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ABSTRACT We evaluated the in vitro activities of the antimicrobial drugs bedaqui-
line and delamanid against the major pathogenic nontuberculous mycobacteria
(NTM). Delamanid showed high MIC values for all NTM except Mycobacterium kansa-
sii. However, bedaquiline showed low MIC values for the major pathogenic NTM, in-
cluding Mycobacterium avium complex, Mycobacterium abscessus subsp. abscessus, M.
abscessus subsp. massiliense, and M. kansasii. Bedaquiline also had low MIC values
with macrolide-resistant NTM strains and warrants further investigation as a poten-
tial antibiotic for NTM treatment.
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The incidence and prevalence of pulmonary disease (PD) associated with nontuber-
culous mycobacteria (NTM) are increasing worldwide (1, 2). Mycobacterium avium

complex (MAC), Mycobacterium abscessus, and Mycobacterium kansasii are the most
common pathogens for NTM PD worldwide (3–5). Macrolide antibiotics, such as clari-
thromycin and azithromycin, are key drugs for treating NTM PD, especially MAC PD (1,
2). Treatment outcomes are still not satisfactory (6–9), however, and the development
of acquired resistance to macrolides can further worsen treatment outcomes (10, 11).
Moreover, M. abscessus isolates can have intrinsic inducible macrolide resistance or
acquired macrolide resistance, and M. abscessus PD is the most difficult-to-treat type of
NTM PD (12–14). Therefore, discovery of new and repurposed drugs is urgently needed
(15).

Bedaquiline and delamanid are new drugs for the treatment of multidrug-resistant
tuberculosis (16–20). Bedaquiline is a diarylquinoline that inhibits the proton pump of
mycobacterial ATP synthase, and delamanid is a compound derived from nitrodihy-
droimidazooxazole that inhibits mycolic acid synthesis (21–23). Previous studies re-
ported that the MICs of bedaquiline and delamanid for Mycobacterium tuberculosis,
including multidrug-resistant isolates, were very low (24, 25).

Recently, the MICs of bedaquiline against MAC, including M. avium and Mycobac-
terium intracellulare, have been reported (26–28). In those studies, most macrolide-
sensitive MAC isolates showed low MICs for bedaquiline (26–28). In addition, M.
abscessus subsp. abscessus and M. abscessus subsp. massiliense have low MIC values for
bedaquiline (28–30).
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In contrast to those bedaquiline studies, there has been only one study on the MICs
of delamanid for MAC (31), and delamanid MICs for other NTM species have not been
reported. In addition, there has been no comparative analysis of MIC values for
bedaquiline and delamanid with various NTM, including macrolide-resistant NTM. The
purpose of the present study was to evaluate the MICs of bedaquiline and delamanid
against major pathogenic NTM clinical isolates, including macrolide-resistant NTM.

For this study, which was initially approved by the institutional review board (IRB) of
Samsung Medical Center in 2008 and has received IRB approval once a year (IRB
approval no. 2008-09-016; last updated 2 February 2019), we included 251 clinical
isolates of five major pathogenic NTM (M. avium, M. intracellulare, M. abscessus subsp.
abscessus, M. abscessus subsp. massiliense, and M. kansasii) isolated from patients newly
diagnosed with NTM PD. We also included 56 clinical isolates of acquired-macrolide-
resistant NTM (M. avium, M. intracellulare, M. abscessus subsp. abscessus, and M.
abscessus subsp. massiliense), which were confirmed to have a 23S rRNA gene mutation
associated with the acquisition of macrolide resistance (32–34). In vitro susceptibility
testing with bedaquiline and delamanid was performed by measuring the MIC using
the broth microdilution method, according to Clinical and Laboratory Standards Insti-
tute guidelines (35). Mycobacterium peregrinum ATCC 700686, M. abscessus ATCC 19977,
M. avium ATCC 700898, and M. kansasii ATCC 12478 were used as controls.

