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ABSTRACT Viral pathogens causing global disease burdens are often characterized
by high rates of evolutionary changes. The extensive viral diversity at baseline can
shorten the time to escape from therapeutic or immune selective pressure and alter
mutational pathways. The impact of genotypic background on the barrier to resis-
tance can be difficult to capture, particularly for agents in experimental stages or
that are recently approved or expanded into new patient populations. We devel-
oped an evolutionary model-based counting method to quickly quantify the popula-
tion genetic potential to resistance and assess population differences. We demonstrate
its applicability to HIV-1 integrase inhibitors, as their increasing use globally contrasts
with limited availability of non-B subtype resistant sequence data and corresponding
knowledge gap. A large sequence data set encompassing most prevailing HIV-1 sub-
types and resistance-associated mutations of currently approved integrase inhibitors was
investigated. A complex interplay between codon predominance, polymorphisms, and
associated evolutionary costs resulted in a subtype-dependent varied genetic potential
for 15 resistance mutations against integrase inhibitors. While we confirm the lower ge-
netic barrier of subtype B for G140S, we convincingly discard a similar effect previously
suggested for G140C. A supplementary analysis for HIV-1 reverse transcriptase inhibitors
identified a lower genetic barrier for K65R in subtype C through differential codon usage
not reported before. To aid evolutionary interpretations of genomic differences for anti-
viral strategies, we advanced existing counting methods with increased sensitivity to
identify subtype dependencies of resistance emergence. Future applications include
novel HIV-1 drug classes or vaccines, as well as other viral pathogens.

KEYWORDS HIV-1, antiretroviral resistance, evolution, fitness, immunology, integrase,
vaccine

The advent of vaccines and antiviral treatment resulted globally in significant health
gains and averted deaths by preventing viral infections and improving disease

outcomes. Major human pathogens targeted by these strategies are fast-evolving
genetically diverse viruses (1–3), allowing for rapid adaptation through the emergence
of resistance-conferring mutations. A key concept in understanding the dynamics of
resistance development is the genetic barrier, which ultimately quantifies the evolu-
tionary time to viral escape from selective pressure (4–7). The virus makeup at baseline
can shorten the evolutionary distance to resistance and, together with intervention-
and patient-related factors, alter the mode and tempo of resistance emergence (1, 8).
The imprint of the genotypic background on viral escape dynamics, however, can be
difficult to capture, in particular for agents that only have been recently introduced.
Resistance knowledge for these newer agents is often limited to in vitro selection
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experiments using genetically limited backbones or initially inferred from observations
in well-controlled clinical studies and patient cohorts which underrepresent the full
spectrum of viral diversity.

A notable example of success is the evolution of the management of human
immunodeficiency virus type 1 (HIV-1) infection in the last 3 decades, with antivirals
available from multiple drug classes that drastically reduced morbidity and mortality
related to HIV-1. The recent class of integrase strand transfer inhibitors (INSTIs), directed
against the integrase enzyme by blocking the strand transfer step of viral DNA
integration, has considerably expanded treatment options and reduced the probability
of virological failure, predominantly in resource-rich settings where INSTI use is wide-
spread. To date, the INSTIs raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG), and
bictegravir (BIC) are approved for HIV-1 treatment and often a preferred option for
first-line regimens and dual regimens (9, 10). INSTIs are anticipated to become also
widespread in low- and middle-income countries (LMICs), and the use of INSTIs has
been shown to be cost-effective (11), although rates of acquired drug resistance are
increasing in these settings. The impact of HIV-1 genetic diversity, classified into groups
and subtypes, on resistance development has been well documented for the historical
classes of protease and reverse transcriptase (RT) inhibitors, mainly resulting from
preferential codon usage (12–14). The evolutionary mechanisms underlying viral es-
cape from INSTI selective pressure, despite the identification of mutational pathways,
are still unfolding, particularly for non-B subtypes, which are prevalent in LMICs (15). As
short pathways toward INSTI resistance have been reported (16, 17), it is imperative to
characterize the impact of HIV-1 diversity on the lowering of the genetic barrier to
resistance.

