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Abstract

Response to immune checkpoint therapy can be associated with a high mutation burden, but other mechanisms are also
likely to be important. We identified a patient with metastatic gastric cancer with meaningful clinical benefit from treatment
with the anti–programmed death–ligand 1 (PD-L1) antibody avelumab. This tumor showed no evidence of high mutation bur-
den or mismatch repair defect but was strongly positive for presence of Epstein-Barr virus (EBV) encoded RNA. Analysis of
The Cancer Genome Atlas gastric cancer data (25 EBVþ, 80 microsatellite-instable [MSI], 310 microsatellite-stable [MSS])
showed that EBV-positive tumors were MSS. Two-sided Wilcoxon rank-sum tests showed that: 1) EBV-positive tumors had
low mutation burden (median ¼ 2.07 vs 3.13 in log10 scale, P < 10-12) but stronger evidence of immune infiltration (median
ImmuneScore 2212 vs 1295, P < 10-4; log2 fold-change of CD8A ¼ 1.85, P < 10-6) compared with MSI tumors, and 2) EBV-positive
tumors had higher expression of immune checkpoint pathway (PD-1, CTLA-4 pathway) genes in RNA-seq data (log2 fold-
changes: PD-1 ¼ 1.85, PD-L1 ¼ 1.93, PD-L2 ¼ 1.50, CTLA-4 ¼ 1.31, CD80 ¼ 0.89, CD86 ¼ 1.31, P < 10-4 each), and higher lympho-
cytic infiltration by histology (median tumor-infiltrating lymphocyte score ¼ 3 vs 2, P < .001) compared with MSS tumors.
These data suggest that EBV-positive low–mutation burden gastric cancers are a subset of MSS gastric cancers that may
respond to immune checkpoint therapy.

Immune checkpoint therapy can lead to prolonged durable
responses or clinical benefit in multiple cancer types, including
advanced gastric cancer (1). However, sustained response with
clinical benefit is only seen in a minority of patients. Thus, there
is a clear need to identify biomarkers of response and resistance

to better select patients most likely to benefit from such
therapy.

A high tumor mutation burden (2) from either exogenous
carcinogen exposure (3–5,6) or endogenous defects in DNA re-
pair or replication (7,8), is associated with response to immune
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checkpoint therapy. However, a high mutation burden is not
the only mechanism of inducing local immune activation. The
presence of certain tumor-associated viruses, such as Epstein-
Barr virus (EBV), may also lead to a local immune response
(9,10) that may require induction of immune checkpoints
(11–13) for tumor survival.

Our hypothesis is that EBV-positive gastric tumors that are
microsatellite stable (MSS) with low mutation burden but have
evidence of immune infiltration and high expression of im-
mune checkpoint genes are likely to benefit from immune
checkpoint therapy. This hypothesis is based on the case study
described below.

A woman age 53 years presented with hematemesis, and
endoscopy revealed a gastric mass. Biopsy showed a poorly dif-
ferentiated, human epidermal growth factor receptor 2–
nonamplified adenocarcinoma with lymphoepitheliomatous
histology. Staging revealed retroperitoneal adenopathy, without
evidence of metastatic disease (14). She underwent neoadjuvant
chemotherapy followed by surgical resection of a poorly differ-
entiated 7 cm adenocarcinoma with positive margins and 21 of
22 lymph nodes involved with metastases (stage IIIC) (14). She
received adjuvant radiotherapy and chemotherapy. Imaging
16 months after surgery showed local and distant disease recur-
rence with 2-deoxy-2-[18F]-fluoro-D-glucose (FDG)-avid medias-
tinal lymphadenopathy, and esophageal biopsy demonstrated
adenocarcinoma. She received chemotherapy with cisplatin
and irinotecan, with some response. After seven months, she
was switched to paclitaxel with ramucirumab. Fifteen months
later, the patient presented with severe dysphagia, and imaging
showed an increase in her esophageal mass and increasing
lymphadenopathy. She was hospitalized for poor oral intake
and placement of a jejunostomy feeding tube. She was referred
to the Rutgers Cancer Institute of New Jersey (RCINJ) and, with
informed consent, enrolled in an institutional review board–ap-
proved trial (NCT01772004) involving treatment with the anti-
PD-L1 antibody avelumab, given at 10 mg/kg every two weeks.
The patient also provided informed consent to participate in
the RCINJ genomic tumor profiling protocol (NCT02688517).

At first restaging scan (Figure 1A), improvement in her
esophageal mass and mediastinal adenopathy was noted. As
treatment continued, she experienced marked improvement of
dysphagia, reduction in esophageal mass, and resolution of me-
diastinal adenopathy (Figure 1A), and received treatment for
more than 24 cycles. Sequencing of the primary tumor using a
hybrid-capture-based platform (15) showed a PIK3CA hotspot
mutation (E545K), an ARID1A frameshift mutation (N1203fs*3),
and PTEN loss. The overall tumor mutation burden was low and
inconsistent with the presence of MMR or POLE proofreading
defects. Both PIK3CA (16) and ARID1A (17) are often mutated in
gastric cancer, and their comutation is frequently observed in
EBV-positive gastric adenocarcinoma (16). An EBV-encoded RNA
(EBER) assay showed strong positive staining, consistent with
the tumor harboring EBV infection (Figure 1B). Tumor histology
was consistent with a lymphoepitheliomatous gastric cancer
with abundant tumor-infiltrating lymphocytes (Figure 1C). By
immunohistochemistry, the tumor cells demonstrated expres-
sion of PD-L1 (Figure 1D), and tumor-infiltrating lymphocytes in
the same sample had expression of PD-1 (Figure 1E).

