Skip to main content
. 2019 Jul 3;17:972–981. doi: 10.1016/j.csbj.2019.06.024

Table 1.

Performance of various classifiers on the benchmark dataset.

Dataset Encoding MCC Accuracy Sensitivity Specificity AUC
AntiTb_MD AAC 0.594 0.797 0.764 0.829 0.853
AAI 0.588 0.792 0.724 0.859 0.857
CTD 0.559 0.769 0.633 0.905 0.809
CTF 0.599 0.799 0.774 0.824 0.849
DPC 0.664 0.832 0.809 0.854 0.886
GDPC 0.506 0.751 0.694 0.809 0.798
GTPC 0.604 0.802 0.774 0.829 0.837
NC5 0.568 0.784 0.779 0.789 0.826
QSO 0.548 0.774 0.769 0.779 0.845
AntiTb_RD AAC 0.715 0.852 0.764 0.940 0.909
AAI 0.708 0.844 0.729 0.960 0.906
CTD 0.665 0.832 0.799 0.864 0.883
CTF 0.765 0.882 0.859 0.905 0.908
DPC 0.820 0.910 0.889 0.930 0.945
GDPC 0.635 0.817 0.779 0.853 0.883
GTPC 0.674 0.837 0.814 0.859 0.889
NC5 0.684 0.839 0.774 0.905 0.878
QSO 0.708 0.849 0.769 0.930 0.881

The first and the second column represent the dataset and the feature encoding employed in this study. The third, fourth, fifth, sixth, and the seventh columns, respectively represent the MCC, accuracy, sensitivity, specificity, and AUC.