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Abstract

HIV is one of the fastest evolving organisms known. It evolves about 1 million times faster than its host, humans. Because
HIV establishes chronic infections, with continuous evolution, its divergence within a single infected human surpasses the
divergence of the entire humanoid history. Yet, it is still the same virus, infecting the same cell types and using the same
replication machinery year after year. Hence, one would think that most mutations that HIV accumulates are neutral.
But the picture is more complicated than that. HIV evolution is also a clear example of strong positive selection, that is,
mutants have a survival advantage. How do these facts come together?
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The neutral theory of molecular evolution (Kimura 1983) has
had a profound impact on evolutionary theory and the meth-
ods we use to study molecular evolution in general. Although
selection clearly has had a large impact on how lifeforms have
evolved (Darwin 1859), many features have also arisen due to
various stochastic events such as catastrophic population size
reductions and “lucky” survival in new or momentarily open
niches. Interestingly, HIV captures many of these aspects.

The origin of the human immunodeficiency virus (HIV) is
complicated; it has crossed the host species barrier several
times from several primate hosts into humans (Sharp et al.
1994; Sharp and Hahn 2011). There are two types of HIV, HIV-
1, and HIV-2, with different origins in chimpanzees, gorillas,
and sooty mangabeys. In addition, simian immunodeficiency
viruses (SIVs), as the virus is called when it is not in humans,
have also jumped host many times such that some other
primate hosts besides humans also are infected by more
than one type of primate lentivirus (PLV, the collective
name of HIVs and SIVs). The diversity among all these PLVs
is very large, with pairwise distances up to 40–50%, yet cross
species jumps are still possible. The pandemic version of HIV-
1 was likely introduced into humans as recently as in the late
1800s or the early 1900s (Korber et al. 2000; Worobey et al.
2008), although many previous, but globally unsuccessful,
introductions may have occurred in the more distant past.
This raises the question of how so genetically different viruses
can jump into and infect so many different primate hosts.

HIV-1 is also extremely diverse within humans, both on the
between human hosts level and within a single infected hu-
man. For instance, the genetic distance between HIV-1 var-
iants reaches 25% globally between so called subtypes (Leitner
1997) (major pandemic lineages forming distinct phyloge-
netic clades without significantly detectable recombination
between them). Within a single host, HIV-1 can reach diver-
sity levels of 5–10% that have diverged 10% from the found-
ing variant(s) only years after infection (Shankarappa et al.
1999; Immonen et al. 2015). Compared with humans, who

differ only 0.1% from each other after 2.5 My of evolution,
HIV-1 indeed displays extreme levels of genetic variation. The
extreme within-host variation explains the global variation, as
all variation, of course, emerges while the virus replicates
within a host. Thus, many mutants in an HIV-1 population
that exist in a single host survive and are subsequently trans-
mitted. As HIV-1 within-host populations are vast, in the
order of 106–1010, quickly raising to appreciable (and detect-
able) levels would be unlikely unless selection was involved.
Indeed, natural evolution of HIV-1 within-host populations is
driven by the interaction of the virus and the host’s immune
response. In particular, the surface proteins of HIV-1 (encoded
by the env gene) are under heavy attack by human antibodies
which quickly adapt to neutralize the most prevalent HIV-1
variants (Richman et al. 2003; Wei et al. 2003; Bunnik et al.
2008). Thus, HIV-1 escape mutants will have an advantage
and rise to high levels. HIV-1 mutations occur at a very high
rate, where all single point mutations occur daily, creating a
diverse pool from where escape mutants may be drawn
(Coffin 1995). HIV-1 lacks proof reading, causing mutations
in nearly every replication round (Mansky and Temin 1995).
The lack of proof reading has several advantages, 1) it allows
fast replication as proof reading takes time and requires ad-
ditional repair mechanisms, 2) it generates mostly defective
forms of HIV-1 (Aldovini and Young 1990; Rusert et al. 2004),
which still need to be killed by the immune system, and
among which replication competent HIV-1 can hide, and 3)
it generates the genetic variation that facilitates immune es-
cape. The antibody pressure on env explains why it is the
most diverse gene on the HIV-1 genome. Although all genes
are under some selective pressure mediated by the humoral
(antibodies) or cellular (CTL) immune systems, additional
pressure on HIV-1 is exerted by antiviral treatment using
synthetic drugs. Many current anti-HIV drugs target HIV spe-
cific proteins such as the reverse transcriptase and the pro-
teinase, both vital for replication. This targeted pressure also
selects mutants from the diverse, low frequency pool that
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HIV-1 constantly regenerates. Drug induced pressure selects
for specific mutations regardless of genetic background,
which have been carefully mapped for each antiviral drug,
whereas immune pressure is different in every human. When
strong pressure is exerted on certain sites, other sites with
little or no benefit may tag along and rise to high levels
through hitchhiking (Gillespie 2000; Neher and Leitner
2010; Zanini and Neher 2013; Pennings et al. 2014).

