Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jun 28;75(Pt 7):1065–1068. doi: 10.1107/S2056989019008946

Crystal structure of (E)-N-cyclo­hexyl-2-(2-hy­droxy-3-methyl­benzyl­idene)hydrazine-1-carbo­thio­amide

Md Azharul Arafath a,*, Huey Chong Kwong b, Farook Adam b,*
PMCID: PMC6659332  PMID: 31392026

The title Schiff base compound, consisting of a cyclo­hexane and a 2-hy­droxy-3-methyl­benzyl­idene ring bridged by a hydrazinecarbo­thio­amine moiety, crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, the mol­ecules are linked by N—H⋯S hydrogen bonds and C—H⋯π inter­actions, forming ribbons along the [010] direction.

Keywords: crystal structure, hydrazinecarbo­thio­amide, Schiff base, inter­molecular inter­actions

Abstract

The asymmetric unit of the title compound, C15H21N3OS, comprises of two crystallographically independent mol­ecules (A and B). Each mol­ecule consists of a cyclo­hexane ring and a 2-hy­droxy-3-methyl­benzyl­idene ring bridged by a hydrazinecarbo­thio­amine unit. Both mol­ecules exhibit an E configuration with respect to the azomethine C=N bond. There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule forming an S(6) ring motif. The cyclo­hexane ring in each mol­ecule has a chair conformation. The benzene ring is inclined to the mean plane of the cyclo­hexane ring by 47.75 (9)° in mol­ecule A and 66.99 (9)° in mol­ecule B. The mean plane of the cyclo­hexane ring is inclined to the mean plane of the thio­urea moiety [N—C(=S)—N] by 55.69 (9) and 58.50 (8)° in mol­ecules A and B, respectively. In the crystal, the A and B mol­ecules are linked by N—H⋯S hydrogen bonds, forming ‘dimers’. The A mol­ecules are further linked by a C—H⋯π inter­action, hence linking the AB units to form ribbons propagating along the b-axis direction. The conformation of a number of related cyclo­hexa­nehydrazinecarbo­thio­amides are compared to that of the title compound.

Chemical context  

Schiff bases are significant agents in both organic and inorganic chemistry, and are widely used in biological applications, particularly for anti­cancer screening (Ziessel, 2001; Salam et al., 2012a ; Arafath et al., 2017b ). They have attracted a great deal of attention because of the presence of hard and soft atoms together in one mol­ecule. Thio­semicarbazone Schiff base compounds have soft sulfur and hard nitro­gen as well hard oxygen atoms (Mohamed et al., 2009). These Schiff base compounds are of special inter­est because of their diversity in coordinating to hard and soft metals using the hard and soft coordinating sites such as NSO (Arion et al., 2001; Leovac & Češljević, 2002; Chandra & Sangeetika, 2004; Singh et al., 2000; Gerbeleu et al., 2008; Mohamed et al., 2009). Many Schiff base compounds and their complexes with transition metals have wide biological and pharmaceutical applications (Padhyé & Kauffman, 1985; Salam et al., 2012b ). Thio­semicarbazones having ONS-coordinating sites are important for coordination chemistry because of their strong bonding ability with transition metals (Rayati et al., 2007; Alomar et al., 2009; Vieites et al., 2009; Siddiki et al., 2012).

Structural commentary  

The asymmetric unit of the title compound consists of two crystallographic independent mol­ecules (A and B), as illustrated in Fig. 1. In each mol­ecule a cyclo­hexane ring and a 2-hy­droxy-3-methyl­benzyl­idene ring are inter­connected by a hydrazinecarbo­thio­amine bridge. Both mol­ecules exhibit an E configuration with respect to the azomethine C7=N1 bond, and in each mol­ecule there is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif (Table 1and Fig. 1). The best AutoMolFit (PLATON; Spek, 2009) image of the two mol­ecules, viz. inverted mol­ecule B (red) on mol­ecule A (black), which has an r.m.s. deviation of 0.654 Å, is shown in Fig. 2.graphic file with name e-75-01065-scheme1.jpg

Figure 1.

Figure 1

A view of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular O—H⋯N hydrogen bonds (Table 1) are shown as dashed cyan lines.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of benzene ring C1A–C6A.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1O1⋯N1A 0.80 (2) 1.98 (2) 2.6844 (19) 146 (2)
O1B—H1O2⋯N1B 0.84 (2) 1.91 (2) 2.664 (2) 148 (2)
N2A—H1N2⋯S1B i 0.85 (2) 2.60 (2) 3.4414 (16) 170 (2)
N2B—H2N2⋯S1A i 0.85 (2) 2.53 (2) 3.3568 (15) 164 (2)
C11A—H11BCg1ii 0.99 2.93 3.801 (2) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

An AutoMolFit figure (PLATON; Spek, 2009) of inverted mol­ecule B (red) on mol­ecule A (black).

The cyclo­hexane ring (C9–C14) in each mol­ecule has a chair conformation. The mean plane of the four central C atoms (C10/C11/C13/C14) is inclined to the mean plane of the thio­urea moiety [N2—C8(=S1)—N3] by 54.83 (11) and 55.64 (10)° in mol­ecules A and B, respectively, and by 50.33 (10) and 65.30 (10)° to the benzene rings (C1–C6) in mol­ecules A and B, respectively. The benzene ring is inclined to the mean plane of the thio­urea moiety by 10.95 (8)° in mol­ecule A and 9.80 (8)° in mol­ecule B.

