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Abstract Vascular smooth muscle cells (vSMCs) play a crucial role in both the pathogenesis of Aneurysms and Dissections of
the ascending thoracic aorta (TAAD) in humans and in the associated adaptive compensatory responses, since
thrombosis and inflammatory processes are absent in the majority of cases. Aneurysms and dissections share
numerous characteristics, including aetiologies and histopathological alterations: vSMC disappearance, medial areas
of mucoid degeneration, and extracellular matrix (ECM) breakdown. Three aetiologies predominate in TAAD in
humans: (i) genetic causes in heritable familial forms, (ii) an association with bicuspid aortic valves, and (iii) a spora-
dic degenerative form linked to the aortic aging process. Genetic forms include mutations in vSMC genes encoding
for molecules of the ECM or the TGF-b pathways, or participating in vSMC tone. On the other hand, aneurysms
and dissections, whatever their aetiologies, are characterized by an increase in wall permeability leading to transmu-
ral advection of plasma proteins which could interact with vSMCs and ECM components. In this context, blood-
borne plasminogen appears to play an important role, because its outward convection through the wall is increased
in TAAD, and it could be converted to active plasmin at the vSMC membrane. Active plasmin can induce vSMC dis-
appearance, proteolysis of adhesive proteins, activation of MMPs and release of TGF-b from its ECM storage sites.
Conversely, vSMCs could respond to aneurysmal biomechanical and proteolytic injury by an epigenetic phenotypic
switch, including constitutional overexpression and nuclear translocation of Smad2 and an increase in antiprotease
and ECM protein synthesis. In contrast, such an epigenetic phenomenon is not observed in dissections. In this con-
text, dysfunction of proteins involved in vSMC tone are interesting to study, particularly in interaction with plasma
protein transport through the wall and TGF-b activation, to establish the relationship between these dysfunctions
and ECM proteolysis.
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This article is part of the Spotlight Issue on Novel concepts for the role of smooth muscle cells in vascular disease.

1. Definition of aneurysms

Aneurysms are morphologically defined as localized dilations of the arte-
rial wall with a focal loss of wall parallelism and functionally defined as a
progressive loss of the arterial wall’s ability to withstand the wall tension
generated by high intraluminal pressure, leading to intramural (dissec-
tion, AAD) or complete acute rupture. Aortic aneurysms, whatever
their localization, ascending aorta TAA or abdominal aorta (AAA) share
common pathophysiological features but differ by aetiologies and specific
haemodynamics.1 Since withstanding wall tension is mainly the function

of the insoluble fibrillary extracellular matrix (ECM) synthesized and
matured by vascular smooth muscle cells (vSMCs) in the wall, ECM deg-
radation by proteolytic enzymes is a common mechanism in aneurysmal
pathogenesis. In this micro-environment, intrinsic frailty of the ECM, loss
of vSMCs, and increased permeability to plasma zymogens, directly or
indirectly potentiate the proteolytic injury. In parallel, vSMCs also
respond to these injuries using their functional and epigenetic plasticity
(nuclear reprogramming, phenotypic shift).2 AAAs are mainly of athero-
thrombotic origin,3 whereas the ascending aorta is resistant to atheroma
and devoid of intraluminal thrombus formation, most likely due to the
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high shear and its washing effect by systolic ejection (Figure 1).
Therefore, with the exception of specific rare auto-immune aetiologies
such as Takayasu’s or Horton’s diseases, TAADs are characterized by
the absence of myeloid cell diapedesis within the aortic tissue. Thereby
TAA & D offer a unique opportunity to study the predominant roles of
vSMCs in aneurysmal pathologies (i) as initiators of aneurysm formation
by expression of specific genetic molecular defects; (ii) by their ability to
promote blood-borne proteolytic injuries in the absence of inflamma-
tion; and (iii) to limit the risk of acute rupture, by an adaptive response of
the canonical TGF-b/Smad2 pathway in vSMCs, which may help to pre-
vent dissections through synthesizing more fibrillar ECM, along with
locally secreting antiproteases,4 and clearance of protease/antiprotease
complexes5 (Figure 2). The wall histopathology, involving ECM break-
down, vSMC loss co-localized with areas of mucoid degeneration, is
common to TAA and dissection (AAD) whatever their aetiologies.
Areas of specific mucoid degeneration are characterized by accumula-
tion of highly hydrophilic glycosaminoglycans (GAGs). Mucoid degenera-
tion is also observed during the aging process in human aorta.6

However, the description of the involvement of vSMCs in TAA needs to
assimilate first the evolutive role of SMCs in phylogenesis, and therefore
the physiology, of the arterial part of the circulation.

2. Role of vSMCs in structure/
function of the arterial system in
mammals

Phylogenetically, the circulatory system evolved from a low-pressure
closed circulating system animated by an archaic heart in fish, to a more
recent, highly pressurized (potential energy) arterial system with organ-
regulated directional blood flow (vasomotricity) propelled through the
conductance arterial tree by the pumping action of the left ventricle. The
teleonomy of arterial vSMC evolution is to structure the wall of conduc-
tance arteries and to assist the metabolic autonomisation of organ func-
tion through resistance arteries. As a main determinant, vSMC tone
defines peripheral resistances to blood flow, generating arterial blood
pressure.