The population size and replication rate are important
factors that contribute to the probability of how HIV-1
drug resistance develops (Bonhoeffer et al. 1997; Nowak
et al. 1997; Nijhuis et al. 1998; Duffy et al. 2008; Alexander
and Bonhoeffer 2012). Recent work studying population size
dynamics and genetic diversity as a function of drug pressure
revealed that the stronger the drug pressure was, the more
diversification followed the drug-induced population bottle-
neck (Fun et al. 2018). Thus, more severe drug-induced ex-
tinction was followed by more detectable diversification.
When large extinctions occurred, previously occupied niches
opened up for new virus variants. Many new mutations can
then be accepted and as they do no compete for resources
until the population regains a size limited by the carrying
capacity, or many of the preexisting low-frequency variants
have a chance to rise to high relative frequencies. Hence,
strong selection against present variants may drastically re-
duce population size, where stochastic effects may determine
which variants get a chance to survive. Indeed, while specific
drug mutations become fixed, the path to those drug resis-
tance mutations differs in different patients (Fun et al. 2018).

Although the census HIV-1 within-host population size is
vast, the effective population size (Ne) has typically been es-
timated to be much smaller. Many early estimates were in the
order of 103–104 (Brown 1997; Nijhuis et al. 1998; Seo et al.
2002), but some suggested Ne in the order of 106 (Coffin 1995;
Rouzine and Coffin 1999), approaching the census size. Ne is
important because drift has more impact in smaller popula-
tions while selection is more important in large populations
in explaining how genetic variants evolve in a population.
Hence, while Ne is an important parameter explaining popu-
lation dynamics and the rise of escape mutations, the esti-
mation of the effective population size itself is based on
assumptions about neutrality and linkage disequilibrium.
This has caused debate on whether the evolution of HIV-1
within a host is mostly driven by drift or selection. The lower
estimates of Ne were typically based on the assumption of
neutrality. However, it has been pointed out that estimates
based on genetic diversity at neutral sites cannot be applied
to diversity at sites under selection, for example, sites under
drug selection (Kouyos et al. 2006). The large Ne of 106, on the
other hand, was estimated under the assumption of positive
selection, but instead ignored the effects of recombination,
another complicating factor in HIV-1 evolution. In this con-
text, drift in combination with selection can generate a state
of negative linkage disequilibrium, known as the Hill–
Robertson effect (Hill and Robertson 1966). This would favor
recombination as an evolutionary mechanism as it can re-
duce the time to fixation. HIV-1 recombination is indeed a
major mechanism for evolution (Zhuang et al. 2002; Zhang

et al. 2010), with a rate on par with the substitution rate
(Neher and Leitner 2010).

Because transient decreases of Ne significantly enhance the
importance of drift over selection, bottleneck effects during
HIV-1 evolution are of particular importance. As already men-
tioned, significant bottlenecks can occur during antiviral
treatment. The perhaps less severe, but much more frequent
bottlenecks due to immune surveillance also reduce the ef-
fective population size (Frost et al. 2001). Classic population
genetics predicts that the effective population size is given by
the harmonic mean of the census size, thus trending towards
a small size. Sites under neutral evolution will therefore be
more affected by bottlenecks than selected sites because the
diversity at neutral sites is larger and would take longer time
to regenerate. Intriguingly, the most severe bottleneck during
HIV-1 evolution occurs during transmission, linking within-
host evolution to between-host evolution and the global scale
of HIV-1 evolution.

