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Abstract

Cancer- and treatment-related cognitive changes have been a focus of increasing research since the early 1980s, with meta-
analyses demonstrating poorer performance in cancer patients in cognitive domains including executive functions, process-
ing speed, and memory. To facilitate collaborative efforts, in 2011 the International Cognition and Cancer Task Force (ICCTF)
published consensus recommendations for core neuropsychological tests for studies of cancer populations. Over the past de-
cade, studies have used neuroimaging techniques, including structural and functional magnetic resonance imaging (fMRI)
and positron emission tomography, to examine the underlying brain basis for cancer- and treatment-related cognitive
declines. As yet, however, there have been no consensus recommendations to guide researchers new to this field or to pro-
mote the ability to combine data sets. We first discuss important methodological issues with regard to neuroimaging study
design, scanner considerations, and sequence selection, focusing on concerns relevant to cancer populations. We propose a
minimum recommended set of sequences, including a high-resolution T1-weighted volume and a resting state fMRI scan.
Additional advanced imaging sequences are discussed for consideration when feasible, including task-based fMRI and diffu-
sion tensor imaging. Important image data processing and analytic considerations are also reviewed. These recommenda-
tions are offered to facilitate increased use of neuroimaging in studies of cancer- and treatment-related cognitive dysfunc-
tion. They are not intended to discourage investigator-initiated efforts to develop cutting-edge techniques, which will be
helpful in advancing the state of the knowledge. Use of common imaging protocols will facilitate multicenter and data-
pooling initiatives, which are needed to address critical mechanistic research questions.

Non–central nervous system (CNS) cancer and its treatments
are associated with cognitive declines that can be persistent
(1–3), with executive functions, processing speed, and memory
especially affected (4–7). Neuroimaging studies have demon-
strated alterations in brain structure and function (8–11) that
correlate with objective and/or subjective cognitive perfor-
mance (12–14). Important questions remain regarding the role
of cancer disease processes (15–17) and treatments other than

chemotherapy (18–20). While most research has focused on
breast cancer, other non-CNS cancers have also been studied
(21–33). Greater mechanistic understanding of these changes
will advance prevention and remediation efforts. Neuroimaging
can provide unique and important biomarkers of cognitive
changes; however, methodological variability has precluded
practice-changing conclusions. Given difficulties inherent in
studying cancer patients, multicenter studies and data-pooling
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initiatives are needed to gain sufficient statistical power to ad-
dress critical research questions (34).

The International Cognition and Cancer Task Force (ICCTF)
was founded in 2006 to facilitate international collaborations
around cognitive impairment in cancer patients (35). A specific
goal of the ICCTF is to create research recommendations and
guidelines that increase the homogeneity of study methods to
facilitate between-study comparisons, meta-analyses, and data
pooling (36) and provide better estimates of incidence, severity,
individual risk factors, and causes of cognitive changes (37). In
2011, the ICCTF published recommendations regarding cogni-
tive assessment methods (37). Here the ICCTF Neuroimaging
Working Group offers recommendations for magnetic reso-
nance imaging (MRI) and positron emission tomography (PET).
We focus on concerns particularly relevant to studies of cancer
populations, including study design, timing of assessments,
and choice of control groups(s), and we recommend sequences
accessible to most institutions thought likely to be fruitful based
on the existing literature (Figure 1).

Methodological Considerations

We first discuss general study design concepts formulated in
the ICCTF cognitive studies publication (37) that are also critical
for neuroimaging studies, then describe additional aspects spe-
cific to neuroimaging. Those newly implementing neuroimag-
ing should work with an magnetic resonance imaging (MRI)/
positron emission tomography (PET) physicist to optimize
sequences (eg, while smaller voxel size increases spatial resolu-
tion, other parameters would need to be adjusted to maintain
overall signal-to-noise, resulting in increased scan time).
Collaboration/consultation with neuroradiology colleagues and/
or researchers with neuroimaging expertise in cancer popula-
tions may help studies start efficiently and avoid common pit-
falls. This Commentary focuses on human neuroimaging
studies. Preclinical work is another important component of ex-
amination of mechanisms underlying cancer- and treatment-
related cognitive changes. Best practices for studies in animal
models, including neuroimaging-related considerations, are be-
yond the scope of this Commentary, but are considered else-
where (38,39).