Extensive subtype mappings of integrase diversity in treatment-naive patients
revealed amino acid polymorphisms at resistance-associated positions (1, 18–20). Apart
from a documented subtype B INSTI resistance pathway attributed to differential codon
usage at position 140 (17, 21–23), the role of baseline nucleotide variation on INSTI
resistance development has been less systematically investigated. The probabilistic
models of resistance evolution that previously quantified the genetic barrier for the
historical drug classes require sequence data of various subtypes from treatment-
experienced patients (4–6), which are limited to date in the context of INSTIs (19, 24).
Alternatively, the genetic barrier can be estimated by the number and type of required
nucleotide substitutions to evolve from a wild-type virus to a resistant mutant (25).
While this modality has been applied to HIV-1 integrase before (21, 22), these studies
lacked resistance mutations only recently discovered, ignored subtype-specific effects,
or analyzed limited subtype distributions and relied on arbitrary substitution cost
assignments.

We present a novel, optimized, and evolutionary model-based methodology to
quantify the genetic potential to resistance in fast-evolving viral pathogens, facilitating
a priori identification of the impact of varied genetic background on resistance emer-
gence. Here, we demonstrate our approach by the application to the HIV-1 INSTIs. With
the rollout of INSTIs in LMICs, an increasing introduction of non-B subtypes in high-
income countries (26–29), and the anticipated approval of additional INSTIs, this study
addressed the need for an in-depth understanding of the dynamics underlying INSTI
resistance development across HIV-1 subtypes. We derived an optimized genetic barrier
score based on empirical substitution costs, which contrasts with previous approaches
that used arbitrary costs differing from in vivo estimates (30). Furthermore, we ad-
vanced existing studies by considering a population-based estimate for the most
prevailing subtypes globally and calculating subtype-tailored summary scores. The
framework is easily applicable to novel HIV-1 drug classes (e.g., attachment or matu-
ration inhibitors) and extended to vaccines or other pathogens (e.g., arboviruses,
influenza virus, respiratory syncytial virus [RSV], herpesvirus, and varicella virus) which
are currently targeted by antiviral development efforts.
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RESULTS
Data set. A total of 10,235 viral sequences coding for the HIV-1 integrase enzyme

fulfilled the inclusion criteria, resulting in 410 (4%) sequences classified as subtype A,
5,174 (50.5%) sequences classified as subtype B, 1,837 (17.9%) sequences classified as
subtype C, 1,630 (15.9%) sequences classified as CRF01_AE, 596 (5.8%) sequences
classified as CRF02_AG, 170 (1.7%) sequences classified as subtype D, 257 (2.5%)
sequences classified as subtype F, and 161 (1.6%) sequences classified as subtype G.
The highest percentage of codons that did not fulfill the ambiguity criteria was 7.6% for
position 125, and distributions of within-subtype pairwise diversity were unimodal and
similar across subtypes (Fig. S5 and S6 provide data quality results).

Natural integrase variability. Variation in genetic barrier across subtypes requires
a combination of differences in wild-type triplet (WTt) frequencies and in cost scores.
We first illustrate relevant integrase genetic variability using triplet entropy calculations
to elucidate variation within a single subtype. Next, identifying predominant triplets
can reveal major variation between subtypes. Triplets associated with INSTI resistance
are particularly of interest because of their minimal cost.

Figure 1 shows within-subtype entropy values for each resistance position. Some of
this within- subtype variation is translated into the presence of polymorphic mutations.
Figure 2 shows the prevalence of resistance-associated mutations (RAMs) in the data
set (Table S2 provides prevalence for all RAMs). The most prevalent mutations for
subtype A were M50I (25.2%), L74I (22.4%), I203M (5.5%), and T97A (5.1%); for subtype
B, K156N (17.6%), S230N (10.4%), M50I (9.4%), I203M (6.4%), S119R (5.5%), and V151I
(5.2%); for subtype C, M50I (35.1%) and L74I (5.0%); for CRF01_AE, V165I (17.2%); for
CRF02_AG, L74I (18.4%), M50I (10.6%), L74M (10.2%), E157Q (8.3%), and T97A (5.5%); for
subtype D, I203M (15.3%), T97A (6.2%), and V165I (6.2%); for subtype F, V165I (30.2%),
M50I (9.2%), G163R (6.2%), and G163K (5.4%); and for subtype G, M50I (15.1%), L74I
(10.3%), and V165I (5.3%). These results illustrate both RAMs that prevalent across
subtypes (e.g., M50I and L74I) and subtype-specific occurrences (e.g., K156N).