Transmission causes a severe bottleneck, allowing only a
small number of viruses to establish a new population in a
new host. Because HIV-1 replication in the donor host mostly
generated junk HIV-1, even transmission of many virus par-
ticles would only constitute a small number of viable viruses.
Many studies have tried to estimate the number of viruses
that establish infection, and while the results vary and depend
on experimental methodology and mode of transmission, it is
clear that a very severe bottleneck takes place, permitting
only a single or sometimes tens of viruses to establish a
new infection (McNearney et al. 1992; Wolfs et al. 1992;
Zhang et al. 1993; Keele et al. 2008; Salazar-Gonzalez et al.
2009; Rieder et al. 2011).

The rapid evolutionary rate observed at the within-host
level appears not to be sustained at the epidemiological level,
however, decreasing by an order of magnitude (Alizon and
Fraser 2013). Although several theories have been proposed
to explain the rate differences (Herbeck et al. 2006; Maljkovic
Berry et al. 2007; Maljkovic Berry et al. 2009; Pybus and
Rambaut 2009; Lythgoe and Fraser 2012; Alizon and Fraser
2013), some authors have suggested that the evolutionary
rate discrepancy could result from a disproportionate fraction
of transmissions involving latent virus that is genetically closer
to the founder than the average virus in the plasma popula-
tion (Lythgoe and Fraser 2012; Vrancken et al. 2014).
Interestingly, it has been shown that the evolutionary rate
on the global level is inversely correlated with the rate of
spread (Berry et al. 2007), that is, the faster HIV-1 spreads,
the slower it evolves on the between-host level. This differ-
ence is explained by the fact that early infection involves
nearly neutral evolution as the immune system is not fully
active, whereas later in the infection it is. Thus, if HIV-1 is
transmitted during the acute infection phase, then HIV-1
evolves at the slower neural rate also on the between-host
scale, whereas if transmissions occur during the chronic phase
then the between-host rate would be more similar to the high
within-host rate seen later, and during most of, HIV-1 within-
host evolutionary time. Such differences have been shown to
exist between fast and slow epidemics (Berry et al. 2007). If
HIV-1 was selectively transmitted, for example, preferentially
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selecting for some feature that makes it more transmissible,
no such correlation would be detectable. Furthermore, it has
been shown that the between-host diversity is shaped by the
interplay of the transmission rate and the within-host selec-
tion rate (involving both escape from, and reversions of, host-
specific CTL mediated mutations), which together can main-
tain high between-host diversity (Poon et al. 2007). Of course,
there may be both neutral and selective mechanisms involved
in transmission, such that regardless of genetic background
(composed of neutral sites) a few sites that make transmis-
sion or early outgrowth possible (selected sites) determine
infection probability. HIV-1 evolution is thus described by
both neutral and selective evolution. Depending on what
the goal with a particular analysis is, one may carefully choose
models and methods based on either neutral or selective
assumptions. Sometimes it may be necessary to filter sites
into separate categories and treat the sets differently.

One powerful set of methods includes phylodynamic
methods to infer how HIV (and other pathogens) spread
among humans (and other hosts). Based on the observation
that a between host HIV-1 phylogeny is related to the trans-
mission history between the hosts (Leitner et al. 1996), recent
advances using within-host coalescent models have con-
nected within-host evolution to between-host evolution
(Ypma et al. 2013; Jombart et al. 2014; Romero-Severson
et al. 2014; Kenah et al. 2016; Didelot et al. 2017; Romero-
Severson et al. 2017). These models assume neutral evolution
as well as neutral transmission. These models have shown
that different phylogenetic patterns may reveal epidemiolog-
ical relationships, that is, who-infected-whom and when
(Romero-Severson et al. 2016), and that taking within-host
evolution into account when investigating global level epi-
demics has profound impact on reconstructing transmission
networks (Giardina et al. 2017) and incidence trends (Volz
et al. 2017).

The development of new sequencing technologies has al-
ready had an impact on HIV-1 research, and undoubtedly will
continue to reveal new insights into HIV-1 evolution. Many of
the open issues outlined here will be investigated, previous
results based on more limited data will be challenged, and
new questions will arise. The interplay between neutral and
selective mechanisms will be further illuminated, necessitat-
ing both neutral and selective models to interpret the fasci-
nating evolution of HIV-1.
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