The unique mol­ecular conformations of the two mol­ecules can be characterized by five torsion angles, i.e. τ 1 (C1—C6—C7—N1), τ 2 (C7—N1—N2—C8), τ 3 (N1—N2—C8—N3), τ 4 (N2—C8—N3—C9) and τ 5 (C8—N3—C9—C10), as illustrated in Fig. 3. The torsion angle τ 1 between the benzyl­idine ring and the azomethine double bond for both mol­ecules are approximately 0° [3.0 (2)° in mol­ecule A and 1.9 (2)° in mol­ecule B], signifying the coplanarity between benzyl­idine ring and the azomethine double bond (C7=N1). In mol­ecule B, the azomethine double bond is close to planar with the hydrazine moiety [τ 2 = 177.23 (14)°], whereas τ 2 in mol­ecule A is slightly twisted [τ 2 = 171.68 (14)°]. In both mol­ecules, the torsion angle between the hydrazine moiety and the carbo­thio group are also slight twisted with τ 3 values in mol­ecules A and B of 7.4 (2) and −10.2 (2)°, respectively. Similarly to τ 1, the carbo­thio group is almost coplanar with the thio­amide group for both mol­ecules, as implied by torsion angle τ 4 [178.07 (14)° in mol­ecule A and 175.59 (14)° in mol­ecule B], which are approximately 180°. The thio­amide group and the cyclo­hexane ring are almost perpendicular to each other with τ 5 torsion angles of 85.3 (2) and −81.6 (2)° in mol­ecules A and B, respectively. This may arise from the steric repulsion between the cyclo­hexane ring and adjacent sulfur atom.

Figure 3.

Figure 3

General chemical diagram showing torsion angles, τ 1, τ 2, τ 3, τ 4 and τ 5 in the title compound.

Supra­molecular features  

In the crystal, the A and B mol­ecules are connected into ‘dimers’ with an Inline graphic(8) ring motif, via N2A—H1N2⋯S1B i and N2B—H2N2⋯S1A i hydrogen bonds (Fig. 4 and Table 1). The A mol­ecules are further linked by a C—H⋯π inter­action, so linking the AB units to form ribbons propagating along the b-axis direction, as illustrated in Fig. 4.

Figure 4.

Figure 4

A partial view, normal to the ac plane, of the crystal packing of the title compound. The N—H⋯S hydrogen bonds are shown as cyan dotted lines, and the C—H⋯ π inter­actions as green dotted lines (see Table 1 for details). For clarity, only the hydrogen atoms involved in these inter­actions have been included.

Database survey  

A search of the Cambridge Structural Database (CSD version 5.40, last update February 2019; Groom et al., 2016) using (E)-2-benzyl­idene-N-cyclo­hexyl­hydrazine-1-carbo­thio­amide as the reference moiety resulted in nine structures containing a cyclo­hexyl­hydrazinecarbo­thio­amide moiety with different substituents (R). The different substituents (R) together with the torsion angles of the hydrazinecarbo­thio­amide connecting bridge are compiled in Table 2 (cf. Fig. 3). In these structures, including the title compound, the hydrazinecarbo­thio­amide connecting bridge is nearly planar as τ 2, τ 3 and τ 4 are in, respectively, anti-periplanar (153.5 to 179.3°), syn-periplanar (0.8 to 14.7°) and anti-periplanar (from 171.8 to 180.0°) conformations. The attached cyclo­hexane ring is always close to perpendicular to the thio­amide group and with a syn/anti-clinal (τ 5 = 78.3 to 94.5°) conformation. Furthermore, torsion angle τ 1 for most of these structures exists in a syn-periplanar conformation, ranging from 0 to 25.8°, but there is one outlier (mol­ecule B in NALKOD; Basheer et al., 2016b ) where torsion angle τ 1 is in a syn-clinal (36.2°) conformation. The cyclo­hexyl­hydrazinecarbo­thio­amide moiety of this structure is substituted with an anthracen-9-yl­methyl­ene ring system.

Table 2. Torsion angles τ1, τ2, τ3, τ4 and τ5 (°).

Compound R τ1 τ2 τ3 τ4 τ5
Title compound 2-hy­droxy-3-methyl­benzyl­idene 3.2, 1.9 171.7, 177.2 7.4, 10.2 178.1, 175.6 85.3, 81.6
ABUHEN (Basheer et al., 2017) pyren-1-yl­methyl­ene 10.1 174.9 1.2 180.0 81.6
BEFZIY (Basheer et al., 2016a ) 2-hy­droxy-1-naphth­yl)methyl­ene 0.9 179.3 6.8 176.6 83.4
BEVNAR (Koo et al., 1981) 4-amino­benzyl­idene 14.3 175.0 7.4 178.5 94.5
LAQCIR (Jacob & Kurup, 2012) 5-bromo-2-hy­droxy-3-meth­oxy­benzyl­idene 10.1 176.8 4.1 179.5 86.2
LEPFIW (Seena et al., 2006) 1-(2-hy­droxy­phen­yl)ethyl­idene 3.9, 6.6 155.0, 153.5 14.0, 14.7 175.7, 171.8 91.9, 81.6
NALKOD (Basheer et al., 2016b ) anthracen-9-yl­methyl­ene 25.8, 36.2 171.6, 178.6 0.8, 1.4 172.9, 176.2 79.0, 79.2
OBOLOJ (Arafath, 2017a ) 5-chloro-2-hy­droxy­benzyl­idene 4.7 176.0 5.5 176.7 83.7
XOYKAZ (Bhat et al., 2015) 4-eth­oxy­benzyl­idene 0.5 169.3 11.6 176.2 85.8
YUXJOS (Arafath et al., 2018) 3-t-butyl-2-hy­droxy­phen­yl)methyl­idene 11.8 170.1 12.5 176.2 78.3

Note: The title compound and compounds LEPFIW and NALKOD crystallize with two independent mol­ecules in the asymmetric unit.

Synthesis and crystallization  

The reaction scheme for the synthesis of the title Schiff base compound is given in Fig. 5.

Figure 5.

Figure 5

Reaction scheme for the synthesis of the title compound.