Figure 1 also provides a triplet entropy value of all subtypes combined for each
position. High values, compared to within-subtype values, indicate between-subtype
variation and suggest differences in predominant codon usage. Of the 41 integrase
positions investigated, 16 positions (50, 51, 66, 75, 97, 121, 138, 142, 143, 145, 146, 149,
154, 155, 203, and 230) showed a similar predominant triplet across all subtypes. Of the
remaining 25 positions, 11 positions showed a consensus in predominant WTt among

FIG 1 Shannon entropy of nucleotide triplets as a measure of genetic diversity was calculated for each position to illustrate the extent of triplet variation within
each of the 8 HIV-1 subtypes separately. In addition, for every position, we also calculated a single Shannon entropy value (All) of nucleotide triplets for all
subtypes combined to increased variation between HIV-1 subtypes.

FIG 2 We determined the subtype-specific prevalence (%) of each INSTI resistance-associated mutation in treatment-naive patients. The A49P, M50I, V54I,
L68I/V, L74I/M, T97A, S119R, V151I, M154I, K156N, E157Q, K160N, G163K/R, V165I, I203M, S230N, and D232N mutations were observed with a frequency above
1% in at least one subtype.
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7 subtypes (49, 54, 74, 92, 118, 148, 153, 157, 160, 170, and 263), 9 positions showed
a consensus among 6 subtypes observed (68, 95, 119, 128, 140, 147, 156, 165, and
166), and, finally, 5 positions (114, 125, 151, 163, and 232) showed a consensus at
5 subtypes. These results illustrate well the extent of relevant integrase diversity
within and between subtypes, encompassing varied entropy, resistance mutations,
and codon predominance. Some positions (e.g., 114 and 140) that are fully con-
served at the amino acid level showed high variability in codon usage, while other
positions (e.g., 50 and 74) showed limited variation in codon predominance, but
RAMs occurred at increased frequencies.

Calculated genetic barrier. The observed baseline differences in triplet frequencies
between subtypes will impact the genetic barrier to resistance only when they are also
accompanied by variation in triplet scores. Subtype frequencies of wild-type nucleotide
triplets, translated amino acids, and cumulative substitution costs to evolve into each
triplet translating into the resistance mutation are available in Table S3.

Triplet score variability was subsequently investigated for patterns in entropy and
codon usage, as described above. Limited variation in the evolutionary potential
between subtypes is expected for the 35 RAMs at 16 integrase positions with a similar
predominant triplet and, consequently, similar scores. Additionally, these positions are
generally characterized by a low frequency of RAMs and a high level of consistent
codon usage at baseline (Fig. S7 provides detailed codon information for each RAM),
although some exceptions exist, with higher entropy values at positions 50, 138, and
203 (Fig. 1) or RAMs that are prevalent above 5% at low-entropy positions 97 and 230
(Fig. 2). Among the group of 25 positions, a larger heterogeneity in cost scores is
expected due to varied predominance complementing variation in codon usage (Fig. 1)
and RAM prevalence (Fig. 2). Subtype variation in predominant WTt resulted most
strongly in a different cost score for the following mutations: V54I, L68I, L74I/M, E92A/G,
Q95K, S119R, AT125K, A128T, G140S, S147G, Q148H/K/R, V151I, K156N, K160N, G163R,
V165I, R166S, E170A, D232N, and R263K (Fig. S7).

Finally, combining into a complex interplay, reported results on genetic diversity
and evolutionary costs can be captured into a single value denoting a population-
based genetic barrier (Fig. 3). Significant differences in the calculated genetic barrier
were observed for 15 mutations at 12 positions (Fig. 3B), with higher genetic barriers
for M50I (subtype D), V54I (subtype CRF01_AE), S119R (subtypes C and F), Q148H

FIG 3 Top, estimated population genetic barrier for each combination of a resistance-associated mutation and a subtype. A higher value (red) represents an
increased potential for adaptation and is indicative of a lower genetic barrier to resistance. A subtype-specific value of this population genetic barrier is
calculated by first assigning each wild-type triplet with a score that indicates the ease to evolve into the resistance amino acid (see Materials and Methods for
a detailed description of how this cost score for a wild-type triplet is derived). Next, the sum of all triplet scores is weighted by the triplet prevalence so that
the most frequently occurring triplets have a larger impact on the population genetic barrier estimate. Bottom, average difference in population genetic barrier
of each subtype from the other subtypes. A lower genetic barrier to resistance for that subtype than for the other subtypes is shown in red, while a higher
genetic barrier is shown in green.
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(subtype C), V151I (subtypes A, G, and CRF02_AG), K156N (subtypes A and CRF01_AE),
and R166S (subtype CRF02_AG), and a lower genetic barrier for L68I (subtypes A and
CRF01_AE), S119R (subtype CRF01_AE), AT125K (subtype B), G140S (subtype B), Q148R
(subtype C), V151I (subtype B), and K156N (subtype B). Pairwise comparisons with
subtype B additionally revealed a lower genetic barrier for M50I (subtypes A and C),
L74I (subtypes A and AG), G163R (subtype CRF01_AE), and V165I (subtypes F and
CRF01_AE). A similar analysis applied to the RT enzyme revealed a lower genetic barrier
for 8 and a higher genetic barrier for 7 reverse transcriptase inhibitor (RTI) RAMs,
including mutations at positions 106 and 65.