General Considerations

Double-blind, randomized, placebo-controlled study designs are
optimal, but unethical for cancer patients. Therefore, the opti-
mal approach is a prospective longitudinal design with appro-
priate control groups, including a minimum of one assessment
before and after the treatment under investigation. A longer-
term follow-up assessment is also advised to examine
persistent or delayed effects. Using intervals similar to those
previously published will advance the ability to compare and
combine data sets. Acute follow-up intervals have commonly
ranged from one to six months postchemotherapy, with longer-
term follow-up typically about one year later. Timing of assess-
ments depends on the scientific research questions, taking into
consideration potential patient symptoms and side effects and
timing of other treatments.

Including control groups is essential, given the absence of
appropriate normative data to adequately control for possible
confounding factors (eg, variability in neuroimaging equipment
and scan sequences). The ideal comparison would be a disease-
specific control group differing only in the treatment under

investigation. Given current treatment paradigms, patient
groups usually also differ in clinical aspects of disease. Such dif-
ferences should be documented and considered in analyses.
The inclusion of an additional control group of individuals with-
out cancer is also recommended to determine the normal pat-
tern of change in outcome variables over time and if observed
effects might be due to technical aspects of neuroimaging (eg,
scanner drift).

One challenge for data-pooling initiatives is the need to
comply with institutional review board (IRB) requirements for
data sharing. We strongly recommend including a section spe-
cifically addressing the potential future sharing of deidentified
data sets in IRB documents, including informed consents. IRB
requirements vary across countries and institutions and change
over time. Inclusion of such language facilitates the ability to
rapidly participate in multicenter initiatives.

Participant Recruitment

Novice neuroimaging researchers have reported difficulty en-
rolling participants. The authors have found that a critical com-
ponent of successful recruitment is having research staff who
present the study with confidence and enthusiasm and respond
to questions in a positive, knowledgeable, reassuring manner.
Offering a mock scanner session or visiting/laying in the real
scanner can be useful for hesitant individuals. Providing a pic-
ture of the brain to take home, having structural scans read by a
neuroradiologist for incidental findings, and offering an

Figure 1. Main recommendations and considerations for incorporation of neuro-

imaging into studies of cognitive impairment in non–central nervous system

cancer patients. IRB ¼ institutional review board; MRI ¼magnetic resonance im-

aging; PET ¼ positron emission tomography.
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honorarium for time and effort are also helpful. Flexibility in
scheduling study visits can make a great difference in recruit-
ment of patients trying to juggle work, personal responsibilities,
and medical care. “Piggybacking” imaging onto other studies in
cancer populations can also be effective; for example, partici-
pants already enrolled in studies of cognition or quality of life
may also consider participating in neuroimaging.

Cancer patients tend to be more receptive to research partic-
ipation when first approached by a member of their clinical
team, so involving surgeons and oncologists in study design
and efforts to promote the work is crucial. For prospective stud-
ies attempting to obtain pretreatment baseline assessments,
working with clinicians as early in the diagnostic and treatment
process as possible is important. For example, identifying po-
tentially eligible patients via the surgeon may offer a greater
window of time to schedule initial prechemotherapy assess-
ments vs identifying patients through the medical oncologist.
Financial support of nurse navigators or other clinic staff to sup-
port time spent on recruitment can also be very helpful.