2-Hy­droxy-3-methyl­benzaldehyde (0.68 g, 5.00 mmol) was dissolved in 20 ml of methanol. Glacial acetic acid (0.20 ml) was added and the mixture was refluxed for 30 min. A solution of N-cyclo­hexyl­hydrazine carbo­thio­amide (0.87 g, 5 mmol) in 20 ml methanol was added dropwise with stirring to the aldehyde solution. The resulting colourless solution was refluxed for 4 h with stirring. A colourless precipitate was obtained on evaporation of the solvent. The crude product was washed with n-hexane (5 ml). The recovered product was dissolved in aceto­nitrile and purified by recrystallization. Colourless block-like crystals suitable for X-ray diffraction analysis were obtained on slow evaporation of the aceto­nitrile solvent (m.p. 513–514 K, yield 93%).

Spectroscopic and analytical data: 1H NMR (500 MHz, DMSO-d 6, Me4Si ppm): δ 11.27 (s, N—NH), δ 9.51 (s, OH), δ 8.34 (s, HC=N), δ 8.05 (d, J = 8.35 Hz, CS=NH), δ 7.39–6.81 (multiplet, aromatic-H), δ 2.20 (s, Ph—CH3), δ 1.87–1.14 (multiplet, cyclo­hexyl-H) ppm. 13C NMR (DMSO-d 6, Me4Si ppm): δ 175.79 (C=S), δ 154.29 (C=N), δ 143.76-119.17 (C-aromatic), δ 15.93 (CH3), δ 52.87–24.90 (C-cyclo­hex­yl) ppm. IR (KBr pellets, cm−1): 3364 (NH), 3148 (OH), 2989(CH3), 2931 and 2854 (CH, cyclo­hex­yl), 1620 (C=N), 1540 (C=C, aromatic), 1268 (C=S), 1218 (CH, bend., aromatic), 1122 (C—O). 1075 (C—N). Elemental analysis calculated for C15H21N3OS (M r = 291.41 g mol−1); C, 61.77; H, 7.21; N, 14.42%; found: C, 61.81; H, 7.19; N, 14.42%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The O and N-bound H atoms were located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–1.00 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C15H21N3OS
M r 291.41
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 10.7799 (11), 10.9481 (11), 14.1895 (15)
α, β, γ (°) 74.526 (2), 68.246 (1), 80.207 (2)
V3) 1494.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.34 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.873, 0.935
No. of measured, independent and observed [I > 2σ(I)] reflections 50505, 8135, 5805
R int 0.069
(sin θ/λ)max−1) 0.690
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.119, 1.04
No. of reflections 8135
No. of parameters 387
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.36

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019008946/su5501sup1.cif

e-75-01065-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019008946/su5501Isup2.hkl

e-75-01065-Isup2.hkl (445.6KB, hkl)