Table 1 shows the MIC, MIC50, and MIC90 values of bedaquiline and delamanid for
251 isolates from newly diagnosed NTM PD patients. All MAC, M. abscessus subsp.
massiliense, and M. kansasii isolates were susceptible to macrolides; most M. abscessus
subsp. abscessus isolates, except for 11 macrolide-susceptible isolates, had inducible
resistance to macrolides, which was confirmed using sequence analysis of the erm(41)
gene. MAC and M. kansasii isolates had very low bedaquiline MIC50 (�0.016 �g/ml) and
MIC90 (�0.016 �g/ml) values. Although the M. abscessus subsp. abscessus and M.
abscessus subsp. massiliense isolates also had very low bedaquiline MIC50 (0.062 �g/ml)
and MIC90 (0.125 �g/ml) values, the MICs were higher than those for MAC and M.
kansasii isolates.

In contrast, MAC, M. abscessus subsp. abscessus, and M. abscessus subsp. massiliense
isolates had very high delamanid MIC50 (8 to �16 �g/ml) and MIC90 (�16 �g/ml)
values. Compared to those NTM, M. kansasii had relatively low delamanid MIC50

(0.25 �g/ml) and MIC90 (1 �g/ml) values.
The MIC, MIC50, and MIC90 values for bedaquiline and delamanid with 56 isolates of

macrolide-resistant NTM are shown in Table 2. All macrolide-resistant NTM isolates
showed very low bedaquiline MIC50 (�0.016 to 0.062 �g/ml) and MIC90 (�0.016 to
0.25 �g/ml) values. For all macrolide-resistant NTM isolates, however, the delamanid
MIC50 (4 to �16 �g/ml) and MIC90 (�16 �g/ml) values were very high (Table 2).

In this study, we evaluated the bedaquiline and delamanid MICs for major patho-
genic NTM clinical isolates, including acquired-macrolide-resistant NTM isolates. Con-
sistent with previous studies, our results showed that MAC, M. abscessus subsp.
abscessus, and M. abscessus subsp. massiliense isolates, as well as M. kansasii isolates,
had low bedaquiline MIC50 and MIC90 values.

In particular, the low bedaquiline MICs for macrolide-resistant NTM isolates, includ-
ing MAC, M. abscessus subsp. abscessus, and M. abscessus subsp. massiliense isolates, are
notable in this study. Although the clarithromycin MIC50 and MIC90 values for all
macrolide-resistant NTM isolates were �64 �g/ml, the macrolide-resistant NTM isolates
showed significantly lower bedaquiline MIC50 (�0.016 to 0.062 �g/ml) and MIC90

(�0.016 to 0.25 �g/ml) values. These results suggest that bedaquiline may be an
effective antimicrobial for treatment of macrolide-resistant NTM strains.

In contrast, in this study, the delamanid MICs were high for most major pathogenic
NTM isolates. The exception was M. kansasii, for which the delamanid MIC50 and MIC90

values were relatively low, compared to the values for other NTM isolates. These results,
especially the delamanid MICs for MAC isolates, differed from those of one previous
study (31). Although studies on delamanid resistance have reported that five genes
(ddn, fgd1, fbiA, fbiB, and fbiC) are associated with delamanid resistance in M. tubercu-
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losis (36), a similar association has not yet been reported for NTM. Given the high
delamanid MICs that we observed with MAC and M. abscessus clinical isolates, addi-
tional studies to identify genes that contribute to delamanid resistance in NTM are
needed.

Previous studies reported that mutations within the atpE, Rv0678, and pepQ genes
are involved in bedaquiline resistance in M. tuberculosis (37). In addition, recent studies
on bedaquiline-resistance-related genes in NTM have been reported. Alexander and
colleagues found that mutations in the mmpT5 and atpE genes were associated with
bedaquiline resistance in MAC strains (38). In addition, in M. abscessus subsp. abscessus,
mutations in the atpE and MAB_2299c genes have been reported to be associated with
bedaquiline resistance (39, 40). Therefore, if bedaquiline is used for NTM treatment,
then the possibility of bedaquiline resistance due to mutation in a bedaquiline-
resistance-related gene should be considered, although most NTM isolates had very
low bedaquiline MIC values in this study.

In summary, we evaluated the in vitro activities of bedaquiline and delamanid
against major pathogenic NTM clinical isolates. Our results showed that bedaquiline
had good in vitro activity against major pathogenic NTM but delamanid did not.
Bedaquiline has the potential to be a potent agent for the treatment of NTM PD,
including macrolide-resistant NTM PD.
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