MRI Scanner Considerations

MRI should preferably be conducted on a 3T system, using the
most advanced headcoil available for maximum signal detec-
tion. It is also important to minimize equipment differences.
Consistent scan parameters should be maintained across par-
ticipants and time points, as slight variations can have great
effects. Changes in the scanner or equipment (eg, software or
hardware upgrades, coil changes) should be documented.
Consideration should be given to scanning phantoms relevant
to different sequences at regular intervals, as well as after scan-
ner upgrades, to monitor stability. Regular phantom scans can
monitor calibration across sites and over time.

It is ideal to use one scanner for all participants and time
points. If acquisition cannot be confined to one scanner (eg, for
multicenter studies), individual participants should be assessed
on the same scanner over time. Patient and control groups
should be intermixed across scanners and over time to avoid
confounding group with scanner type or scanner changes over
time.

MRI Scan Protocol Considerations

It is beneficial to obtain close to isotropic voxels, particularly for
high-resolution structural MRI and diffusion tensor imaging
(DTI), to avoid directional bias, reduce partial volume effects
and registration errors, and allow more precise and accurate
measurements. As cancer treatment effects have been detected
in distributed brain regions, whole-brain coverage, including
the cerebellum, should be obtained unless contraindicated by
the specific scan sequence (eg, arterial spin labeling [ASL]). It is
advisable to standardize certain scan parameters across
sequences. For instance, using the same field of view (FOV) and
angulation increases uniformity of the scan protocol and facili-
tates multimodal analysis.

Motion is extremely detrimental; minimization of head and
body motion should be repeatedly emphasized to the partici-
pant before and during scanning. Visual inspection of data at
the time of acquisition can be helpful to provide participants
with feedback on their level of motion and to repeat sequences
as necessary. Remaining in close contact with the participant
during scanning is also helpful in reducing anxiety and main-
taining motivation and arousal (eg, for fMRI tasks).

It is important to maintain a standardized scan protocol or-
der and document any deviations for consideration in analysis.
Series that are particularly susceptible to motion might be bet-
ter placed early in the scanning session. It is recommended that
resting state fMRI (rsfMRI) scans be conducted either before or
otherwise at a time removed from task-based scans to reduce
the effects of cognitive processes on intrinsic networks (40).

Considerations for MRI Sequence Selection

MR technology can be divided into three tiers: 1) conventional
techniques in routine clinical use for structural imaging and
available on most 3T and 1.5T scanners, such as T1-weighted
and T2-weighted volumetric imaging and fluid attenuated in-
version recovery (FLAIR) scans; 2) advanced techniques includ-
ing specialized sequences such as task-based blood oxygen
level–dependent (BOLD) and rsfMRI, diffusion, perfusion, and
MR spectroscopy—advanced sequences have greater likelihood
of equipment, vendor-specific software feature, and hardware
performance differences; 3) emerging techniques including
leading-edge prototype applications available at academic cen-
ters as “work-in-progress (WIP)” software that may become
available commercially if proven useful and there is sufficient
demand (eg, multiband acquisition software for BOLD and diffu-
sion imaging). These are the most demanding applications in
terms of hardware, software, and specialized expertise.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
other consortia (eg, Transforming Research and Clinical
Knowledge in TBI [TRACK-TBI], International Neuroimaging
Data Sharing Initiative [INDI], Brain Development Cooperative
Group) have multivendor 3T MR acquisition sequences that are
relatively harmonized. Use of such already-vetted sequences
might be particularly helpful for multicenter collaborations or
investigators with more limited neuroimaging resources. The
ADNI sequences are available at http://adni.loni.usc.edu/meth-
ods/documents/mri-protocols/. ADNI-3 includes T1, FLAIR,
fMRI, DTI, and ASL perfusion sequences for multiple vendor
platforms, both basic (for most available 3T systems) and ad-
vanced (for systems with connectome-level hardware gradients
and multiband software).