CCDC reference: 1480651

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C15H21N3OS Z = 4
Mr = 291.41 F(000) = 624
Triclinic, P1 Dx = 1.295 Mg m3
a = 10.7799 (11) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.9481 (11) Å Cell parameters from 6929 reflections
c = 14.1895 (15) Å θ = 2.2–29.3°
α = 74.526 (2)° µ = 0.22 mm1
β = 68.246 (1)° T = 100 K
γ = 80.207 (2)° Block, colourless
V = 1494.2 (3) Å3 0.34 × 0.14 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 5805 reflections with I > 2σ(I)
φ and ω scans Rint = 0.069
Absorption correction: multi-scan (SADABS; Bruker, 2012) θmax = 29.4°, θmin = 1.6°
Tmin = 0.873, Tmax = 0.935 h = −14→14
50505 measured reflections k = −15→15
8135 independent reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: mixed
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.3685P] where P = (Fo2 + 2Fc2)/3
8135 reflections (Δ/σ)max = 0.001
387 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.69733 (4) 0.60902 (4) 0.10987 (3) 0.01869 (11)
O1A 0.20574 (12) 0.29193 (12) 0.27567 (9) 0.0204 (3)
H1O1 0.264 (2) 0.340 (2) 0.2474 (19) 0.047 (7)*
N1A 0.44459 (13) 0.36989 (12) 0.14267 (10) 0.0157 (3)
N2A 0.54998 (14) 0.44583 (13) 0.10122 (11) 0.0168 (3)
H1N2 0.617 (2) 0.4267 (19) 0.0507 (16) 0.032 (6)*
N3A 0.45512 (13) 0.54155 (13) 0.23929 (11) 0.0180 (3)
H1N3 0.387 (2) 0.5075 (19) 0.2500 (16) 0.031 (6)*
C1A 0.23068 (15) 0.20058 (15) 0.22090 (12) 0.0166 (3)
C2A 0.13421 (16) 0.11183 (15) 0.25585 (13) 0.0180 (3)
C3A 0.15680 (17) 0.01785 (16) 0.20070 (13) 0.0212 (4)
H3AA 0.0925 −0.0427 0.2231 0.025*
C4A 0.27061 (17) 0.00986 (16) 0.11389 (14) 0.0219 (4)
H4AA 0.2840 −0.0557 0.0779 0.026*
C5A 0.36387 (17) 0.09792 (16) 0.08048 (13) 0.0204 (3)
H5AA 0.4412 0.0933 0.0206 0.024*
C6A 0.34648 (16) 0.19418 (15) 0.13340 (12) 0.0163 (3)
C7A 0.45032 (16) 0.28267 (15) 0.09523 (13) 0.0173 (3)
H7AA 0.5243 0.2759 0.0337 0.021*
C8A 0.55885 (15) 0.52858 (15) 0.15423 (12) 0.0154 (3)
C9A 0.44553 (15) 0.62215 (16) 0.30920 (12) 0.0175 (3)
H9AA 0.5368 0.6226 0.3119 0.021*
C10A 0.39567 (17) 0.75839 (16) 0.27188 (14) 0.0223 (4)
H10A 0.3072 0.7594 0.2653 0.027*
H10B 0.4588 0.7950 0.2024 0.027*
C11A 0.38338 (17) 0.83900 (17) 0.34832 (14) 0.0249 (4)
H11A 0.4734 0.8448 0.3495 0.030*
H11B 0.3465 0.9261 0.3246 0.030*
C12A 0.29295 (17) 0.78223 (19) 0.45741 (15) 0.0300 (4)
H12A 0.2924 0.8328 0.5059 0.036*
H12B 0.2002 0.7864 0.4580 0.036*
C13A 0.3395 (2) 0.64536 (19) 0.49414 (14) 0.0334 (5)
H13A 0.2742 0.6092 0.5627 0.040*
H13B 0.4269 0.6425 0.5031 0.040*
C14A 0.35411 (18) 0.56458 (17) 0.41752 (13) 0.0253 (4)
H14A 0.3914 0.4777 0.4415 0.030*
H14B 0.2648 0.5581 0.4153 0.030*
C15A 0.01137 (16) 0.12174 (18) 0.34918 (14) 0.0246 (4)
H15A −0.0495 0.0589 0.3588 0.037*
H15B −0.0337 0.2073 0.3387 0.037*
H15C 0.0371 0.1055 0.4111 0.037*
S1B 1.20980 (4) 0.63000 (4) 0.11943 (3) 0.01957 (11)
O1B 0.72600 (12) 0.31105 (11) 0.27336 (9) 0.0204 (3)
H1O2 0.790 (2) 0.358 (2) 0.2455 (18) 0.042 (7)*
N1B 0.96393 (13) 0.38885 (13) 0.14385 (10) 0.0165 (3)
N2B 1.07086 (14) 0.46229 (13) 0.10739 (11) 0.0183 (3)
H2N2 1.141 (2) 0.4453 (19) 0.0585 (17) 0.035 (6)*
N3B 0.95163 (13) 0.58802 (14) 0.22201 (11) 0.0191 (3)
H2N3 0.8858 (19) 0.5517 (18) 0.2277 (14) 0.023 (5)*
C1B 0.74994 (15) 0.22243 (15) 0.21634 (12) 0.0160 (3)
C2B 0.64909 (16) 0.14034 (16) 0.24528 (13) 0.0182 (3)
C3B 0.67030 (16) 0.04933 (16) 0.18792 (13) 0.0212 (4)
H3BA 0.6019 −0.0055 0.2052 0.025*
C4B 0.78870 (17) 0.03605 (16) 0.10606 (14) 0.0221 (4)
H4BA 0.8018 −0.0285 0.0692 0.027*
C5B 0.88741 (16) 0.11750 (16) 0.07866 (13) 0.0198 (3)
H5BA 0.9683 0.1087 0.0224 0.024*
C6B 0.87008 (15) 0.21254 (15) 0.13242 (12) 0.0168 (3)
C7B 0.97581 (16) 0.29730 (15) 0.09955 (13) 0.0178 (3)
H7BA 1.0559 0.2846 0.0438 0.021*
C8B 1.06817 (16) 0.55741 (15) 0.15303 (12) 0.0165 (3)
C9B 0.93058 (15) 0.68143 (15) 0.28450 (12) 0.0171 (3)
