
al. (2012)
[37]

Ineffective efforts during
expiration

Rule-based combining digital signal
processing techniques and ROC
curves
Airflow signal
Cohort 1: N = 8 patients (1024
breaths)
Cohort 2: N = 8 patients (9600
breaths) with EAdi signal as
reference

Se 91.5%, Sp 91.7%,
PPV 80.3%, NPV 96.7%,
Kappa index 0.797
(vs. the expert’s
classification)
Se 65.2%, Sp 99.3%,
PPV 90.8%, NPV 96.5%,
Kappa index 0.739
(vs. EAdi signal)

Gutierrez et
al. (2011)
[72]

Index for asynchronous/no
asynchronous breaths

Time-frequency analysis
Airflow signals
N = 110 patients

Se 83%, Sp 83% when
index < 43% for AI >
10%

Mulqueeny
et al. (2007)
[73]

Ineffective triggering and double
triggering

Rule-based and digital signal
processing methods
Airflow and pressure signals
N = 20 patients (3343 breaths)

Se 91%, Sp 97%

PVI monitor
Younes et
al. (2007)
[74]

Ineffective efforts Rule-based
Equation of motion from pressure,
airflow, and Peso signals
N = 21 patients

Se 79.7%

Abbreviations: ML machine learning, Se sensitivity, Sp specificity, ICC intraclass correlation coefficient, Acc overall
accuracy, Peso esophageal pressure, PPV positive predictive value, NPV negative predictive value, ROC receiver operating
characteristics, AI asynchrony index according to the definition from Thille et al. [7]
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collaboration among experts from a wide range of areas (physicians, biologists, statisti-

cians, and engineers); and must meet quality standards [61]. Big data solutions to sup-

port daily clinical decision making and improve patient care are based on storing and

exploring extremely large observational datasets [58, 61–63].

Fortunately, some steps are being taken in this direction. The Multiparameter and In-

telligent Monitoring in Intensive Care (MIMIC) database contains thousands of ICU

records reflecting daily clinical routines from a wide variety of sources, making it ex-

tremely useful for assessing clinical decision, monitoring algorithms, and testing new

research hypothesis [64]. Another interesting initiative is the AEGLE project [65, 66],

aimed at identifying ineffective efforts with big data analytics. AEGLE also addresses

lung overstretching during assisted ventilation, identifying injurious high levels of pres-

sure, and predicting the risk of this phenomenon developing within the next few mi-

nutes. A recent proof-of-concept study showed that it is feasible to use Hidden Markov

Models to predict PVA in critically ill patients and to infer the probability that the

number of asynchrony events will be above a given threshold [67]. All these approaches

have potential health and economic benefits. Given the growing interest in devising

better evidence-based care in the ICU, physicians should become familiar with the op-

portunities and challenges of big data [68] (Fig. 3).

Fig. 3 Future medical trends in real-time clinical decision making for mechanically ventilated critically
patients in ICU. With adequate interoperability and data storage, clinical decision support systems based on
big data analytics can automatically recognize patterns in data; moreover, these systems have the ability to
improve continuously by “learning” from past and new inputs. Using the cloud for big data analytics makes
it easier to make predictions and better understand trends
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Conclusion
The results of observational studies evidence that poor patient-ventilator interaction

might cause lung and vascular injury and thereby increase mortality. The effects of

asynchronies on clinical outcomes remain to be clarified, but the type and presentation

of asynchronies over time seems important. Together with damage resulting from the

patient’s original disease, the short- and long-term consequences of poor

patient-ventilator interaction can have devastating effects that hinder discharged pa-

tients’ complete return to normal activities. Therefore, critical care professionals must

strive to improve patient-ventilator interaction. Observational studies could have some

limitations on establishing association between patient-ventilator asynchronies and out-

comes, and future multicenter studies with bigger population are needed. Finally, soft-

ware solutions that can identify and analyze asynchronies online and offline may lead

to better care and improve outcomes.
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