Recommended Imaging Sequences

These recommendations represent a suggested minimum core
set of sequences for sites that may not have the capability for
more advanced or emerging sequences, as well as additional se-
ries likely to be of interest if the necessary resources are avail-
able. We recommend using the most current ADNI sequences,
unless relevant expertise is available to optimize sequences for
a particular research question. Several considerations were
taken into account when selecting the minimum core set of MRI
sequences. First, the modalities must have proven to be sensi-
tive to cancer- and treatment-related brain changes. Second,
the sequences must be available on most clinical scanners and
be accessible to a wide range of users regardless of scanner plat-
form. Third, optimized parameters are publicly available via
existing cooperative neuroimaging projects, and multicenter re-
producibility has been assessed, making data-pooling easier.
Based on these considerations, we recommend including the
following minimum set of core MRI sequences:

1. A high-resolution, T1-weighted scan with excellent contrast
between gray matter, white matter, and cerebrospinal fluid
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allows precise localization of anatomical structures and
permits the usage of postprocessing tools that characterize
volumetric changes. This series is also routinely used for
anatomical reference and spatial normalization procedures
for other imaging modalities and for radiologic review for
incidental findings. Inclusion of this sequence is recom-
mended as literature has demonstrated differences in gray
matter volume, density, and connectivity related to cancer
and its treatment (9,41–43).

2. rsfMRI allows examination of functional brain changes
without requiring the stimulus delivery and response re-
cording equipment necessary for task-based fMRI. Previous
work has found rsfMRI useful in demonstrating
differences in brain network connectivity after cancer treat-
ment (44–47). A sequence of at least six minutes’ duration
(ideally 10 minutes or more) is suggested, as is instructing
participants to relax, but not to fall asleep. There has
been debate about whether eyes should be open or closed
(48–51); our consensus recommendation is eyes closed,
based on review of the most commonly used procedures.

Investigators are encouraged to consider additional MRI mo-
dalities depending on the research questions and available
equipment and neuroimaging expertise. Task-based fMRI of
working memory has consistently demonstrated alterations in
brain function related to cancer and treatment (52–60). Several
prior studies have utilized an “N-Back” paradigm, with condi-
tions of increasing working memory load. Use of a visual-verbal
N-Back working memory paradigm (eg, the visual analog of the
task utilized in [59]) (Supplementary Materials and
Supplementary Figure 1, available online) is suggested. fMRI of
other cognitive functions of interest should also be considered.
Working and episodic memory have been studied most exten-
sively, with some studies examining other aspects of executive
functioning (10).

DTI is useful to assess changes in white matter micro-
structure and has been shown to be sensitive to cancer treat-
ment–related changes (8), though not all scanners may be
capable of implementing the parameters necessary for optimal
sensitivity. DTI introduces a number of imaging parameters
unique to diffusion imaging, including gradient magnitude (b-
value) and directions. DTI acquisitions also include nondiffu-
sion T2-weighted images, known as b0 images (61,62), used for
artifact removal and tensor fitting. Determination of the num-
ber of directions to be acquired and the b-value partly depends
on the research question. A minimum of six directions is re-
quired for calculating the diffusion tensor (63). A larger number
of directions (eg, 30þ) is typically required for fiber tracking,
with some tracts requiring more directions than others.
Multiple sequence runs might be considered to increase signal-
to-noise. It is beneficial to acquire as thin a slice thickness and
as many directions as possible while being mindful of scan
length. DTI was not included in the recommended core mini-
mum set of sequences because it is very sensitive to scanner
variability, making it difficult to pool data even when using har-
monized sequences.

A 3D FLAIR sequence is useful for detection of white matter
hyperintensities as well as radiologic review. Utilization of PET,
more advanced diffusion-weighted techniques (eg high angular
resolution diffusion-weighted imaging [HARDI], Q-Ball, diffu-
sion spectrum imaging [DSI]), perfusion MRI (eg, ASL, pulsed ar-
terial spin labeling [PASL]), or MR spectroscopy could also be of
interest, though, as for DTI, concerns regarding reproducibility
between scanners and necessary expertise for reliable

prescription and analysis may limit their generalizability across
different sites.