H9BA 0.9867 0.7537 0.2406 0.021*
C10B 0.97252 (16) 0.62377 (16) 0.37971 (13) 0.0200 (3)
H10C 1.0684 0.5927 0.3570 0.024*
H10D 0.9197 0.5504 0.4230 0.024*
C11B 0.95005 (16) 0.72239 (16) 0.44436 (13) 0.0214 (4)
H11C 0.9730 0.6819 0.5077 0.026*
H11D 1.0100 0.7914 0.4034 0.026*
C12B 0.80487 (16) 0.77855 (17) 0.47574 (13) 0.0219 (4)
H12C 0.7460 0.7118 0.5248 0.026*
H12D 0.7953 0.8471 0.5120 0.026*
C13B 0.76067 (17) 0.83197 (17) 0.38142 (14) 0.0224 (4)
H13C 0.8111 0.9065 0.3372 0.027*
H13D 0.6642 0.8610 0.4051 0.027*
C14B 0.78417 (15) 0.73274 (16) 0.31723 (13) 0.0201 (4)
H14C 0.7268 0.6620 0.3590 0.024*
H14D 0.7592 0.7717 0.2546 0.024*
C15B 0.52399 (16) 0.15270 (17) 0.33654 (14) 0.0237 (4)
H15D 0.4569 0.1011 0.3383 0.036*
H15E 0.4886 0.2420 0.3299 0.036*
H15F 0.5447 0.1231 0.4010 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.01576 (19) 0.0224 (2) 0.0179 (2) −0.00439 (16) −0.00298 (16) −0.00655 (17)
O1A 0.0200 (6) 0.0223 (7) 0.0185 (6) −0.0050 (5) −0.0019 (5) −0.0086 (5)
N1A 0.0150 (6) 0.0159 (7) 0.0166 (7) −0.0018 (5) −0.0052 (5) −0.0041 (5)
N2A 0.0155 (6) 0.0188 (7) 0.0155 (7) −0.0032 (5) −0.0014 (6) −0.0072 (6)
N3A 0.0142 (6) 0.0223 (8) 0.0187 (7) −0.0050 (6) −0.0020 (6) −0.0095 (6)
C1A 0.0199 (8) 0.0162 (8) 0.0153 (8) −0.0006 (6) −0.0079 (6) −0.0036 (6)
C2A 0.0177 (7) 0.0191 (8) 0.0173 (8) −0.0022 (6) −0.0080 (6) −0.0012 (7)
C3A 0.0238 (8) 0.0177 (9) 0.0244 (9) −0.0054 (7) −0.0118 (7) −0.0013 (7)
C4A 0.0291 (9) 0.0168 (9) 0.0238 (9) −0.0012 (7) −0.0122 (7) −0.0070 (7)
C5A 0.0238 (8) 0.0177 (9) 0.0187 (9) 0.0002 (7) −0.0056 (7) −0.0061 (7)
C6A 0.0197 (8) 0.0146 (8) 0.0151 (8) −0.0009 (6) −0.0074 (6) −0.0025 (6)
C7A 0.0180 (7) 0.0175 (8) 0.0146 (8) −0.0015 (6) −0.0032 (6) −0.0043 (6)
C8A 0.0158 (7) 0.0158 (8) 0.0153 (8) −0.0003 (6) −0.0072 (6) −0.0024 (6)
C9A 0.0162 (7) 0.0223 (9) 0.0159 (8) −0.0045 (6) −0.0036 (6) −0.0081 (7)
C10A 0.0248 (8) 0.0215 (9) 0.0225 (9) −0.0012 (7) −0.0091 (7) −0.0072 (7)
C11A 0.0223 (8) 0.0248 (10) 0.0327 (10) 0.0003 (7) −0.0109 (8) −0.0142 (8)
C12A 0.0206 (8) 0.0435 (12) 0.0320 (11) −0.0055 (8) −0.0022 (8) −0.0262 (9)
C13A 0.0415 (11) 0.0405 (12) 0.0187 (10) −0.0133 (9) −0.0027 (8) −0.0120 (8)
C14A 0.0295 (9) 0.0272 (10) 0.0180 (9) −0.0086 (8) −0.0031 (7) −0.0066 (7)
C15A 0.0198 (8) 0.0282 (10) 0.0244 (9) −0.0067 (7) −0.0040 (7) −0.0056 (8)
S1B 0.01561 (19) 0.0223 (2) 0.0206 (2) −0.00340 (16) −0.00332 (16) −0.00756 (17)
O1B 0.0204 (6) 0.0208 (6) 0.0198 (6) −0.0032 (5) −0.0019 (5) −0.0106 (5)
N1B 0.0154 (6) 0.0169 (7) 0.0173 (7) −0.0020 (5) −0.0052 (5) −0.0042 (6)
N2B 0.0155 (7) 0.0203 (8) 0.0177 (7) −0.0029 (6) −0.0013 (6) −0.0074 (6)
N3B 0.0148 (6) 0.0217 (8) 0.0227 (8) −0.0024 (6) −0.0035 (6) −0.0117 (6)
C1B 0.0185 (7) 0.0145 (8) 0.0151 (8) 0.0014 (6) −0.0067 (6) −0.0039 (6)
C2B 0.0179 (7) 0.0185 (8) 0.0176 (8) −0.0002 (6) −0.0072 (6) −0.0022 (7)
C3B 0.0217 (8) 0.0200 (9) 0.0244 (9) −0.0034 (7) −0.0103 (7) −0.0047 (7)
C4B 0.0275 (9) 0.0198 (9) 0.0246 (9) −0.0003 (7) −0.0117 (7) −0.0109 (7)
C5B 0.0208 (8) 0.0211 (9) 0.0176 (8) 0.0000 (7) −0.0041 (7) −0.0095 (7)
C6B 0.0179 (7) 0.0171 (8) 0.0163 (8) −0.0011 (6) −0.0066 (6) −0.0042 (6)
C7B 0.0175 (7) 0.0186 (8) 0.0158 (8) 0.0003 (6) −0.0042 (6) −0.0049 (7)
C8B 0.0186 (7) 0.0160 (8) 0.0142 (8) −0.0011 (6) −0.0059 (6) −0.0021 (6)
C9B 0.0178 (7) 0.0179 (8) 0.0167 (8) −0.0032 (6) −0.0035 (6) −0.0079 (7)
C10B 0.0183 (8) 0.0215 (9) 0.0199 (9) 0.0017 (6) −0.0066 (7) −0.0063 (7)
C11B 0.0228 (8) 0.0252 (9) 0.0188 (9) −0.0011 (7) −0.0096 (7) −0.0063 (7)
C12B 0.0225 (8) 0.0247 (9) 0.0196 (9) −0.0005 (7) −0.0062 (7) −0.0092 (7)
C13B 0.0207 (8) 0.0245 (9) 0.0262 (10) 0.0035 (7) −0.0107 (7) −0.0121 (8)
C14B 0.0179 (8) 0.0236 (9) 0.0218 (9) −0.0006 (7) −0.0081 (7) −0.0087 (7)
C15B 0.0199 (8) 0.0253 (9) 0.0231 (9) −0.0036 (7) −0.0036 (7) −0.0048 (7)