In parallel, wall topophysiology and structure also evolved in conduc-
tance arteries in order to respond to the acquired pressure load, from a
thin cellular structure to a thick matrix-rich, layered structure. In the
aorta, vSMCs assume the functional roles of both producing aortic tone
in response to sympathetic stimuli, and synthesizing and modelling the
ECM. Biomechanically, the tensile stress supported by the wall is propor-
tional to pressure and radius and inversely proportional to wall thickness
(Laplace’s low, T = P.r/2 h). Since progressive physiological dilation of the
aorta is observed with age in animals7 and humans,8 tensional stress
increases with aging, independently of pressure. To respond to tensile
stress, the aortic wall is structured in three spatially organized layers,
from inside to outside: the intima, the media and the adventitia. The
medial layer displays spatial and functional connectivity between vSMCs
and ECM, assuming the function of supporting the phasic haemodynamic
load (the content) within the arterial system (the container).9 vSMC dif-
ferentiation and survival is dependent on cell adhesion to matrix,10 creat-
ing tensegrity11 within the cell, via ECM, intracellular cyto- and
nucleoskeletal interactions,12 largely dependent on local haemodynamic
parameters, the cardiac cycle and the impedance to phasic flow. In the
ECM, the insoluble macro-fibrils, collagens, mainly provide the resistance
to rupture whereas elastin provides the resistance to dilation.13

Outward adventitial intersititial pressure is low: 10 mmHg. Therefore,
an important transmural pressure gradient (100 mmHg) exists between
the intraluminal arterial blood pressure (130/80 mmHg) generated by
the peripheral resistance, and adventitial interstitial pressure, creating a
unidirectional outward hydraulic conductance across the arterial wall.
This hydraulic conductance is responsible for advective/convective radial
mass transport of soluble plasma molecules and macromolecules
through the arterial wall. This biomechanical phenomenon is termed
«outward convection». Outward convection is dependent, on the one
hand, on haemodynamic factors, including pressure and shear14,15 and,
on the other hand, on the porosity of the arterial wall, partly determined
by the integrity of the elastic network16 and by vSMC tone17,18 which
limit advection across the wall. In this paradigm, pressurized water and
blood-borne components percolate through the wall components, cre-
ating potential interactions with vSMCs and/or the ECM and leading to
retention, proteolysis, clearance and metabolism of plasma proteins or
blood particles, or to their exfiltration towards the adventitia for
recycling.9,19 For example, free water molecules will be retained more in
hydrophilic areas of the aortic wall than in hydrophobic ones (elastin),
and could contribute to the swelling of the GAG-rich mucoid degenera-
tive areas, potentially inducing intramural delamination.20

3. Nosology and aetiologies of
TAADs

TAAs are non-atheromatous aneurysmal diseases related to three main
aetiologies: monogenic diseases, associated with bicuspid aortic valves
(BAV) and sporadic (also termed degenerative), associated with aging.21

These different aetiologies are characterized by the age of clinical
expression: younger in genetic forms, middle age in association with
BAV, older in sporadic forms. Up to 30% of cases of TAAs are associated
with underlying mutations in single genes. These mutations are predomi-
nantly inherited in an autosomal dominant manner and may (syndromic
forms) or may not be associated with other systemic manifestations.

When compared with TAAs, characterized by a progressive dilation of
the aorta, dissections are acute events, defined by intramural rupture,
with or without a subjacent aneurysm, usually of small dilation. The initial
intimal tear, causing blood leaks within the external part of the media, can
take place in the ascending aorta (Type I or A dissections) or just below
the ostia of the left subclabvicular artery developing in the descending
thoracic aorta (Type III or B dissections). Type II is the extension of Type I
to the thoracic descending aorta, with possible re-entry in the abdominal
aorta. Types II and III dissections could generate circulating, partially circu-
lating or thrombosed false channels which may impact the evolution of
the disease.22,23 When compared with dilated aortic tissue, the dissected
tissue is also characterized by areas of GAG-rich mucoid degeneration,
which pave the way for initial tears and haemorrhagic suffusion and diffu-
sion towards the external part of wall, the site of developing vasa vaso-
rum. In this context the specific role of GAG accumulation, particularly in
the tissue environment of vasa vasorum, has been recently highlighted in
AAD.24 Tobacco, hypertension and intensive tonic physical effort
(weightlifting) are risk factors for acute dissections.

4. Experimental models

Experimental animal models of aortic aneurysms and dissections have
been recently reviewed.25 Experimental models of progressive TAA are
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rare in rats and mice and limited to some pharmacological models and to
mice genetically engineered to harbour gene mutations observed in
humans with thoracic aortic disease, such as Marfan mouse models26

(Table 1). The Blotchy syndrome in mice remains one of the very few
available models of naturally occurring, genetically determined

aneurysms.27 The blotchy syndrome is due to a mutation in a copper
transporter leading to copper insufficiency. Copper is the transition
metal necessary for Lysyl-oxydase (LOX) enzymatic activity. As a trans-
lational example in humans, genetic copper deficiency is observed only
in the rare condition, Menkes disease. Dissections have been modelled

Figure 1 Common features and specificities of TAA vs. AAA.

Figure 2 vSMC involvement in TAA pathogenesis and subsequent responses.
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in animals for many years.28 Spontaneous dissecting aneurysms of the
aorta were initially described in turkeys with stress-dependent acute
hypertension.29 The frequency of these acute dissections were increased
when the turkeys were fed b-aminopropionitrile (BAPN).30 BAPN is a
toxic chemical isolated from a variety of sweet pea and responsible for
clinical angiolathyrism. BAPN is a powerful inhibitor of LOX, impairing
the maturation of elastin and collagen and thus sensitizing the ECM to
proteolysis. Administration of BAPN in rats and mice also increases the
risk of dissecting aneurysm.31 The effect of BAPN is dependent on the
dose but also on the age of administration, with younger animals (imme-
diate post-weaning) more likely to have dissections.

More recently, Daugherty and colleagues32 described that angiotensin
II (AngII) infusion induces dissecting aneurysms in Apoe�/�mice.33–35 This
model, easy to do, is not limited to models of atherosclerosis in mice.
When angiotensin II is administered to mice sensitized by genetic muta-
tions on ECM genes,36 BAPN exposure,37 or TGF-b antibody adminis-
tration,38 a rate of dissection of 100% can be observed. Similar results
were obtained in rats (JBM personal data). In these pharmacological
models, the level of circulating plasma AngII is high and the mice are
moderately hypertensive, suggesting that AngII acts more by causing
mechanical intimal damage, rather than targeting the medial vSMCs.
Physiologically, the renin/angiotensin system is compartmented and the
plasma AngII level is very low, since renin acts more at a tissue level than
in plasma. Thereby, it would be interesting to compare the AngII model
with a similar model of renin infusion. Nevertheless these models, associ-
ating an ECM defect or vSMC relaxation39 with endovascular injury by
AngII are particularly interesting for testing new therapeutic approaches
in dissections. The current tendancy is to associate two models, a genetic
defect with angiotensin II infusion in mice, or two pharmacological
approaches (BAPNþ AngII) in rats.

5. Pathogenic roles of vSMCs in
TAA & D

5.1 vSMC genes predisposing to TAAs
weaken ECM, disrupt vSMC tone or limit
canonical TGF-b signalling
The list of genes associated with syndromic and non-syndromic ascend-
ing aortic aneurysms and dissections was recently updated.40 It has been
known for many decades that one gene in the human genome can be
mutated and lead to a strong familial predisposition for TAAD. Marfan
syndrome (MFS) is a condition inherited in an autosomal dominant man-
ner with skeletal (long limbs and fingers, scoliosis, pectus deformities),
connective tissue (joint laxity, striae, flat feet) and ocular (ectopia lentis)
complications. Affected individuals can have cardiac features (mitral
insufficiency and prolapse) but the major cardiovascular complication is
progressive enlargement of thoracic aortic root aneurysms and acute
ascending aortic dissections, related or not to dilation. MFS is mainly due
to mutations in FBN1, which encodes an ECM protein called fibrillin-1
that localizes in microfibrils. Microfibrils play an important role in the
aorta; they link the elastic fibres to focal adhesions on the cell surface of
vSMCs. Mutations in FBN1 lead to either less fibrillin synthesis (mutations
leading to haploinsufficiency) or quantitatively decreased fibrillin-1 being
incorporated into microfibrils (missense mutations).4 Other ECM genes
predisposing to TAAs include other proteins in microfibrils (MFAP5)41

and loss-of-function mutations in LOX,42 which is an enzyme involved in
cross-linking and maturation of the ECM. In parallel, the nosology and

management of vascular Ehler-Danlos syndrome, in relation to a Col3A1
mutation,43 and the structure–dysfunction relationship created by the
mutation44 have recently progressed (Table 2).

Another group of altered genes that predispose to TAAs and aortic
dissections are genes encoding either the major structural components
of the contractile unit in vSMCs or the enzymes that control vSMC con-
tractile tone. Smooth muscle a-actin (SM a-actin), a major protein in
vSMCs, is synthesized as a monomer that polymerizes to form the thin
filament in the contractile unit. Heterozygous mutations, which are over-
whelmingly missense mutations predicted to lead to production of a
mutant monomer, predispose to TAAs and dissections.45 The mutant
monomers alter the function of the thin filament, including decreasing
the tensegrity pathways, the stability of the contractile filaments and
decreasing the movement of the filament by the myosin motor, and thus
are predicted to decrease force generation by the vSMCs. The thick fila-
ments are composed of a smooth muscle-specific isoform of myosin
heavy chain dimer (SM MHC; encoded by MYH11), and four light chains
(LCs), two regulatory LCs and two essential LCs. Heterozygous MYH11
mutations also lead to an inherited predisposition for TAAs and aortic
dissections.46 These exonic mutations, localized in the rod domain of
MYH11, perturb the quaternary structure of the thick filament.
Phosphorylation of the LC on the myosin thick filament is necessary to
activate the force generating cycle of SM myosin motor heads with the
actin filaments. Heterozygous loss-of-function mutations in the gene
(MYLK) encoding the dedicated kinase phosphorylating the LC, myosin
LC kinase, are a cause of heritable thoracic aortic disease.47 A single het-
erozygous gain-of-function PRKG1 mutation, p.Arg177Gln (designated
R177Q), also causes a familial form of heritable thoracic aortic disease.48

PRKG1 encodes a Type I cGMP-dependent protein kinase (PKG-1),
which is activated upon binding of cGMP and controls vSMC relaxation,
in part through activation of the phosphatase that de-phosphorylates the
LC. In summary, mutations in ACTA2, MYH11, MYLK, and PRKG1 are all
predicted to disrupt force generation, especially in vSMCs, promoting
TAAs and acute aortic dissections. In contrast, loss of function mutations
in the NO signalling molecular pathway in vSMCs is associated with a
familial form of coronary artery disease49 and Moyamoya neurovascular
disease.50

This role of vSMC tone has been also recently highlighted by two
experimental studies in mice. In the first one, Doyle and colleagues

Table 1 Experimental models of TAADs

Spontaneous TAADs in animals

Turkey (aortic dissection)29

Blotchy mice (mutation in ATPase copper transporter)104

Genetic models K.O. and K.I.

Fibrillin-1 (Marfan)105

Coll3A1 (Ehlers-Danlos)36

FOXE3-/- (transcription factor)

LOX106

ADAMTS151

Biglycan K.O.107

Filamin A108

Pharmacological models

Angiotensin II infusion in sensitized mice (dissections)36

b-aminopropionitryl (BAPN, LOX inhibitor)109
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explored the effects of calcium channel blockers in a genetic model of
Marfan mice.39 In this model, amlodipine and verapamil exacerbated the
progression of the aortic dilation (monitored by echography) and
decreased the survival rate, due to an increased frequency of acute rup-
tures (dissections) during the 3 months of calcium blocker administra-
tion. These clinical data were confirmed by the histology of the aortic
wall, showing a more important fragmentation of the elastic fibres under
calcium blocker treatment. They retrospectively confirmed these data in
Marfan patients receiving calcium blockers (more surgery and more
rapid progression of aortic dilation) as compared with other anti-
hypertensive agents.

In their recent study, Oller et al.,51 explored the impact of ADAMTS1
heterozygous K.O. in mice. They describe that the development of
TAADs in these mice is dependent on inducible Nitric Oxide Synthase
(iNOS or NOS2) overexpression by aortic vSMCs. iNOS induction is
associated with a powerful inhibition of vSMC contractile tone. This
experimental pathology is rescued, including angiotensin II-induced
aortic dissection in this model, by inhibition of iNOS by L-NAME, a gen-
eral inhibitor of NOSs, and by 1400 W (GW 274150) a specific inhibitor
of iNOS. These experimental results (ADAMTS1 decreased expression
and iNOS overexpression in vSMCs) were extended to a small series of
TAA samples in MFS patients as compared with healthy human aortas. It
is important to note that vSMCs cannot generate effective tensegrity
unless the cells are anchored to the ECM. As mentioned previously, in
the aorta, vSMCs are anchored to elastin by microfibrils. FBN1 mutations

promote disruption of these connections and Fbn1 mutations in mice
have been shown to decrease tensegrity of vSMCs in the aorta. The rela-
tionship between contraction/relaxation of vSMCs and outward
hydraulic conductance through the wall has been recently explored ex
vivo in rat aorta18 showing that induced SMC tone by addition of cate-
cholamine, decreased mass transport through the wall. The relationship
between a chronic defect in vSMC tone generation and changes in arte-
rial wall permeability to water and plasma proteins remains to be estab-
lished in vivo in human TAAs.

Heritable alterations of the genes that encode proteins in the canoni-
cal TGF-b signalling pathway can also predispose to heritable thoracic
aortic disease, including TGF-b ligands (TGFB2, TGFB3),52,53 TGF-b
receptors Types I and II (TGFBR1, TGFBR2)54and regulatory SMADs
(SMAD3, SMAD4).55,56 Although initial studies suggested that increased
TGF-b signalling was the primary driver for thoracic aortic disease, the
mutations disrupting the TGF-b pathway are predicted or have been
shown to decrease TGF-b signalling, limiting the ability of the vSMCs to
repair the wall in response to proteolytic injury.38,57,58

5.2 vSMCs activate blood-borne proteases
In relation to the principle of advective mass transport of plasma pro-
teins, the difference between results of proteomic analysis of the aortic
wall, in which plasma proteins represent 30% of the arterial wall pro-
teome, and results of transcriptomics, where 100% of the mRNA repre-
sent wall cell genomics, provides evidence of plasma protein enrichment
of the wall. In particular, the convection of plasma proteins is largely
enhanced by the increase in wall permeability in TAA (Figure 3). For
example, the albumin (a neutral protein synthesized by the liver and
secreted into the plasma) concentration is increased by 60% within the
TAA wall as compared with healthy aorta (Figure 3), demonstrating the
change in wall permeability. This increase in permeability is determined
by the wall structure and function, including endothelial integrity/desin-
tegrity, elastic network degradation, and potentially, a decrease in wall
tensegrity via a decrease in vSMC tone.9 Conversely, percolation of
blood components through the arterial wall may not be neutral, but
could also impact permeability by modifying the connections between
cells and matrix within the wall. In this paradigm, blood-borne compo-
nents could injure the arterial wall. Thus, outward hydraulic conductance
of blood-borne components is the largest common denominator of all
TAAD, whatever their aetiology.

Since the hydrophobic, fibrillar ECM is insoluble, the convection and
interactions of plama zymogens with the wall components are of particu-
lar pathophysiological interest. We observed in human TAA tissues,
whatever the underlying aetiology, that prothrombin21 and plasmino-
gen59,60 were present in greater concentrations when compared with
healthy aortic wall and could be activated in the TAA wall. Plasminogen
is of particular interest because it can be activated by vSMC membranes,
via an S100A4/annexin A2 heterotetramer, exposing terminal lysine-
binding sites and forming ternary complexes with t-PA. A role for uroki-
nase (u-PA) cannot be excluded.61 Plasmin is able to induce vSMC
detachment from ECM (anoikis) by degrading fibronectin, one of the
main adhesion proteins for vSMC integrins.62 Plasmin is the main enzyme
able to mobilize TGF-b from its storage site associated with latent TGF-
b-binding proteins in the ECM. Furthermore, plasmin is able to convert
inactive pro-MMPs into active MMPs. In our studies, we observed that all
components of the fibrinolytic system were upregulated in the TAA
media, including S100A4 (mRNA and protein, providing evidence of
vSMC phenotypic switching), t-PA (mRNA and protein), u-PA (mRNA
and protein), and plasminogen (plasmin activity and plasmin–antiplasmin

Table 2 Genomic mutations in heritable forms of TAADs
in human

Genes encoding for ECM defects

Fibrillin -1 and -2 (MFS)4

Microfibril-associated Protein5 (MFAP5)41

Filamin A110

LOX42,111

Menkes disease (ATP7A copper transporter)112

Elastin (ELN)113 and Fibulin (FBLN),114 (Cutis Laxa), Emilin1 (elastin

microfibril interfacer 1)115

Collagen 1 a2, 3 a1, 5 a1, 5 a2 chains (Elhers-Danlos)

ATP7A (ATPase copper transporter, Menkes disease)116

Glucuronyl transferase-1 (GAG synthesis)117

Dermatan-sulphate proteoglycans118, Biglycan119

NOTCH1120,121

TGF-b signalling pathways (loss of function)

TGFBR1 and TGFBR254,122

SMAD355 and SMAD456

TGFb-252 and -b-353

TGFb-repressor SKI (Shprintzen-Goldberg syndrome)123

Contractile proteins (loss of function)

MYH-11 (myosin heavy chain)46

ACTA2 (SM Actin)45

MYLCK (myosin LC kinase)47

PKG (protein kinase G, gain of function)48

vSMC metabolism

Methionine adenyl transferase124

Glucose transporter (SLC2A10)125

FOXE3 (Transcription factor)126
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complexes).59 In contrast, plasminogen mRNA is not detected in the
aortic wall, whereas the protein is, further supporting the hypothesis
that it is outwardly convected from the blood.

5.3 vSMCs extracellularly accumulate
GAGs
One of the common characteristics of TAA, dissections and aging in the
aorta is the presence of mucoid ECM accumulation (MEMA),63 com-
posed of alcianophilic GAGS. This osmotically active GAG accumulation
evolves towards extracellular watery vacuoles, originally improperly
named ‘cysts’ (but there are no ‘cysts’ because there are no capsule
membranes). This mucoid degeneration is not specific of aortopathy and
can also be observed in tendinous and cartilaginous, hydrophilic, GAG-
rich tissues. Aortic GAG chain synthesis by vSMCs is under the control
of the canonical TGF-b pathway, involving smad2 linker region phos-
phorylation by ERK.64 This signalling pathway activates the expression of
GAG chain-synthesizing enzymes: xylosyltransferase, chondroitin sul-
phate synthase, and chondroitin sulfotransferase-1. GAGs are highly
hydrophilic and their accumulation in specific areas leads to localized
interstitial fluid retention potentially favouring the risk of dissection.
Moreover areas of MEMA are able to retain specific MMPs, particularly
MMP-3 (stromelysin) and MMP-7 (matrilysin), which possess a domain
which interacts with the anionic structure of GAGs.65

5.4 vSMC death
Cell adhesion and tensegrity66 are requisites for cell survival within tis-
sues. This concept is particularly relevant for vSMC differentiation,
including acquisition of actomyosin complexes, allowing contractility in
response to sympathetic and other stimuli, and survival within the aortic
wall tissue. There is a direct relationship between tensegrity and the abil-
ity of vSMCs to resist and survive in a microenvironment of high mechan-
ical stress. Conversely, any injury to, or defects of, the molecular
tensegrity cascade67 from fibrillar ECM, adhesive intermediate proteins
such as fibronectin, integrins, and focal adhesion kinases (FAK), cytoske-
leton and actomyosin can induce partial or complete loss of tensegrity
causing anoikis/apoptosis10 of vSMCs. In this context the activity of focal
adhesion complexes, involving FAK, Src, talin, vinculin, paxillin, stimulates
MEK and ERK signalling pathways and therefore promotes cell survival
and growth by inhibiting anoikis signalling.68 Conversely defects in the
tensegrity molecular cascade, endocellular (decrease in vSMC tone of
either genetic or pharmacological origin) or extracellular (ECM defect of
either genetic or pharmacological origin, pericellular proteolysis), pro-
mote cell apoptosis/anoikis by PI3K/AKT and NFkB pathways. In this

context, a polycationic micro-environment is highly cytotoxic, promot-
ing anoikis/apoptosis,69 whereas poly-anions, including negatively
charged polysaccharides, are protective.70 As described earlier, activa-
tion of plasminogen on vSMC membranes by t-PA or u-PA/u-PAR, may
promote cell detachment and therefore apoptosis/anoikis, mainly by
degrading fibonectin which is the principal pericellular adhesive protein
for vSMCs.62 Conversely, the secretion and pericellular retention of tis-
sue anti-proteases, including Protease Nexin-1 (PN-1)71or plasminogen
activator inhibitor (PAI-1),72 protect against apoptosis/anoikis.

6. vSMC responses to proteolytic
injury

6.1 Transforming growth factor-b
TGF-b is a ubiquitous protein with a molecular mass of 25 kD which
plays a role in tissue repair. In the aortic wall, TGF-b is secreted from
vSMCs as a latent complex of TGF-b, the latency-associated peptide
(LAP, interfering with av integrin), and a molecule of latent-binding pro-
tein (LTBP).73 This inactive complex is stored within the ECM (fibrillin,
fibronectin, and elastin) and is released by proteolytic activity, mainly
involving plasmin and MMPs, but is also released when vSMC contractile
forces stretch the ECM via integrins.74,75 Activation of TGF-b allowing
receptor binding requires its dissociation from LAP. SMCs also possess
TGFReceptors which are coupled to the canonical SMAD2 intracellular
pathway, involving SMAD2 phosphorylation and nuclear translocation,
inducing expression of numerous genes (genes coding for ECM, antipro-
teases, LTBP, etc). The majority of these cascade proteins present sev-
eral isoforms. Canonical TGF-b extra- and intracellular pathways are
physiologically involved in the protection and/or restoration of the
mechano-protective function of ECM during proteolytic injury and deg-
radation. Because of the cyclic haemodynamic stretching of the aortic
ECM during the cardiac cycle, and the contractile tone of the aortic
vSMCs, TGF-b release by the aortic ECM is physiologically stimulated, as
a guardian of aortic ECM integrity. When ECM disruption and/or pro-
teolytic injury, and/or specific defects in ECM interactions occur, the bal-
ance between latent, ECM-retained forms of TGF-b and active form is
altered in favour of the latter, as in TAA (Figure 4).

For instance, recent studies76,77 have explored this molecular diversity
in the context of Marfan models. A first study of the New York Marfan
group, using a fibrillin-1- deficient model,78 explored the specificity of
LTBP isoform binding to microfibrils, and demonstrated that LTBP-1
mainly binds to fibronectin, whereas LTBP-2 and -3 mainly bind to
fibrillin.76 In a second study, the same group demonstrated, in the same
model, that FBN mutations disrupt the interaction of LTBP-3 with fibril-
lin, causing aneurysm formation, elastin degradation, and lethal dissec-
tions, whereas genetic deletion of LTBP-3 rescues this morbid
phenotype. Of note, in this model, fibrillin deficiency is associated with
experimental TAAD but not with a defect in elastin maturation.78 These
important studies, limited to Marfan mice, but not extended to TAAD,
illustrate the complexity introduced by molecular isoforms in the genet-
ics as well as pathophysiology, and the potential functional overlap of dif-
ferent molecules, and the necessary condition of proteolysis to produce
elastin breakdown.

In our first study on the tissue TGF-b pathway in human healthy aorta
and in TAA, we observed an increased TGF-b1 storage in TAA within
the ECM without changes in TGF-b1synthesis, but an increase in LTBP
synthesis.79 In healthy ascending aorta as in TAA, TGF-b accumulates in

Figure 3 Neutral albumin staining (in blue) in the luminal media of
healthy aorta vs. TAA.
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..the external third of the media, with a gradient similar to that of vSMC
myosin where the concentration is greatest in proximity to the adventi-
tial sympathetic contractile stimuli.

In this context, it has been demonstrated that TGF-b overexpression
is protective, limiting aneurysmal progression in rats.57 More recently,
injections of TGF-b-neutralizing antibodies promoted aortic dissections
and death in response to AngioII infusion in mice.38 These early results
have now been confirmed by different groups.80–82 These repeated
experimental observations, associated with clinical observations and
therapeutic assays, lead to the conclusion that strategies aimed at inhibit-
ing canonical TGF-b-dependent signalling are unlikely to provide any
benefit to patients with TAADs58.

6.2 Epigenetic adaptation of vSMCs in TAA
6.2.1 Epigenetic modifications
Epigenetic modifications can be defined as the introduction of new stable
heritable traits independently of changes in the DNA sequence. In many
cardiovascular disorders, significant epigenetic modifications have been
shown to affect disease development or progression. Epigenetic

modifications encompass different mechanisms: modifications of DNA-
associated histones, DNA methylation and non-coding RNA-mediated
modifications. These mechanisms target DNA molecules, transcriptional
machinery or transcription products, resulting in modulation of gene
expression and consequent protein synthesis.

6.2.2 Histones
An epigenetically-determined constitutive overexpression of active
Smad2 in vSMCs was identified in TAAs.83 By CHIP (CHromatin Immuno
Precipitation) assays on human tissues and cells, it was shown that this
constitutive overexpression involved the use a Smad2 alternative pro-
moter that was related to the acetylation of histone, the recruitment of
histone acetyl transferase, a shift of Myc repressor transcription factor to
P53 activator, where the TRRAP co-factor facilitated the formation of
this new molecular complex.84 The epigenetic nature of this phenotypic
change was confirmed by the demonstration that this phenotype (constit-
utive overexpression of Smad2 as compared with vSMCs derived from
healthy aorta) is conserved, in primary culture of vSMCs derived from
TAA tissue, throughout successive passages. Moreover, vSMCs derived

Figure 4 Different impacts of vSMC tensegrity on the main molecular components of TAA and AAD pathophysiology (ECM, TGF-b canonical pathway,
SMC cytoskeletton and nucleoskeletton: (A) physiological tensegrity involving intracellular components and interactions within SMC, and ECM submitted
to cyclic hemodynamic stretching; (B) impact of SMC relaxation on tensegrity and consequences. The behaviour of TGF-b in this context remains to be
defined (?); (C) Defect in ECM (enzymatic, genetic, and pharmacologic) released active TGF-b; (D) Progressive dilation increases stretching and induces
chromatin remodelling via tensegrity-induced cyto/nucleoskeletton more interactions.
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.
from TAA no longer responded to exogenous TGF-b1, whereas those
derived from healthy aorta did. In parallel, TAA-derived vSMCs are more
resistant to plasminogen-induced anoikis than healthy aorta-derived cells.
This chromatin remodelling is potentially related to the modifications in
mechanical strain which occur in TAAs. Indeed, the chronic dilation char-
acteristic of TAAs is responsible for an increase in the wall tension
according to Laplace’s law. The nuclear envelope is mechanically coupled
to other vectors of mechanotransduction (tensegrity) via vSMC adhesion
to the ECM, coupling of integrins to intracellular actin and linkers of
nucleoskeleton to cytoskeleton.85,86 It has been proposed that the
mechanical environment impacts the chromatin state of vSMCs thereby
controlling vascular gene expression and function.87 It is likely that the
increased wall tension in TAAs modifying mechanotransduction between
matrix and nuclei will have an impact on the chromatin remodelling in
vSMCs, although this issue has never been directly addressed.
Interestingly, this chromatin remodelling is observed only during progres-
sive chronic dilation, i.e. a progressive increase in wall tension, but not
during acute intramural rupture.88 Thereby chromatin remodelling in
vSMCs may be a hallmark of TAAs as compared with aortic dissection.

6.2.3 DNA methylation
This is carried out by DNA methyl transferase which covalently, but
reversibly, binds a methyl group to the DNA base cytosine, which limits

the transcription factor accessibility to the methylated sequence.
Therefore, DNA methylation usually leads to repression of gene tran-
scription. One study reports identification of abnormal DNA methyla-
tion in vSMCs from TAAs associated with BAV,89 but not in those
from TAAs associated with TAV. No vSMCs from healthy aorta were
studied here.

6.2.4 Non-coding RNAs
Non-coding RNAs are defined as RNA molecules lacking protein-coding
potential. They are generally classified according to their size: small non-
coding RNAs contain <200 nucleotides (miRNAs) while long non-
coding RNAs contain at least 200 base pairs. These epigenetic aspects
are more well-documented than DNA methylation. Different studies
underline the impact of miRNA-29a and b on aneurysms in general, and
more particularly on non-syndromic and Marfan TAA and dissections.
The non-coding RNAs and their impact on vSMCs are reviewed in this
issue (Leeper N.J. and Maegdefessel L.).

6.3 Increase in antiprotease secretion by
vSMCs
The canonical TGF-b/Smad 2 pathway controls the expression of
numerous genes, including genes responsible for ECM synthesis and
maturation. It can be triggered either by TGF-b1 release from its ECM

Figure 5 Schematic representation of the pathophysiological determinants of TAA and AAD and the central role of vSMCs.
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storage site and/or by the epigenetic overexpression and nuclear trans-
location of Smad2. Connective Tissue Growth Factor gene is the arche-
typal gene controlled by TGF/Smad2 pathway directly involved in ECM
synthesis and modelling.90 We observed an increase in fibronectin turn-
over and LTBP accumulation in TAA as compared with healthy human
aorta. Because we were interested in plasminogen activation by vSMCs
in TAA, we studied the impact of the constitutive overexpression of
Smad2 on antiprotease synthesis and accumulation. We previously
showed that PN-1 a tissue inhibitor of thrombin, plasmin, t-PA and u-PA,
is highly expressed by vSMCs in response to TGF-b1.91 We also
observed a high concentration of PN-1 in TAA media as compared with
healthy aorta. We demonstrated that this PN-1 enrichment is under the
control of Smad2 both in aortic tissue and in cultured vSMCs. By CHIPS
assay we observed a highly significant increase in Smad2 binding to the
PN-1 promoter, leading to overexpression and accumulation of the pro-
tein. Similar results, but less specific of Smad2, were reported for the
PAI-1 promotor. These epigenetic modifications make TAA-derived cul-
tured vSMCs more resistant to plasminogen-induced anoikis62 than
healthy aorta-derived cells.

6.4 vSMCs clear protease/antiprotease
complexes
It is well accepted that vSMCs in the arterial wall are able to ingest mac-
romolecules by endocytosis,92,93 via scavenger receptors, and to engulf
particles94 and cells by phagocytosis.95 LRP-1 (LDL receptor-related
protein-1) is a major scavenger receptor for modified LDL in vSMCs,92

but also an endocytic receptor for protease/antiprotease complexes.96

We recently observed that circulating plasminogen, which had entered
the aortic wall and had been converted into plasmin on vSMC contact,
can bind to tissue PN-1 present in the pericellular GAG environment.
Plasmin/PN-1 complexes can then be endocytosed by vSMCs in an LRP-
1 dependent manner, whereas plasmin alone cannot.5 LRP-1 is also able
to engulf MMP/TIMP complexes,97 so that this system may be involved
the in situ clearance of protease/antiprotease complexes by vSMCs.
Therefore, this clearance function of vSMCs, which is dependent on the
in situ presence of antiproteases, may limit proteolytic injury within the
aortic wall. Also, in keeping with this hypothesis, a decrease in LRP-1
expressed by vSMCs in genetically modified mice leads to aortic aneur-
ysm formation.98,99 In parallel, a mutation on the LRP-1 gene has been
recently published in a chinese Marfan-like family100 and an LRP-1 variant
has been associated with AAA in humans.101

6.5 vSMCs induce inward neo-angiogenesis
Neo-angiogenesis from the adventitia to the medial layer is another con-
sequence of both outward convection of mediators through the aortic
wall, and the avascular nature of the aortic tissue. In the ascending aorta,
only the external quarter of the media is vascularized, i.e. contains arte-
rioles, capillaries and venules. However, there are no lymphatics in the
medial layer. This external physiological vascularisation arises from the
adventitia and is relatively scarce in normal aorta, but can extend across
the full medial thickness in TAA in humans. As we have demonstrated in
initial human aortic atheroma,102 this inward neo-angiogenesis, gener-
ated by sprouting of endothelial cells from the adventitia or external
media, is related to the outward convection of angiogenic mediators syn-
thesized and secreted by vSMCs. In contrast to atheroma,102 the inward
neo-angiogenesis present in TAA is not related to lipid mediators or
VEGF overexpression and secretion by vSMCs. Similarly, the markers of
hypoxia, specifically HIF and sirtuine-1, are not altered in TAA when

compared with control aorta. In contrast other angiogenic mediators
are increased in the media of TAA when compared with healthy aorta60

(angiopetin-1 and -2 (proteins and mRNA), thrombospodin-1 (TSP-1)
and -2, platelet-derived endothelial growth factor and IGFBP-1.
Although TSP-1 and angiopoietin-1 overexpression is clear, the stimuli
have not yet been determined. Neo-angiogenesis seems to be more pro-
nounced in degenerative and Marfan TAA, whereas, in degenerative
forms, a patchy intimal proliferation of SMCs is observed.

7. Aneurysms vs. dissections

Similar activation of plasminogen and the presence of areas of mucoid
degeneration are observed in both chronic dilation (TAA) and acute dis-
section. However, in the aorta after dissection no epigenetic overex-
pression of Smad2 is observed, which limits the activation of TGF-b
pathway and the ability of vSMCs to prevent acute intramural rupture
(PN1 secretion. . .) is thus limited88 (Figure 5).

8. Conclusions

As described earlier, TAA in humans is a model for the interaction
between vSMCs and outwardly-convected plasma components.
Syndromic or non-syndromic monogenic diseases secondary to mutations
in a gene altering the contractile apparatus of the vSMC, an ECM protein,
or a protein of the canonical TGF-b signalling pathway have the potential
to sensitize the aortic wall to plasma-borne, proteolytic injury.4 Disruption
of the ECM or TGF-b signalling or an excess of vSMC relaxation in the
aorta may lead to aneurysm formation involving the aortic root. As first
illustrated by Leonardo da Vinci, the sinuses of Valsalva are the site of phys-
iological vortexing of blood during diastole, in relation to the closing of the
aortic valve, blood stagnation in the aorta, and coronary inflow. This blood
stagnation and vortexes could potentially enhance outward hydraulic con-
ductance of plasma components through the aortic wall.

In contrast, in TAA associated with BAVs, haemodynamic modifications
may promote aneurysmal development on the outer curvature of the
ascending aorta. Morphological ovalization of the aortic ring associated
with BAVs alters the blood flow patterns in the ascending aorta, creating a
hot spot of velocity vector dispersion (Tranverse Wall Shear Stress103)
and mechanical impedance on the convex side of the ascending aorta.

vSMCs, as the main mesenchymal cells of the aortic wall, play a central
role in the genesis and evolution of TAA and D, involving different vSMC
functions and different extracellular and intracellular signalling pathways
within the aortic wall. vSMC defects may be pathogenic in TAA and D,
but TGF-b activation and vSMC responses to aneurysmal injury may also
represent repair mechanisms. Despite important progress in under-
standing TAA & D pathophysiology, some interactions between vSMC
physiology and pathology, remain to be further explored. This may be
crucial for the development of new therapeutic approaches, potentially
involving other antihypertensive compounds associated with higher sym-
pathetic activity, blockade of plasmin generation, and specific inhibition
of iNOS signalling, for preventing the development of aneurysms of the
ascending aorta.
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