Image Processing, Analysis, and Reporting

Quality Assurance

Image quality, and therefore data analysis and interpretation,
can be affected by sources of artifact (64,65), including partici-
pant motion (resulting in ringing or blurring of the images), ex-
perimenter inaccuracy (eg, susceptibility artifacts related to the
presence of ferromagnetic objects, incorrect FOV resulting in
wrapping artifacts), and hardware failures and image recon-
struction problems (eg, large signal dropouts, noise, spikes, sig-
nal inhomogeneity, ghosting). Visual inspection of raw images
is recommended (66), and automated quality assurance (QA)
procedures can be a useful complementary step (67–69). QA is
necessary at various stages in the image processing pipeline, as
some artifacts may be more evident at different points. Images
with excessive distortions that would corrupt further analysis,
such as large signal dropouts or excessive motion, can be easily
identified, repaired if possible (70,71), or excluded.

Image Processing for Recommended Core Sequences

T1-Weighted Scans
Voxel-based morphometry (VBM) (72,73) is a commonly used
method for examining brain volumes, particularly gray matter.
An optimized (74) procedure can be semi-automatically exe-
cuted using existing software tools such as the VBM Toolbox in
the SPM software package. VBM statistical analysis is typically
done on a whole-brain basis using statistical parametric map-
ping within a general linear model (GLM) framework (75).

Surface-based methods for volumetric analysis typically
involve automated or semi-automated whole-brain or regional
parcellation of cortical and subcortical volumes and provide
measurements of cortical thickness, surface area, curvature, and
volume for discrete cortical and subcortical structures (76–79).

Manual tracing techniques utilize a standardized approach
to delineating regions of interest (ROIs), which typically encom-
pass a particular brain structure. Such protocols rely on ana-
tomic landmarks and conventional boundaries to define ROIs,
and tracings must have acceptable inter- and intrarater reliabil-
ity. These methods can be extremely precise for particular ROIs
in a given individual, but they are time- and labor-intensive.
The many delineation protocols available can also result in sub-
stantial differences in reported ROI volumes (80).

Each approach to quantitative structural analysis has
strengths and limitations in terms of objectivity, reliability, time
and labor intensity, and other factors. One method may be
more advantageous than another for a particular scientific
question, and the approaches can be used complementarily to
provide convergent validation of a finding.

rsfMRI
rsfMRI is typically used to evaluate functional connectivity be-
tween brain regions. In addition to the aforementioned QA pro-
cedures, fMRI QA should include inspection of the data time
courses to assess any abrupt signal changes. In addition to the
standard preprocessing steps required for task-based fMRI de-
scribed below, rsfMRI data require additional corrections (81).
Several statistical approaches for rsfMRI functional connectivity
exist, including seed-based correlation (SBC), independent
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components analysis (ICA), and atlas-based ROI. SBC seed sizes
and locations are not standardized, leading to variability in
results (82), and must therefore be carefully considered.

ICA is a data-driven, multivariable method (83) wherein indi-
vidual components can represent various brain networks or
non-neuronal noise. ICA can therefore serve for artifact correc-
tion steps (also see task-based fMRI below) as well as for statisti-
cal analysis. Identifying relevant components can be
challenging, though several methods exist for this purpose (81).

The magnitude of intrinsic brain activity per region can also
be measured from rsfMRI. Several methods exist for obtaining
information for ROIs and/or in a whole-brain, voxel-wise
manner, including amplitude and fractional amplitude of low-
frequency fluctuations (84) and regional homogeneity measure-
ment (85); each has advantages and disadvantages (82).

Image Processing for Additional Imaging Sequences of
Interest

Task-Based fMRI
Task-based fMRI can assess changes in brain activation while
performing a cognitive task in the scanner, and recommended
methods for preprocessing fMRI data have been extensively de-
scribed (86–89). Many options for further preprocessing exist, in-
cluding B0 field-map correction to correct for geometric
distortions due to magnetic field inhomogeneities (relevant for
both fMRI and DTI) (90,91) and ICA for removing motion artifacts
(92). Similar to VBM, a GLM approach is widely used for whole-
brain voxel-based statistical analysis of fMRI data (93).