Gene expression and mutation data from The Cancer
Genome Atlas (TCGA) gastric cancer cohort were analyzed, and
tumors were classified into three tumor groups: 1) EBV-positive
(EBV, n¼ 25), 2) microsatellite instable (MSI, n¼ 80), and 3) the
rest (MSS, n¼ 310). EBV positivity and microsatellite instability
were mutually exclusive.

Methods are detailed in the Supplementary Methods (avail-
able online). Quantitative statistical data are in Supplementary
Table 1 (available online). All P values reported are from two-
sided Wilcoxon rank-sum tests, except for P values provided by
CIBERSORT (18). P values of less than .05 were considered statis-
tically significant in all statistical comparisons.

EBV-positive tumors had a nonsynonymous mutation bur-
den comparable with that of MSS tumors in log10 scale (median
¼ 2.07 vs 2.06, P ¼ .71), an order of magnitude lower than in MSI
tumors (median ¼ 2.07 vs 3.13, P < 10-12) (Figure 2A). RNA-seq
data showed that EBV-positive tumors have higher expression
(false discovery rate < 0.01) of most immune-related genes com-
pared with MSS tumors, whereas MSI tumors have an interme-
diate phenotype (Figure 2B; Supplementary Table 2, available
online). Consistent with previous reports (9,10), overall immune
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Figure 1. Histologic, radiologic, and genomic characteristics of a patient with

Epstein-Barr virus (EBV)–positive gastric cancer responding to the anti–pro-

grammed death–ligand 1 (PD-L1) antibody therapy avelumab. A) Representative

positron emission tomography–computerized tomography images taken prior

to treatment with anti-PD-L1 antibody and two months and 10 months after ini-

tiation of therapy. B) Staining of primary tumor for EBV-encoded RNA (EBER) is

shown in red. Normal gastric mucosa on the slide serves as an internal negative

control (not shown). Scale bar ¼ 50 lm. C) High-power image of the original gas-

tric biopsy shows intense infiltrate of lymphocytes within the tumor (black

arrows in the center) and associated stroma (black arrow to the right; hematoxy-

lin and eosin �400). Scale bar ¼ 200 lm. D) Immunostaining of the gastric biopsy

sample using the Ventana SP142 for PD-L1 antibody. Gastric adenocarcinoma

with 100% staining of malignant cell in a membranous pattern (ie, only the pe-

ripheral cytoplasmic membrane stains for the marker and the nucleus and cyto-

plasm are unstained) for anti-PD-L1 (left portion of image). Bordering benign

gastric mucosa shows complete absence of anti PD-L1 staining (right portion of

image). The negative control omitting the anti-PD-L1 antibody showed no evi-

dence of staining. Scale bar ¼ 200 lm. E) Of the numerous tumor-infiltrating

lymphocytes identified, 50% stain strongly positive for PD-1 expression (black

arrows) using the OriGene PD-1 UltraMAB antibody. Scale bar ¼ 200 lm.
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infiltration into the tumor, by the ESTIMATE algorithm (19), and
expression of T cell marker CD8A were statistically significantly
higher in EBV-positive compared with MSI tumors (median
ImmuneScore ¼ 2212 vs 1295, P < 10-4; CD8A: log2 fold-change
[L2FC] ¼ 1.85, P < 10-6) and in MSI tumors compared with MSS
(median ImmuneScore ¼ 1295 vs 1089, P ¼ .04; CD8A: L2FC ¼
0.86, P < .001) (Figure 2C).

Compared with MSS tumors, EBV-positive and MSI tumors
had statistically significantly higher expression of
immune checkpoint genes PD-1 (L2FC ¼ 1.85, P < 10-5; L2FC ¼
0.85, P < 10-4) and CTLA-4 (L2FC ¼ 1.31, P < 10-5; L2FC ¼ 0.78, P <
10-5), and their ligands PD-L1 (L2FC ¼ 1.93, P < 10-7; L2FC ¼ 1.33,

P < 10-13), PD-L2 (L2FC ¼ 1.50, P < 10-6; L2FC ¼ 0.70, P < 10-4) ,
CD80 (L2FC ¼ 0.89, P < 10-4; L2FC ¼ 0.67, P < 10-4), CD86 (L2FC ¼
1.31, P < 10-6; L2FC ¼ 0.54, P < .001). EBV-positive tumors also
had statistically significantly higher expression of PD-1 (L2FC ¼
1.00, P ¼ .009) and PD-L2 (L2FC ¼ 0.81, P ¼ .005) compared with
MSI tumors (Figure 2C). Consistent with this, recent
immunohistochemistry studies (11–13) have reported PD-L1 ex-
pression in a large fraction of EBV-positive and MSI tumors.
Concordantly, PD-L1 expression was strongly positive in our
patient’s tumor (Figure 1D).