The calculation of a wild-type triplet score is based on the summation of all possible
triplet cumulative costs, rather than considering the minimum cumulative cost (Table
S3 shows all cumulative costs being considered). To illustrate the effect of this strategy,
Fig. 4 provides a comparison of the evolutionary potentials calculated by our strategy
and a simplified version which only considers the lowest cost for determining the score.
Positions with high level of triplet variability (e.g., 119, 163, and 230) are primarily
expected to be affected across all subtypes, but important subtype-specific effects were
also observed (e.g., G140S in subtype B and Q148R and R263K in subtype C).

DISCUSSION

In this study, we developed a novel methodology to quantify the potential for viral
escape from selective pressure in fast-evolving viruses and presented an application
that evaluated the impact of the genetic background in HIV-1 integrase on the genetic
barrier to INSTI resistance development. The integrase enzyme has proven to be a
successful target for HIV-1 treatment, and the objective of maximizing the benefits of
INSTIs is translated into their global rollout. As for other HIV-1 drug classes, the
effectiveness of INSTIs can be challenged by the high evolutionary rates of HIV-1 when
treatment conditions are nonoptimal (31–33). However, to date, mutational pathways
that provide viral adaptation to INSTI pressure have not been fully characterized. Until
now, the high effectiveness of INSTI-based regimens in high-income settings translated
into low in vivo rates of RAM emergence, which resulted in a reduced need for in vitro
phenotypic studies and, therefore, limited resistance data available. In particular, the
role of natural nucleotide variation on resistance development is less well understood
(17, 34). In addition to the presence of RAMs at baseline, differential codon usage can
affect the mode and tempo of INSTI resistance pathways (22, 23). The study presented
here provides new insights into the processes underlying INSTI resistance development
by quantifying the genetic barrier to resistance, with a focus on the impact of genetic
diversity on resistance evolvability between integrase positions and HIV-1 subtypes.
Many factors govern the emergence of antiviral resistance, and the clinical implications
of the presented results should be evaluated within this context. The genetic barrier
estimates generated by our framework could be used to refine resistance interpretation
algorithms (35, 36). Furthermore, our findings can support clinical decision making by
virologists and clinicians when new patient populations are targeted by existing
antivirals, such as the recommended introduction and scale-up of INSTIs in LMICs,
which are characterized by a high prevalence of various HIV-1 non-B subtypes (19).
Increasing rates of INSTI resistance in these countries can be anticipated, as the
administration of INSTI-based treatments is likely to be confronted with high pretreat-
ment resistance levels to backbone historical antivirals, lower patient adherence levels,
and less frequent virological monitoring that will result in longer durations on subop-
timal treatment (37). As the strength of selective pressure diminishes, resistance
development becomes more likely and differences in genetic barriers more pro-
nounced. Related to this, the transmission and persistence of transmitted drug resis-
tance in drug-naive patients could be explored using our estimated cumulative sub-
stitution costs (38–40). Furthermore, our methodology is well suited to explore the
effects of global virus diversity for new interventional agents, such as small-molecule
integrase inhibitors (e.g., LEDGINS) with a new mechanism of action (41), for which drug
resistance mutations are known based only upon in vitro drug resistance selection
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FIG 4 Each of 8 panels shows the estimated population genetic barrier for a single subtype, with the
estimate either calculated as described in Materials and Methods (blue) or calculated by a simpler but

(Continued on next page)
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experiments using a limited number of laboratory or clinical strains (41), or even for
ongoing drug development efforts guided by structural modeling that can identify new
mutational interactions and hence for which the mutational sequence space related to
the genetic barrier can be explored.