The interpretation of fMRI activity becomes complicated
when fMRI task performance differs between groups, as
between-group activation differences could be the result or the
cause of low performance accuracy. It is therefore helpful to
consider ways to address this concern, for example, by person-
alizing task difficulty level to ensure similar performance (94) or
covarying analyses for task performance.

DTI
Detailed descriptions of DTI preprocessing steps and an over-
view of the most commonly used DTI analysis methods can be
found elsewhere (8). With the diffusion tensor fitted in every
voxel, parameter maps, such as those measuring fractional an-
isotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and
axial diffusivity (AD), can be calculated and analyzed.

The diffusion tensor model is a simple model of water diffusion
within the brain, and results must be interpreted with care (95).
While DTI has the sensitivity to detect microstructural changes
and damage, it is not specific in identifying what changes occurred
(eg, demyelination vs axonal degeneration). Additionally, the diffu-
sion tensor model is inadequate in the many regions of the brain
that contain “crossing fibers.” Higher-order diffusion models can
bring additional insights in this regard (62,96), but they require
more advanced diffusion sequences (eg, acquiring multiple shells
with different b-values and number of orientations).

FDG-PET
FDG-PET serves as a quantitative biochemical marker of glucose
utilization rate. Relative levels of FDG uptake are more broadly
acquired to index synaptic activity throughout more metaboli-
cally active brain tissues (eg, neocortex, thalamus, cerebellar
cortex), while little attention has thus far been given to less
metabolically active structures (eg, globus pallidus, white mat-
ter tracts).

Similar procedures to those discussed above for MRI are rec-
ommended to allow collection of data that can be combined in
collaborative analyses. Additional considerations for FDG-PET in-
clude the following: 1) the participant must fast for a minimum of
four to six hours prior to the scheduled time of FDG adminis-
tration; 2) prior to administering FDG, blood glucose level must be
measured and recorded; 3) an intravenous catheter is required for
FDG administration; 4) the participant should be accommodated
to an environment with minimal sensory stimulation; and 5) PET
is acquired while the participant is awake with eyes open.

Specific PET acquisition protocols depend upon various fac-
tors related to instrumentation and are thus highly scanner-
dependent. Identifying an expert collaborator who can assist in
designing these experiments is key to successful PET studies.
Preprocessing and analysis of FDG-PET data are highly similar
to processing and analysis of fMRI data, including statistical
parametric mapping and ROI methods, as described above.

Connectome Analysis
Mapping the brain network, or connectome, has become a focus
of increasing attention. Connectomes can be constructed from
gray matter volumes (97), DTI (98), and rsfMRI (44), as well as elec-
troencephalogram (EEG) (99) and magnetoencephalography (MEG)
(100). Connectome analyses, typically based on graph theory, pro-
vide advantages over traditional neuroimaging approaches, in-
cluding being inherently multivariable, utilizing multiple
neuroimaging data modalities, and improved characterization of
the brain’s complexity. Connectome properties include global and
local metrics of brain organization, efficiency, and connectivity.
Additionally, connectomes can be used for more advanced analy-
ses, including network response to simulated neuropathology (98).
Connectome analyses can be computationally intensive, however,
and thresholding networks of different sizes for comparison
remain an area of ongoing debate (101).