EBV-positive tumors had a higher proportion of CD8þ T cells
by CIBERSORT (18) compared with MSI and MSS tumors. Both
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Figure 2. Comparison of immune markers and mutation burden in Epstein-Barr virus (EBV)–positive (red), microsatellite-instable (MSI; green), and microsatellite-stable

(MSS; blue) tumors of The Cancer Genome Atlas (TCGA) gastric cancer cohort. The results shown here are in whole or part based upon data generated by the TCGA

Research Network: http://cancergenome.nih.gov/. A) Distribution of nonsynonymous somatic mutation burden (in log10 scale) in the three classes. B) Expression (per-

centile) of immune-related genes differentially expressed (false discovery rate < 0.01, two-sided Wilcoxon rank-sum test with Benjamini-Hochberg correction) between

the three classes pairwise. For each gene, samples with expression level in the bottom half (0%–50%) are colored cyan, those in the top quartile (75%–100%) are colored

magenta, and the rest (50%–75%) are colored white. The genes in the heat map were sorted in descending order for the quantity x¼ (mean expression in EBVþ - mean

expression in MSS)þ (mean expression in MSI - mean expression in MSS). The names of a few genes with the highest x values are highlighted. The complete data used

in the figure are in Supplementary Table 2 (available online). C) Expression of immune checkpoint genes PDCD1 (“PD-1”) and CTLA-4, their ligands, T cell marker CD8A,

and overall immune infiltration (“ImmuneScore”) in the three classes. D) Level of CD8þ T cells, follicular helper T cells, activated and resting memory CD4 T cells, M1

and M0 polarized macrophages, and resting dendritic cells as a fraction of infiltrating leukocytes, as well as proportion of regulatory T cells (Tregs) among all T cells, in

the three classes. All pairwise P values are shown in Supplementary Table 1 (available online). E) Pathology-based Lymphocyte Infiltration Scores in the three classes

on a 1 (low) to 3 (high) scale, as represented in the images to the right. These images have no scale bar because they were obtained from the TCGA Digital Slide Archive,

which provided no scale (21). In (C–E), ** means EBVþ values are statistically significantly different from both MSI and MSS, and * means EBVþ values are statistically

significantly different from MSS but not from MSI. Number of samples: 25 EBVþ, 69 MSI, 277 MSS (A); 25 EBVþ, 80 MSI, 310 MSS (B, C); 23 EBVþ, 58 MSI, 189 MSS (D); 17

EBVþ, 13 MSI, 16 MSS (E). The number of samples is different in (A) and (B, C) because for some samples expression data were available but mutation data were not, or

vice versa. For samples shown in (B, C) but not in (D), CIBERSORT provided P values of .05 greater. Boxplots (C, D) use the following convention: the horizontal line repre-

sents the median value, the box covers the interquartile range (IQR), the whiskers cover values within 1.5 IQR beyond the box, and values beyond 1.5 IQR are repre-

sented as dots. In violin plots (E), the black dots mark the median of each class. EBV ¼ Epstein-Barr virus; MSI ¼microsatellite-instable; MSS ¼microsatellite-stable; TIL

¼ tumor-infiltrating lymphocyte.
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EBV-positive and MSI tumors had evidence of higher propor-
tions of follicular helper T cells, and a lower fraction of regula-
tory T cells, compared with MSS tumors (Figure 2D). In addition,
EBV-positive tumors had a higher proportion of activated mem-
ory CD4þ T cells, M1 polarized macrophages, and resting den-
dritic cells compared with MSI and MSS tumors (Figure 2D).
Although EBV-positive and MSI tumors may represent two dis-
tinct mechanisms of immune activation (via exogenous virus
and high mutation burden, respectively), they are almost identi-
cal in terms of immune signature.

Pathological evaluation of histological TCGA images showed
that EBV-positive and MSI tumors had statistically signifi-
cantly higher tumor lymphocytic infiltration compared with
MSS tumors (median ¼ 3 vs 2, P < .001; median ¼ 3 vs 2, P ¼ .01,
respectively) (Figure 2E), confirming previous reports that EBV-
positive gastric cancers have robust immune infiltrates (9,10).

Our observations suggest that at least two separate classes
of gastric tumors may respond to immune checkpoint therapy:
EBV-positive tumors with low mutation burden and MSI tumors
with high mutation burden. Our data lend support to the role of
immunotherapy in EBV-associated cancers and support the ra-
tionale for trials of checkpoint blockade in EBV-positive gastric
cancer patients in the absence of high mutation burden. Recent
data showing response to pembrolizumab in EBV-associated
NK–T cell lymphoma support this concept (20). Because this
communication is based on observations in one patient, supple-
mented by analysis of TCGA data, our findings should be further
tested in prospective clinical trials.
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