Geometric parameters (Å, º)

S1A—C8A 1.6897 (15) S1B—C8B 1.6914 (16)
O1A—C1A 1.3583 (19) O1B—C1B 1.3569 (19)
O1A—H1O1 0.80 (2) O1B—H1O2 0.83 (2)
N1A—C7A 1.289 (2) N1B—C7B 1.284 (2)
N1A—N2A 1.3758 (18) N1B—N2B 1.3762 (18)
N2A—C8A 1.357 (2) N2B—C8B 1.357 (2)
N2A—H1N2 0.85 (2) N2B—H2N2 0.85 (2)
N3A—C8A 1.328 (2) N3B—C8B 1.330 (2)
N3A—C9A 1.461 (2) N3B—C9B 1.463 (2)
N3A—H1N3 0.82 (2) N3B—H2N3 0.840 (19)
C1A—C6A 1.404 (2) C1B—C2B 1.401 (2)
C1A—C2A 1.406 (2) C1B—C6B 1.409 (2)
C2A—C3A 1.390 (2) C2B—C3B 1.387 (2)
C2A—C15A 1.499 (2) C2B—C15B 1.500 (2)
C3A—C4A 1.390 (2) C3B—C4B 1.388 (2)
C3A—H3AA 0.9500 C3B—H3BA 0.9500
C4A—C5A 1.378 (2) C4B—C5B 1.382 (2)
C4A—H4AA 0.9500 C4B—H4BA 0.9500
C5A—C6A 1.400 (2) C5B—C6B 1.397 (2)
C5A—H5AA 0.9500 C5B—H5BA 0.9500
C6A—C7A 1.458 (2) C6B—C7B 1.453 (2)
C7A—H7AA 0.9500 C7B—H7BA 0.9500
C9A—C14A 1.517 (2) C9B—C14B 1.522 (2)
C9A—C10A 1.520 (2) C9B—C10B 1.526 (2)
C9A—H9AA 1.0000 C9B—H9BA 1.0000
C10A—C11A 1.529 (2) C10B—C11B 1.530 (2)
C10A—H10A 0.9900 C10B—H10C 0.9900
C10A—H10B 0.9900 C10B—H10D 0.9900
C11A—C12A 1.519 (3) C11B—C12B 1.526 (2)
C11A—H11A 0.9900 C11B—H11C 0.9900
C11A—H11B 0.9900 C11B—H11D 0.9900
C12A—C13A 1.513 (3) C12B—C13B 1.523 (2)
C12A—H12A 0.9900 C12B—H12C 0.9900
C12A—H12B 0.9900 C12B—H12D 0.9900
C13A—C14A 1.526 (2) C13B—C14B 1.529 (2)
C13A—H13A 0.9900 C13B—H13C 0.9900
C13A—H13B 0.9900 C13B—H13D 0.9900
C14A—H14A 0.9900 C14B—H14C 0.9900
C14A—H14B 0.9900 C14B—H14D 0.9900
C15A—H15A 0.9800 C15B—H15D 0.9800
C15A—H15B 0.9800 C15B—H15E 0.9800
C15A—H15C 0.9800 C15B—H15F 0.9800
C1A—O1A—H1O1 108.6 (17) C1B—O1B—H1O2 107.4 (15)
C7A—N1A—N2A 116.82 (13) C7B—N1B—N2B 116.97 (14)
C8A—N2A—N1A 119.82 (13) C8B—N2B—N1B 120.46 (14)
C8A—N2A—H1N2 120.7 (13) C8B—N2B—H2N2 119.4 (14)
N1A—N2A—H1N2 117.8 (14) N1B—N2B—H2N2 120.0 (14)
C8A—N3A—C9A 125.71 (13) C8B—N3B—C9B 124.99 (13)
C8A—N3A—H1N3 117.1 (14) C8B—N3B—H2N3 116.0 (13)
C9A—N3A—H1N3 116.9 (14) C9B—N3B—H2N3 118.9 (13)
O1A—C1A—C6A 122.24 (14) O1B—C1B—C2B 116.63 (14)
O1A—C1A—C2A 116.68 (14) O1B—C1B—C6B 122.02 (14)
C6A—C1A—C2A 121.08 (15) C2B—C1B—C6B 121.35 (15)
C3A—C2A—C1A 117.85 (15) C3B—C2B—C1B 117.95 (15)
C3A—C2A—C15A 122.40 (14) C3B—C2B—C15B 122.57 (15)
C1A—C2A—C15A 119.74 (15) C1B—C2B—C15B 119.48 (15)
C4A—C3A—C2A 122.00 (15) C2B—C3B—C4B 121.87 (15)
C4A—C3A—H3AA 119.0 C2B—C3B—H3BA 119.1
C2A—C3A—H3AA 119.0 C4B—C3B—H3BA 119.1
C5A—C4A—C3A 119.37 (16) C5B—C4B—C3B 119.48 (15)
C5A—C4A—H4AA 120.3 C5B—C4B—H4BA 120.3
C3A—C4A—H4AA 120.3 C3B—C4B—H4BA 120.3
C4A—C5A—C6A 121.01 (16) C4B—C5B—C6B 120.98 (16)
C4A—C5A—H5AA 119.5 C4B—C5B—H5BA 119.5
C6A—C5A—H5AA 119.5 C6B—C5B—H5BA 119.5
C5A—C6A—C1A 118.68 (14) C5B—C6B—C1B 118.35 (14)
C5A—C6A—C7A 118.22 (15) C5B—C6B—C7B 118.96 (15)
C1A—C6A—C7A 123.09 (14) C1B—C6B—C7B 122.70 (14)
N1A—C7A—C6A 121.83 (15) N1B—C7B—C6B 121.80 (15)
N1A—C7A—H7AA 119.1 N1B—C7B—H7BA 119.1
C6A—C7A—H7AA 119.1 C6B—C7B—H7BA 119.1
N3A—C8A—N2A 116.73 (14) N3B—C8B—N2B 116.78 (14)
N3A—C8A—S1A 123.76 (12) N3B—C8B—S1B 124.07 (12)
N2A—C8A—S1A 119.51 (12) N2B—C8B—S1B 119.15 (12)
N3A—C9A—C14A 108.61 (13) N3B—C9B—C14B 109.69 (12)
N3A—C9A—C10A 112.01 (13) N3B—C9B—C10B 111.20 (13)
C14A—C9A—C10A 111.06 (14) C14B—C9B—C10B 110.58 (13)
N3A—C9A—H9AA 108.4 N3B—C9B—H9BA 108.4
C14A—C9A—H9AA 108.4 C14B—C9B—H9BA 108.4
C10A—C9A—H9AA 108.4 C10B—C9B—H9BA 108.4
C9A—C10A—C11A 110.55 (14) C9B—C10B—C11B 110.68 (13)
C9A—C10A—H10A 109.5 C9B—C10B—H10C 109.5