Analytic Considerations

Thresholding and Correction for Multiple Comparisons
Analyses of neuroimaging data are typically done at the voxel
level across the whole brain, and therefore involve tens of thou-
sands of univariate statistical tests (eg, a t test is performed at
each voxel). Options to correct for multiple comparisons include
family-wise error (FWE) correction, typically based on an ad-
justed Bonferroni method, which accounts for the fact that
observations for single voxels are not independent; random
field theory (RFT), which better accounts for spatial smoothing
and correlation in neuroimaging data (102); and false discovery
rate (FDR), which often provides greater sensitivity by applying
Bonferroni correction in a descending manner across statisti-
cally significant voxels, thus adapting to the level of signal pre-
sent in the data. FWE and RFT control for the chance of any
false positives, while FDR controls the proportion of false posi-
tives among suprathreshold voxels (103). Permutation methods
may offer advantages, especially for small samples (102,104).
Threshold-free cluster enhancement (TFCE) is a permutation-
based method that identifies areas of spatial continuity while
minimizing problems related to arbitrary cluster thresholds and
spatial smoothing (105). Alternate approaches include explicit
masking as well as ROI extraction to restrict the number of com-
parisons; however, these approaches inherently downsample
the data.

With regard to the concern of adequate consideration of
false positives for fMRI (106), recent work suggests that when
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an appropriate initial statistical threshold is used, the number
of false positive errors is in keeping with what would be pre-
dicted statistically (107). With careful consideration of related
issues (eg, use of more stringent primary thresholds, transpar-
ent reporting practices), methods like cluster-based threshold-
ing can still be useful (108). We recommend that an
appropriate method of multiple comparison correction be
employed for findings to be considered robust, while also ac-
knowledging the challenges of working with small samples
and recognizing that more exploratory analysis can be critical
for discovery science.

Considerations for Analyzing Longitudinal Image Data
Two approaches are commonly applied for analysis of longitudi-
nal image data: repeated measures analysis of variance (or
within-subject ANOVA) and cross-sectional (GLM-based) analysis
of summary measurements such as percent difference (109). If
only two time points are being analyzed, baseline measurements
can also be included as a covariate when analyzing post-
treatment data. Typical methods may be suboptimal, however,
as they do not model the covariance structure of serial measure-
ments appropriately, introducing a systematic processing bias
(110,111). Some software packages offer solutions for unbiased
longitudinal image analysis by using within-subject template cre-
ation (110,111). However, commonly used neuroimaging tool-
boxes make restrictive or unrealistic assumptions when
modeling more than two time points per subject (112). More so-
phisticated methods are being developed to model longitudinal
neuroimaging data that account for the within-subject correla-
tion of longitudinal data (109,112–114).

It is important to use the same software version for all anal-
yses to prevent bias. Differences in scanner hardware or soft-
ware or different acquisition parameters or protocols over time
will also influence results (111). A combined scan of subjects
and phantoms could allow post hoc correction of these biases,
or appropriate covariates reflecting scanner-related differences
could be included in the statistical design.

Describing and Reporting Neuroimaging Data
A detailed guide for describing fMRI experiments and results
that can be applied to many neuroimaging studies can be found
elsewhere (115). It is best to be inclusive regarding details of the
study design, data acquisition parameters, QA measures, pre-
processing steps, modeling, statistical inference, and any other
important methods (eg, ROI definitions). Figures and tables
should describe statistics and thresholds used, how anatomical
underlays or displayed templates were created, if masking or
other such methods were used, the 3D coordinates (x,y,z) of sta-
tistically significant clusters, the stereotactic space of these
coordinates, statistics for each cluster (eg, Z-value, number of
voxels, cluster extent), and anatomical labels for clusters (eg,
“left superior frontal gyrus”). To facilitate meta-analyses, we
recommend reporting effect sizes or the necessary data to cal-
culate them.