We investigated a large sequence data set of globally the most prevailing HIV-1
subtypes for their evolutionary potential for viral escape, considering all INSTIs currently
available for HIV-1 treatment. This study confirms the nonpolymorphic amino acid
nature of most INSTI resistance positions (19, 20), as primarily single-subtype occur-
rences of RAMs at low frequencies were detected. In contrast, varied codon predom-
inance across subtypes was more pronounced, and consequently, 15 RAMs were
detected that significantly varied in the estimated barrier across subtypes. For major
INSTI mutations, modest variability in genetic barrier was observed, except for a
potentially important lower genetic barrier of the RAM Q148H/R in subtype C, which
causes high-level resistance to all INSTIs (42). Minor INSTI mutations, i.e., those having
an impact on drug activity only in the presence of a major mutation or compensating
for defects in replication capacity (42), were to a larger extent characterized by
increased variability in diversity and associated scores. Most notable was the varied
potential for G140S in subtype B viruses, confirming previous findings (21, 22), which
is an accessory mutation often occurring in combination with Q148H. We and others
have indeed previously observed the preference of the Q148H pathway in treatment-
experienced patients infected with subtype B viruses (17, 23). This study also identified
a higher estimated potential for the selection of R263K in subtype C due to distinct
predominant codon usage, but a significant effect could not be established. The
emergence of this infrequent INSTI RAM is associated with the use of DTG and is mostly
observed in subtype B-infected patients (37), but it could become more common with
the increased use of DTG in LMICs where subtype C prevails. R263K was observed
following treatment failure in a subtype C-infected patient in the SAILING clinical trial
(34) and recently in a subtype D-infected DTG-exposed patient (37).

Previous studies calculated the genetic barrier by distinguishing only between
transitions and transversions, following an approach initially developed for the HIV-1
protease and reverse transcriptase enzymes (25). We improved these previous frame-
works by applying an empirically derived and evolutionary model-based cost for each
possible substitution and triplet position, which resulted in increased detection sensi-
tivity. Particularly, transversions displayed substantial variation in costs compared to
arbitrarily defined uniform values used in previous studies. Furthermore, our calculated
genetic barrier incorporated cost scores from all possible pathways, compared to
restricting it to the minimum score previously used, relying on a now outdated
parsimony assumption. This approach allowed the detection of relevant increases in
the estimated evolutionary potential (e.g., L74I), particularly for positions with a high
level of codon variability. The improved sensitivity of our approach is well illustrated by
the G140C mutation, for which we could not confirm the previously suggested subtype
effect on its potential (21, 22), since this mutation requires a substitution at the first
triplet position known to be evolutionarily costly. In contrast to G140S, the prevalence
of G140C in patients failing INSTI-based treatment does not differ across subtypes in
the Stanford HIV drug resistance database (19, 23), which strengthens our finding. A
complete in-depth comparison of our findings with these studies is hindered by their
limited number of HIV-1 subtypes and INSTI mutations included. As most genetic

FIG 4 Legend (Continued)
similar methodology (red). Instead of obtaining the cost score for each wild-type triplet by summing all
possible cumulative costs (blue), thereby taking into account almost equally likely substitution pathways
of a wild-type triplet to the resistance amino acid, a cost score can also be calculated by only using the
minimum cumulative cost (red); therefore, this only considers the shortest substitution pathway to the
resistance amino acid and ignores other but almost equally likely mutational pathways to resistance. To
increase the comparability of the two measures, we also took the negative exponential of the minimum
score. Only increases in values are possible due to the summation, and we restricted the figure to the
subset of mutations with a difference larger than 0.01.
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barrier information to date has been established for the historical drug class of RTIs, we
applied our approach to the RT enzyme to validate our approach. Subtype dependen-
cies in genetic barrier previously predicted and observed in clinical practice were
confirmed (e.g., V106M in subtype C). However, compared to previous RTI genetic
barrier counting approaches (25), the increased sensitivity of our method also identified
a lower genetic barrier for K65R in subtype C. A higher selection rate of K65R in this
subtype has been well established (13) and attributed to a mechanistic basis of
template factors (43). However, we suggest an additional impact of codon usage when
all possible paths are considered, a mechanism which was previously discarded (43). A
similar analysis can be also performed for the RNase H region, which is also suggested
to be implicated in RTI resistance development (44).

While our framework provides a population-based cost for every position, it only
represents a simplified estimate of the actual in vivo genetic barrier, which results from
a multimodal interplay that eventually defines the evolutionary time to drug resistance.
The selection of a mutation and its rate of fixation depend both on non-virus-related
factors, such as patient adherence and treatment potency, and on virus-related factors,
such as the impact on viral fitness and (nonadditive) epistatic mutational interactions.
Positions implicated in immune escape (e.g., 125) further influence the rate of resis-
tance accumulation (45, 46). It is difficult to timely obtain information on all these
influencing factors and hence to construct an accurate model capturing resistance
evolutionary dynamics. As such an adequate model is lacking, our distance-based
method offers a valuable alternative to assess the genetic barrier to resistance. Our
methodology cannot predict novel RAMs or subtype-specific pathways. A cost matrix
was used for all subtypes assuming that substitution rates are equal between subtypes;
however, the use of group-specific cost matrices can be accommodated by our
framework.

In conclusion, our findings are important in the context of up-scaled introduction of
DTG and novel INSTIs in LMICs, where non-B subtypes prevail, but more studies are
needed to further validate the clinical implications of our results. Future applications of
this reproducible framework transcend novel HIV-1 drug classes or subtypes, as prin-
ciples of HIV-1 drug resistance are generally shared with other pathogens known to
escape selective pressure, and our methodology can be easily transferred to identify a
role of genetic diversity of these pathogens, particularly for antivirals which are being
evaluated in early development or clinical trials.

MATERIALS AND METHODS
HIV-1 data set and drug resistance mutations. HIV-1 integrase sequences from INSTI-naive

patients were obtained from the Stanford HIV drug resistance database (19), aligned codon-correct using
VIRULIGN (47), and classified using the REGA subtyping tool v3 (48–50). One sequence per patient
without a stop codon was retained. As the transmission of INSTI resistance is infrequently reported to
date, we used the presence of INSTI signature mutations Y143C/H/R, Q148H/K/R, or N155H/S, which are
nonpolymorphic in treatment-naive patients, as a proxy to identify possible incorrect INSTI-naive status
(19). Integrase positions and mutations important for INSTI resistance were defined by an association
with reduced susceptibility and virological response (16) or by inclusion in HIV-1 drug resistance
interpretation systems (REGA v10, HIVdb v8.7, and ANRS v29) (51–53). A total of 41 codon positions and
77 amino acid mutations implicated in viral escape from currently approved INSTIs were investigated. In
addition, the supplemental material presents the same approach applied to quantify the evolutionary
potential to resistance of the RT enzyme (Fig. S1 to S4).

Genetic barrier to resistance. We define the genetic barrier in terms of a particular subepidemic,
e.g., for HIV-1 with respect to all viruses that belong to a particular subtype, and of a resistance mutation
defined by an amino acid and position. An overview of the procedure to obtain the genetic barrier is
given in Fig. 5, using the resistance mutation G140S as an example. The calculation of the genetic barrier
is a series of steps (see Fig. 5) which result in a subtype-specific estimate for G140S. Initially, we determine
the extent of natural diversity at position 140 in the HIV-1 data set by identifying all wild-type triplets
and their subtype prevalence. Next, we compute a score for each wild-type triplet that quantifies its
evolvability into the resistance amino acid S at position 140, based on the costs associated with the
possible nucleotide substitutions, as some substitutions are more costly for HIV-1 than others (54).
Finally, a subtype-specific genetic barrier for G140S is obtained by summing all wild-type triplet scores
weighted by the prevalence of respective wild-type triplets in the subtype of interest. In the following
paragraphs, we provide a more detailed description of each of these steps.
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Codon distributions. At every position, variability at the nucleotide level was assessed by the prevalence
of nucleotide triplets (codon) in each subtype (Fig. 5A). Codons with ambiguities consisting of �2 bases per
nucleotide position or of two or more ambiguities per codon were not considered. A nucleotide ambiguity
of exactly 2 bases was resolved in the two corresponding triplets, each counting for one-half of their
respective frequencies. All triplets with a prevalence above 1% in at least one subtype were retained, and
triplets with a prevalence above 50% were defined as predominant for that subtype. The prevalences of
resistance mutations and codon entropy were inferred from the triplet distribution.

Substitution cost. A penalty score is assigned to the different types of nucleotide substitution
through the transformation of empirically estimated substitution matrices into corresponding cost
matrices. For each codon index (ci) � {1, 2, 3}, the cost matrix is given by the normalized and inverted
substitution matrix following normalization, using the following equation:

Mci
c � � Mci

s

max Mci
s ��1

(Eq 1)

This transformation assigns the substitution with the highest rate (e.g., G¡A) a cost of 1, and the
costs of the other substitutions were proportionally adapted to this baseline cost. A cost of zero is
assigned when no change occurs. For our study, a substitution matrix for each codon position was
derived from HIV-1 integrase nucleotide sequences independently collected from the Los Alamos
database, with codon-based substitution patterns and rates estimated under the general time-reversible
model (Table S1 provides information on cost matrices).

Genetic barrier to resistance. Given a subtype �, the genetic barrier to resistance mutation R is a
cost function, GB�(R), that quantifies the number and type of nucleotide substitutions required for the
virus to evolve from wild-type diversity in the virus population of � to R (Fig. 5). This baseline diversity
is defined by the set of wild-type triplets {WTt,i}, with the index i, ranging from 1 to the number of
wild-type triplets. The prevalence of a given WTt is denoted as prev(WTt). Furthermore, as R is an amino
acid, we enumerate all triplets that translate into R and refer to this set of resistance triplets as {Rt,j}, with
the index j, ranging from 1 to the number of resistance triplets. For each WTt in {WTt,i}, we determine a
score for the given WTt to evolve into R, thereby considering all triplets that translate into R (i.e., {Rt,j}):

ScoreWTt
(R) � �j�1

|�Rt,j�|
exp [�Cost(WTt, Rt,j)] (Eq 2)

where Cost (.) quantifies the cumulative substitution cost to mutate from the given WTt into a single
resistance triplet Rt,j, as provided in equation 3. To obtain this cumulative substitution cost, we compute
the sum of the substitution cost of each triplet position, using substitution matrices Mci

c as defined by
equation 1:

Cost�WTt, Rt� � M1
c�WTt, Rt� � M2

c�WTt, Rt� � M3
c�WTt, Rt� (Eq 3)

This calculation of a score incorporates all possible evolution paths from WTt to R and subsequently

FIG 5 Methodology overview for resistance amino acid (Raa) S at position 140 (Pos). (A) Determination
of the distribution wild-type triplets (WTt) naturally present, the translated amino acid WTaa, and their
frequency across subtypes. (B) A score is assigned to each WTt to evolve into Raa. (C) This score is
obtained by iteratively determining the cumulative substitution cost for the change of WTt into each
resistance triplet (Rt) translating into the amino acid S, and subsequently by the summation of the
different cumulative costs. (D) Each score is iteratively weighted by the subtype frequency of the WTt,
here shown for subtype A. (E) A population estimate of the genetic barrier is obtained for subtype A. This
procedure is repeated for each subtype, resulting in a subtype-specific population genetic barrier for
G140S. When all resistance-associated mutations are considered, a matrix of genetic barrier values is
created, where subtypes are shown as rows and mutations as columns. Figure 3A illustrates the
visualization of this matrix.
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assigns lower cumulative costs (i.e., more likely mutation pathways) a higher contribution to the total
triplet score. Taking into account different but almost equally likely evolution paths, compared to only
considering the minimum cumulative substitution cost, results in an elevated sensitivity to detect
subtype dependencies in the genetic barrier.

Finally, the genetic barrier GB� is defined as the sum of the scores (equation 2) of the different WTt

in subtype �, weighted according to their prevalence:

GB�(R) � �i�1

|�WTt,i�|
ScoreWTt,i(R) � prev(WTt,i) (Eq 4)

A GB��R� is obtained for each resistance-associated mutation (RAM) and subtype. In order to visualize
most pronounced differences between subtypes, we calculated the average distance in population
genetic barriers for each subtype against other subtypes. The R code used in this study to calculate the
population genetic barrier is made available at https://github.com/ktheyss/genetic-barrier/.

Statistics. The nonparametric Mann-Whitney test was used to identify differences in the genetic
barriers between HIV-1 subtypes and corrected for multiple-hypothesis testing using the Benjamini-
Hochberg method (25). Each subtype was compared against a weighted sample (n � 500) of the other
subtypes, repeated 1,000 times. In addition, pairwise comparisons of subtype B with each subtype
separately were performed given that most knowledge on integrase resistance development is available
for subtype B. Significant comparisons with a difference in the barrier score above 0.1 are retained. All
analyses were done using the statistical software package R (55).
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