C11A—C10A—H10A 109.5 C11B—C10B—H10C 109.5
C9A—C10A—H10B 109.5 C9B—C10B—H10D 109.5
C11A—C10A—H10B 109.5 C11B—C10B—H10D 109.5
H10A—C10A—H10B 108.1 H10C—C10B—H10D 108.1
C12A—C11A—C10A 111.31 (14) C12B—C11B—C10B 111.23 (13)
C12A—C11A—H11A 109.4 C12B—C11B—H11C 109.4
C10A—C11A—H11A 109.4 C10B—C11B—H11C 109.4
C12A—C11A—H11B 109.4 C12B—C11B—H11D 109.4
C10A—C11A—H11B 109.4 C10B—C11B—H11D 109.4
H11A—C11A—H11B 108.0 H11C—C11B—H11D 108.0
C13A—C12A—C11A 111.40 (15) C13B—C12B—C11B 111.49 (14)
C13A—C12A—H12A 109.3 C13B—C12B—H12C 109.3
C11A—C12A—H12A 109.3 C11B—C12B—H12C 109.3
C13A—C12A—H12B 109.3 C13B—C12B—H12D 109.3
C11A—C12A—H12B 109.3 C11B—C12B—H12D 109.3
H12A—C12A—H12B 108.0 H12C—C12B—H12D 108.0
C12A—C13A—C14A 111.91 (16) C12B—C13B—C14B 111.59 (14)
C12A—C13A—H13A 109.2 C12B—C13B—H13C 109.3
C14A—C13A—H13A 109.2 C14B—C13B—H13C 109.3
C12A—C13A—H13B 109.2 C12B—C13B—H13D 109.3
C14A—C13A—H13B 109.2 C14B—C13B—H13D 109.3
H13A—C13A—H13B 107.9 H13C—C13B—H13D 108.0
C9A—C14A—C13A 111.02 (14) C9B—C14B—C13B 110.42 (13)
C9A—C14A—H14A 109.4 C9B—C14B—H14C 109.6
C13A—C14A—H14A 109.4 C13B—C14B—H14C 109.6
C9A—C14A—H14B 109.4 C9B—C14B—H14D 109.6
C13A—C14A—H14B 109.4 C13B—C14B—H14D 109.6
H14A—C14A—H14B 108.0 H14C—C14B—H14D 108.1
C2A—C15A—H15A 109.5 C2B—C15B—H15D 109.5
C2A—C15A—H15B 109.5 C2B—C15B—H15E 109.5
H15A—C15A—H15B 109.5 H15D—C15B—H15E 109.5
C2A—C15A—H15C 109.5 C2B—C15B—H15F 109.5
H15A—C15A—H15C 109.5 H15D—C15B—H15F 109.5
H15B—C15A—H15C 109.5 H15E—C15B—H15F 109.5
C7A—N1A—N2A—C8A −171.68 (14) C7B—N1B—N2B—C8B −177.23 (14)
O1A—C1A—C2A—C3A 179.53 (14) O1B—C1B—C2B—C3B 179.53 (14)
C6A—C1A—C2A—C3A −0.3 (2) C6B—C1B—C2B—C3B −0.7 (2)
O1A—C1A—C2A—C15A 0.2 (2) O1B—C1B—C2B—C15B −1.0 (2)
C6A—C1A—C2A—C15A −179.68 (15) C6B—C1B—C2B—C15B 178.77 (15)
C1A—C2A—C3A—C4A 0.3 (2) C1B—C2B—C3B—C4B 1.9 (2)
C15A—C2A—C3A—C4A 179.61 (16) C15B—C2B—C3B—C4B −177.57 (16)
C2A—C3A—C4A—C5A −0.5 (3) C2B—C3B—C4B—C5B −1.7 (3)
C3A—C4A—C5A—C6A 0.8 (3) C3B—C4B—C5B—C6B 0.3 (3)
C4A—C5A—C6A—C1A −0.9 (2) C4B—C5B—C6B—C1B 0.8 (2)
C4A—C5A—C6A—C7A 178.73 (15) C4B—C5B—C6B—C7B −178.94 (15)
O1A—C1A—C6A—C5A −179.23 (14) O1B—C1B—C6B—C5B 179.16 (14)
C2A—C1A—C6A—C5A 0.6 (2) C2B—C1B—C6B—C5B −0.6 (2)
O1A—C1A—C6A—C7A 1.2 (2) O1B—C1B—C6B—C7B −1.1 (2)
C2A—C1A—C6A—C7A −178.96 (14) C2B—C1B—C6B—C7B 179.12 (15)
N2A—N1A—C7A—C6A 178.28 (13) N2B—N1B—C7B—C6B 179.20 (14)
C5A—C6A—C7A—N1A −176.61 (15) C5B—C6B—C7B—N1B 177.83 (15)
C1A—C6A—C7A—N1A 3.0 (2) C1B—C6B—C7B—N1B −1.9 (2)
C9A—N3A—C8A—N2A 178.07 (14) C9B—N3B—C8B—N2B 175.59 (14)
C9A—N3A—C8A—S1A −2.3 (2) C9B—N3B—C8B—S1B −4.8 (2)
N1A—N2A—C8A—N3A −7.4 (2) N1B—N2B—C8B—N3B −10.2 (2)
N1A—N2A—C8A—S1A 172.92 (11) N1B—N2B—C8B—S1B 170.21 (11)
C8A—N3A—C9A—C14A −151.70 (16) C8B—N3B—C9B—C14B 155.77 (15)
C8A—N3A—C9A—C10A 85.26 (19) C8B—N3B—C9B—C10B −81.60 (19)
N3A—C9A—C10A—C11A 178.51 (13) N3B—C9B—C10B—C11B 179.99 (13)
C14A—C9A—C10A—C11A 56.87 (18) C14B—C9B—C10B—C11B −57.90 (17)
C9A—C10A—C11A—C12A −56.18 (19) C9B—C10B—C11B—C12B 55.88 (18)
C10A—C11A—C12A—C13A 54.83 (19) C10B—C11B—C12B—C13B −54.08 (19)
C11A—C12A—C13A—C14A −54.1 (2) C11B—C12B—C13B—C14B 54.32 (19)
N3A—C9A—C14A—C13A −179.67 (15) N3B—C9B—C14B—C13B −179.21 (14)
C10A—C9A—C14A—C13A −56.06 (19) C10B—C9B—C14B—C13B 57.79 (18)
C12A—C13A—C14A—C9A 54.7 (2) C12B—C13B—C14B—C9B −56.10 (19)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of benzene ring C1A–C6A.