Clinical, Cognitive, and Biomarker Data
Considerations

Clinical and Demographic Variables

It is critical to record demographic and clinical data at
each study assessment for integration in neuroimaging

analyses. Examples include age, education, sex, handedness,
race/ethnicity, and socioeconomic (eg, income level), voca-
tional, menopausal, and marital/social support status. Variables
related to cancer and treatment should be documented in as
much detail as possible. Examples include type/stage of cancer,
disease characteristics (eg, size of tumor, number of affected
lymph nodes), details of treatments received (eg, types of sur-
geries; type and length of anesthesia; chemotherapy regimens,
doses, number of cycles completed, and concomitant medica-
tions; radiation dose; type, dose, and duration of endocrine
therapy). Dates of treatments are needed to calculate relevant
intervals for use as covariates. Other medical, psychiatric, and
psychosocial data should also be collected, including all medi-
cations and vitamins/supplements being taken, other medical
or mental health conditions, and ratings of variables such as fa-
tigue, sleep quality, depression, and anxiety.

Cognitive Assessment

A variety of self-report and objective cognitive assessment tools
have been shown to correlate with neuroimaging findings
(2,11,12,23,24,28,41–47,52–56,94,98,116–130), including measures
of attention, memory, and executive function. Some studies
have demonstrated correlations with specific tests, while others
have utilized cognitive domain scores. While the use of domain
scores can be very helpful for dimension reduction of cognitive
variables, correlations with neuroimaging variables may be
stronger for individual test measures. Specific tests may also be
grouped into various cognitive domains, making cross-study
comparisons challenging. There has recently been increased
emphasis, in the form of a program announcement from the
National Cancer Institute, encouraging researchers to leverage
cognitive neuroscience to improve assessment of cancer- and
treatment-related cognitive changes to better identify and char-
acterize these concerns (eg, potentially via assessment tools tar-
geted toward specific components of cognitive function, or
those using more sensitive techniques such as electronic ad-
ministration). While varying approaches may be taken, incorpo-
ration of cognitive assessment is strongly recommended to
relate neuroimaging findings to functional status.

Biomarkers

A growing number of articles have evaluated the relationship of
neuroimaging to various biomarkers to further elucidate the un-
derlying biology of cancer- and treatment-related cognitive
changes (23,41,54,116,125). Preliminary work has also shown ge-
netic variables that relate to cognitive functioning after cancer
treatment (23,132–135). Investigators are therefore strongly en-
couraged to collect blood samples for genotyping and to con-
sider banking plasma and serum for fluid biomarker analyses.
While funding or sample size considerations may initially pre-
clude running such analyses, if samples are appropriately proc-
essed and stored, which is typically relatively inexpensive, the
desired assays may be run later when funding is obtained or po-
tentially via consortium analyses (34). Methodological issues
are also important when gathering and storing biomarker data.
For example, for cytokine analyses, it is critical to carefully con-
sider factors such as method and timing of sample acquisition
(eg, time of day, feeding state and acute stress level of the indi-
vidual, etc.) as well as processing and storage steps utilized
(136). While more speculative in this population at present, con-
sideration might also be given to the correlation of
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neuroimaging variables with RNA (eg, via PAXgene tube or other
collection vehicles) or telomere length. For any chosen bio-
marker, standard collection, storage, and processing procedures
are readily available, and close collaboration with colleagues
with appropriate lab expertise is essential.

Conclusions

A goal of the ICCTF is to provide research recommendations
and guidelines in order to increase the homogeneity of study
methods in the field of cancer and cognition. Here we offer
approaches and recommendations for neuroimaging studies
with regard to study design, data sharing considerations, core
neuroimaging sequences, and the processing, analysis, and
reporting of neuroimaging data. These recommendations are
not meant to be prescriptive, to limit innovation, or to otherwise
interfere with individual studies, but instead to facilitate com-
paring and combining neuroimaging data collected across insti-
tutions. As multicenter studies seem increasingly likely to
become the most effective method to obtain adequate sample
sizes to address core research questions in this area (eg, identi-
fication of risk factors for cancer- and treatment-related cogni-
tive changes, examination of relative risk of various
treatments), harmonization of imaging approaches could be
very beneficial to the field. However, it is also critical to recog-
nize that these are a set of core recommendations; studies fo-
cusing on innovative technologies to advance the field beyond
existing approaches and data are also needed and encouraged.
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