D—H···A D—H H···A D···A D—H···A
O1A—H1O1···N1A 0.80 (2) 1.98 (2) 2.6844 (19) 146 (2)
O1B—H1O2···N1B 0.84 (2) 1.91 (2) 2.664 (2) 148 (2)
N2A—H1N2···S1Bi 0.85 (2) 2.60 (2) 3.4414 (16) 170 (2)
N2B—H2N2···S1Ai 0.85 (2) 2.53 (2) 3.3568 (15) 164 (2)
C11A—H11B···Cg1ii 0.99 2.93 3.801 (2) 148

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, y+1, z.

Funding Statement

This work was funded by Universiti Sains Malaysia grant 1001/PKIMIA/811269. The World Academy of Sciences grant . Shahjalal University of Science and Technology grant PS/2018/1/04, 2018–2019 to Md. A. Arafath. Malaysian Government grant MyBrain15 to H. C. Kwong.

References

  1. Alomar, K., Khan, M. A., Allain, M. & Bouet, G. (2009). Polyhedron, 28, 1273–1280.
  2. Arafath, M. A., Adam, F. & Razali, M. R. (2017a). IUCrData, 2, x161997.
  3. Arafath, M. A., Adam, F., Razali, M. R., Hassan, L. E. A., Ahamed, M. B. K. & Majid, A. M. S. (2017b). J. Mol. Struct. 1130, 791–798.
  4. Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018). Acta Cryst. E74, 1460–1462. [DOI] [PMC free article] [PubMed]
  5. Arion, V., Revenco, M., Gradinaru, J., Simonov, Y., Kravtsov, V., Gerbeleu, N., Saint-Aman, E. & Adams, F. (2001). Rev. Inorg. Chem. 21, 1–42.
  6. Basheer, S. M., Bhuvanesh, N. S. P. & Sreekanth, A. (2016a). J. Fluor. Chem. 191, 129–142.
  7. Basheer, S. M., Willis, A. C., Pace, R. J. & Sreekanth, A. (2016b). Polyhedron, 109, 7–18.
  8. Basheer, S. M., Willis, A. C. & Sreekanth, A. (2017). J. Lumin. 183, 266–280.
  9. Bhat, M. A., Al-Dhfyan, A., Khan, A. A., Al-Harbi, N., Manogaran, P. S., Alanazi, A. M., Fun, H.-K. & Al-Omar, M. A. (2015). Bioorg. Med. Chem. Lett. 25, 83–87. [DOI] [PubMed]
  10. Bruker (2012). Bruker AXS Inc., Madison. Wisconsin, USA.
  11. Chandra, S. & Sangeetika, X. (2004). Spectrochim. Acta A, 60, 147–153. [DOI] [PubMed]
  12. Gerbeleu, N. V., Arion, V. B. & Burgess, J. P. (2008). Template Synthesis of Macrocyclic Compounds. John Wiley & Sons.
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837. [DOI] [PMC free article] [PubMed]
  15. Koo, C. H., Kim, C. H. & Park, Y. J. (1981). J. Korean Chem. Soc. 25, 343–350.
  16. Leovac, V. & Češljević, V. (2002). Coordination Chemistry of Isothiosemicarbazide and Its Derivatives. Faculty of Science, University of Novi Sad, Serbia.
  17. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  18. Mohamed, G. G., Omar, M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801–4812. [DOI] [PubMed]
  19. Padhyé, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127–160.
  20. Rayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545–1548.
  21. Salam, M., Affan, M., Ahmad, F. B. & Arafath, M. A. (2012a). J. Coord. Chem. 65, 1999–2007.
  22. Salam, M., Affan, M., Ahmad, F. B., Arafath, M. A., Tahir, M. I. M. & Shamsuddin, M. B. (2012b). J. Coord. Chem. 65, 3174–3187.
  23. Seena, E. B., Bessy Raj, B. N., Prathapachandra Kurup, M. R. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189–193.
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  26. Siddiki, A. N. A., Rahman, M. S., Rahman, M. A., Salam, M. A., Yousuf, M. A., Islam, M. F. & Arafat, M. A. (2012). Bangladesh Pharmaceutical Journal, 15, 83–87.
  27. Singh, N. K., Srivastava, A., Sodhi, A. & Ranjan, P. (2000). Transit. Met. Chem. 25, 133–140.
  28. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  29. Vieites, M., Otero, L., Santos, D., Olea-Azar, C., Norambuena, E., Aguirre, G., Cerecetto, H., González, M., Kemmerling, U., Morello, A., Diego Maya, J. & Gambino, D. (2009). J. Inorg. Biochem. 103, 411–418. [DOI] [PubMed]
  30. Ziessel, R. (2001). Coord. Chem. Rev. 216–217, 195–223.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019008946/su5501sup1.cif

e-75-01065-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019008946/su5501Isup2.hkl

e-75-01065-Isup2.hkl (445.6KB, hkl)

CCDC reference: 1480651

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES