Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jun 21;75(Pt 7):1035–1040. doi: 10.1107/S2056989019008673

(1R,2S,4r)-1,2,4-Tri­phenyl­cyclo­pentane-1,2-diol and (1R,2S,4r)-4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol: application as initiators for ring-opening polymerization of ∊-caprolactone

Pavel D Komarov a, Mikhail E Minyaev a,*, Andrei V Churakov b, Dmitrii M Roitershtein a,c, Ilya E Nifant’ev a,d
PMCID: PMC6659343  PMID: 31392020

Achiral (1R,2S,4r)-1,2,4-tri­phenyl­cyclo­pentane-1,2-diol and (1R,2S,4r)-4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol form one-dimensional chains via O—H⋯O hydrogen bonding in their crystals. The diols may serve as precatalyst activators for ring-opening polymerization of cyclic esters.

Keywords: cyclo­pentane-1,2-diol; crystal structure; hydrogen bonding; ring-opening polymerization; caprolactone

Abstract

Reductive cyclization of 1,3,5-triphenyl- and 3-(2-meth­oxy­phen­yl)-1,5-di­phenyl­pentane-1,5-diones by zinc in acetic acid medium leads to the formation of 1,2,4-tri­phenyl­cyclo­pentane-1,2-diol [1,2,4-Ph3C5H5-1,2-(OH)2, C23H22O2, (I)] and 4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol [4-(2-MeOC6H4)-1,2-Ph2C5H5-1,2-(OH)2, C24H24O3, (II)]. Their single crystals have been obtained by crystallization from a THF/hexane solvent mixture. Diols (I) and (II) crystallize in ortho­rhom­bic (Pbca) and triclinic (P Inline graphic) space groups, respectively, at 150 K. Their asymmetric units comprise one [in the case of (I)] and three [in the case of (II)] crystallographically independent mol­ecules of the achiral (1R,2S,4r)-diol isomer. Each hydroxyl group is involved in one intra­molecular and one inter­molecular O—H⋯O hydrogen bond, forming one-dimensional chains. Compounds (I) and (II) have been used successfully as precatalyst activators for the ring-opening polymerization of ∊-caprolactone.

Chemical context  

1,2,4-Tri­aryl­cyclo­pentane-1,2-diols are useful synthetic precursors for obtaining 1,2,4-tri­aryl­cyclo­penta-1,3-dienes (Hirsch & Bailey, 1978; Yang et al., 2012; Zhang et al., 2013; Ye et al., 2016, 2017). The latter compounds are currently of inter­est because of their intrinsic luminescent properties due to aggregation-induced emission enhancement (Yang et al., 2012; Zhang, Ye et al., 2013; Ye et al., 2016, 2017). Certain 4-aryl-1,2-di­phenyl­cyclo­penta-1,3-dienes are promising cand­i­dates for the fabrication of OLED devices (Ye et al., 2017). However, most tri­aryl­cyclo­penta­dienes are mainly used for the synthesis of the corresponding organometallic cyclo­penta­dienyl complexes. Up to date, the number of known tri­phenyl­cyclo­penta­dienyl complexes of d- (Davies et al., 2000; Deck et al., 2006; Thornberry et al., 2000, 2004; Wu et al., 2007; Xu et al., 2006, 2007; Zhang et al., 2000; Zhang et al., 2003) and f-block metals (Visseaux et al., 2008; Minyaev et al., 2016; Roitershtein et al., 2012, 2018) is rather limited, and they are still insufficiently studied. Various polyphenyl­cyclo­penta­dienyl Tb complexes, including 1,2,4-tri­phenyl­cyclo­penta­dienyl ones, display promising photophysical properties because of the presence of such a ligand, which serves as a π-type antenna for luminescence sensitization of lanthanides (Roitershtein et al., 2018). Organometallic derivatives of d- and f-block metals with various tri­phenyl­cyclo­penta­dienyl ligands may also be used in the catalytic polymerization of olefins (Thornberry et al., 2004; Visseaux et al., 2008; Minyaev et al., 2016; Xu et al., 2006, 2007; Zhang et al., 2000; Zhang et al., 2003).graphic file with name e-75-01035-scheme1.jpg

1,2-Diphenyl-4-aryl­cyclo­pentane-1,2-diols can be readily synthesized by the reductive cyclization of 1,5-diphenyl-3-aryl­pentane-1,5-diones with zinc in an acetic acid medium (Fig. 1; aryl = Ph, 2-MeOC6H4). The corresponding diones are formed by condensation of aceto­phenone with benzaldehyde/2-meth­oxy­benzaldehyde under basic conditions (Hirsch & Bailey, 1978; Minyaev et al., 2015). The presence of only one isomer (see §2) has been detected by 1H NMR studies in the samples of all isolated crystalline diols from repeated syntheses. However, examination of the reaction mixtures has allowed us to suppose that another minor isomer of (I) may sometimes be present (up to 20%), but it does not crystallize under the conditions used here.

Figure 1.

Figure 1

Synthesis of 1,2,4-tri­phenyl­cyclo­pentane-1,2-diol (I) and 4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol (II).

It is known that complexes [Mg(BHT)(OR)(THF)n]2 (n = 0, 1; BHT = O-2,6-tBu2-4-MeC6H2 or the anion of butyl­ated hy­droxy­toluene) are active in ring-opening polymerization (ROP) of cyclic esters (Nifant’ev et al., 2016, 2017), whereas Mg(BHT)2(THF)2 is catalytically inactive, but displays relatively high catalytic activity upon activation by a primary alcohol (see, for example, Chen et al., 2012). The ROP of ∊-caprolactone (∊-CL) to poly(∊-caprolactone) (PCL) can be carried out on the precatalyst Mg(BHT)2(THF)2 activated even by various bulky alcohols (Minyaev et al., 2018). We have tested the obtained diols (I) and (II) as activators of the Mg(BHT)2(THF)2 precatalyst for polymerization of ∊-CL (Fig. 2, Table 1). In all cases, the qu­anti­tative conversion of ∊-CL to PCL was observed by 1H NMR spectroscopy.

Figure 2.

Figure 2

Ring-opening polymerization of ∊-caprolactone using [Mg(BHT)2(THF)2] and either (I) or (II).

Table 1. Polymerization of ∊-CL.

Mn is the number-average molar mass; Đ is the polydispersity index defined as Đ=Mw/Mn, where Mw is the weight-average molar mass; Pn is the polymerization degree. Conditions: [∊-CL] = 2.5 M; THF; [∊-CL]/[diol]/[Mg(BHT)2] = 100:1:1 or 2; 300 K, 30 min.

Entry Diol Equiv. of Mg(BHT)2 Mn ×103a Ða Pna Mn ×103b Pnb
1 (I) 1 11.4 1.42 97 12.0 102
2 (I) 2 9.0 1.84 77 7.6 65
3 (II) 1 12.4 1.39 106 12.6 107
4 (II) 2 8.9 1.85 76 7.2 62

Notes: (a) Found by size-exclusion chromatography (SEC) measurements. (b) Determined by 1H NMR studies. Mn and Pn were calculated based on the end-group analysis.

In the case of the ratio [diol]/[Mg(BHT)2] = 1:1 (entries 1 and 3, Table 1), the polymerization degree (the number of polymerized monomer units, Pn) found by 1H NMR spectroscopy and by size-exclusion chromatography (SEC) are very close to the calculated value (Pn calcd. = 100). However, when the ratio [diol]/[Mg(BHT)2] = 1:2, and two chains are growing at one diol, the Pn values (entries 2 and 4) are somewhat higher than expected (Pn calcd. = 50), which might be explained by a longer reaction time of the second [Mg(BHT)2(THF)2] mol­ecule with the same initiator mol­ecule with respect to the time of polymer-chain propagation. This is also supported by larger polydispersity index (Đ) values (compare entries 2 and 4 with entries 1 and 3), pointing to unequal growth of the two chains.

Therefore, catalytic tests have shown that systems based on [Mg(BHT)2(THF)2] and (I) or (II) are capable of catalysing ROP of ∊-CL, providing 100% monomer conversion. When using the diol/Mg(BHT)2 ratio equal to 1:1, the ROP can be carried out in a more controlled manner.

Structural commentary  

Compounds (I) and (II) crystallize in the ortho­rhom­bic Pbca and triclinic P Inline graphic space groups, respectively. The asymmetric units of (I) and (II) contain one and three diol mol­ecules, respectively, exhibiting an achiral configuration (1R,2S,4r) with all three phenyl groups being on one side of the cyclo­pentane ring (Figs. 3 and 4). However, the envelope conformations of (I) and (II) differ, which might be caused by crystal-packing effects. Thus, atoms C1, C2, C3 and C5 in (I) lie nearly in one plane but atom C4 deviates by 0.6727 (19) Å from the plane (see Scheme and Fig. 3). All three crystallographically independent mol­ecules in (II) (A, B and C; Fig. 4) have very similar envelope conformations (with the exception of the positions of the hy­droxy H atoms), with atom C2 being out of the plane formed by atoms C1, C3, C4 and C5 by 0.644 (3), 0.666 (3) and 0.633 (3) Å in (II A), (II B) and (II C), respectively (see Scheme and Fig. 4). A conformation which is very similar to those of mol­ecules (II A), (II B) and (II C) has been found earlier for (1R,2S)-1,2-di­phenyl­cyclo­pentane-1,2-diol, having the Cambridge Structural Database (Version 5.40; Groom et al., 2016) refcode ZIWVEG (Choi et al., 1995). All C—C and C—O bond distances in (I) and (II) fall into regular ranges and can be found in the supporting information.

Figure 3.

Figure 3

The structure of (1R,2S,4r)-1,2,4-tri­phenyl­cyclo­pentane-1,2-diol, (I). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Only hy­droxy H atoms are labelled for clarity. The intra­molecular hydrogen bonding is not shown.

Figure 4.

Figure 4

The structure of the three crystallographically independent mol­ecules (A, B, C) of (1R,2S,4r)-4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol, (II). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Only hy­droxy H atoms are labelled for clarity. The intra­molecular hydrogen bonding is not shown.

Diols (I) and (II) each form one intra­molecular O—H⋯O hydrogen bond: O2—H2⋯O1 for (I), O2A—H2A⋯O1A for (II A), O1B—H1B⋯O2B for (II B) and O2C—H2C⋯O1C for (II C) (Figs. 5, 6). The corresponding O—H⋯O bond angles range from 117 (2)° in (II B) to 131.0 (19)° in (I) (Tables 2 and 3).

Figure 5.

Figure 5

The one-dimensional chains formed by hydrogen bonding between mol­ecules of (1R,2S,4r)-1,2,4-tri­phenyl­cyclo­pentane-1,2-diol (I) parallel to the b axis. Displacement ellipsoids are drawn at the 50% probability level. Non-hy­droxy H atoms are not shown.

Figure 6.

Figure 6

The one-dimensional chains of (1R,2S,4r)-4-(2-meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol mol­ecules (II) along the ab direction. Displacement ellipsoids are drawn at the 50% probability level. Non-hy­droxy H atoms are not shown.

Table 2. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.87 (2) 1.89 (2) 2.7509 (13) 173.2 (19)
O2—H2⋯O1 0.86 (2) 1.80 (2) 2.4510 (14) 131.0 (19)

Symmetry code: (i) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2C ii 0.85 (3) 2.08 (3) 2.8931 (19) 160 (3)
O2A—H2A⋯O1A 0.88 (3) 2.04 (3) 2.605 (2) 121 (2)
O1B—H1B⋯O2B 0.90 (3) 2.05 (3) 2.590 (2) 117 (2)
O2B—H2B⋯O2A 0.83 (2) 1.98 (2) 2.802 (2) 170 (2)
O1C—H1C⋯O1B 0.88 (3) 1.96 (3) 2.833 (2) 171 (2)
O2C—H2C⋯O1C 0.85 (3) 2.00 (3) 2.587 (2) 125 (2)

Symmetry code: (ii) Inline graphic.

Supra­molecular features  

Regardless of some structural differences, diols (I) and (II) form similar 1D chains in their crystals via inter­molecular O—H⋯O hydrogen bonding [O1—H1⋯O2i for (I), symmetry code: (i) −x + Inline graphic, y − Inline graphic, z; and O2B—H2B⋯O2A, O1C—H1C⋯O1B, O1A—H1A⋯O2C ii for (II), symmetry code: (ii) x − 1, y − 1, z]. The inter­molecular O—H⋯O bond angles lie in the expected range of 160 (3) to 173.2 (19)°. The chains are oriented along the b-axis direction in (I) and approximately along the ab diagonal in (II). It might be also mentioned that for both the inter- and intra­molecular hydrogen bonds, the O⋯O and consequently O—H⋯O distances are slightly elongated in (II) compared to (I), likely as a result of crystal-packing effects.

Synthesis and crystallization  

General remarks  

The starting compounds 1,3,5-tri­phenyl­pentane-1,5-dione and 3-(2-meth­oxy­phen­yl)-1,5-di­phenyl­pentane-1,5-dione were obtained in high yields by the previously described procedure (Hirsch & Bailey, 1978) with certain minor modifications (Minyaev et al., 2015) to decrease formation of side products. They were recrystallized from hot ethanol or iso­propanol followed by vacuum drying. The complex Mg(BHT)2(THF)2 was prepared as described earlier (Nifant’ev et al., 2017). All polymerization tests and the synthesis of Mg(BHT)2(THF)2 were performed under a purified argon atmosphere in a dry box in absolute solvent media. Tetra­hydro­furan was pre-dried over NaOH and distilled from potassium/benzo­phenone ketyl. Hexane was distilled from an Na/K alloy. Toluene was distilled from sodium/benzo­phenone ketyl. ∊-Caprolactone (∊-CL) was distilled from CaH2 under reduced pressure of argon. CDCl3 (Cambridge Isotope Laboratories, Inc., D 99.8%) was used as purchased. The NMR spectra were recorded on Bruker AV400 and AV600 spectrometers at 300 K; chemical shifts are reported in ppm relative to the solvent residual peak. The SEC analysis of polymer samples was performed at 323 K using an Agilent PL-GPC 220 gel permeation chromatograph equipped with a PLgel column, with DMF as eluent (1 ml min−1) and poly(ethyl­ene oxide) standards.

Synthesis and crystallization of (I)  

(1R,2S,4r)-1,2,4-Tri­phenyl­cyclo­pentane-1,2-diol, (I), was prepared as described previously (Hirsch & Bailey, 1978) in a yield of 78%, m.p. = 415–417K. 1H NMR (400 MHz, CDCl3): δ = 2.61 (2H, dd, –CH2–, 2 J HH = 13.9 Hz, 3 J HH = 8.8 Hz), 2.84 (2H, dd, –CH2–, 2 J HH = 13.9 Hz, 3 J HH = 10.1 Hz), 3.58 (2H, s, >CPh—OH), 4.11 (1H, quintet, >CPhH), 6.97–7.12 (10H, m), 7.15–7.36 (2H, m), 7.43 (3H, d, 3 J HH = 4.0 Hz).

A small portion of (I) was dissolved in a warm mixture of THF/hexane (1:10 v/v) to provide a saturated solution. Single crystals formed in two weeks.

Synthesis and crystallization of (II)  

(1R,2S,4r)-4-(2-Meth­oxy­phen­yl)-1,2-di­phenyl­cyclo­pentane-1,2-diol, (II), was prepared analogously to (I) but with some minor modifications. Zinc powder (20.00 g, 306 mmol) was added by small portions over 5 h to a vigorously stirred solution of 1,5-diphenyl-3-(2-meth­oxy­phen­yl)pentane-1,5-dione (27.43 g, 76.5 mmol) in 900 ml of glacial acetic acid at 363 K. The formed hot mixture was filtered. The resulting solution was cooled to room temperature and poured into 5000 ml of water. The formed yellowish precipitate was collected, washed with water (2 × 100 ml) and dried under vacuum. The solid was recrystallized from a hot mixture of petroleum ether (boiling temperature range of 343–373 K) and toluene (400 ml, 3:1 v/v). The white microcrystals were dried under dynamic vacuum. The yield was 17.42 g (48.3 mmol, 63.2%), (m.p. = 384–387 K. 1H NMR (600 MHz, CDCl3): δ = 2.56 (2H, dd, –CH2–, 2 J HH = 14.3 Hz, 3 J HH = 8.4 Hz), 2.81 (2H, dd, –CH2–, 2 J HH = 14.3 Hz, 3 J HH = 10.3 Hz), 3.46 (2H, s, >CPh—OH), 3.90 (3H, s, –OCH3), 4.27 [1H, quintet, –C(C6H4OMe)H], 6.96 (1H, d, 3 J HH = 8.1 Hz), 7.02–7.07 (7H, m), 7.09–7.13 (4H, m), 7.31 (1H, t), 7.45 (1H, d, 3 J HH = 7.3 Hz). 13C{1H} NMR (150.9 MHz, CDCl3): δ = 34.07, 44.21, 55.40, 85.58, 110.67, 120.52, 126.34, 126.47, 126.82, 127.34, 127.48, 132.17, 143.51, 158.26.

Single crystals of (II), suitable for X-ray diffraction analysis, were grown from a THF/hexane mixture (1:10 v/v) over two weeks.

Polymerization procedure  

In a typical polymerization experiment, a solution of 0.1 mmol of a diol [33 mg of (I) or 36 mg of (II)] in 1 ml of THF was added to a stirred solution of Mg(BHT)2(THF)2 (0.1 mmol, 61 mg or 0.2 mmol, 121 mg) in 1 ml of THF. The resulting solution was stirred for 20 min. A solution of ∊-CL (1.14 g, 10 mmol) in 1 ml of THF was then added at once to the formed catalyst solution. The solution was stirred for 30 min and then a sample was taken to determine conversion of the monomer by 1H NMR spectroscopy. A 100% conversion was established in all cases based on the absence of a resonance signal at 4.22 ppm (∊-CL) and the presence of a signal at 4.05 ppm (PCL), both corresponding to the –CH2O(CO)– fragment. The remaining viscous solution was poured into methanol (50 ml) containing a drop of acetic acid. The resulting precipitate was separated by centrifugation, washed with methanol (3 × 25 ml) and hexane (2 × 10 ml) and dried under vacuum. Polymer samples were further studied by SEC and 1H NMR analysis. The degree of polymerization was determined by integration of a PCL terminal group signal at 3.63 ppm (–CH2—CH2—OH).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The positions of all hydrogen atoms in (I) and the hy­droxy H atoms in (II) were found from the difference maps. These H atoms were refined independently with individual isotropic displacement parameters. The other H atoms in (II) were positioned geometrically (C—H = 0.95 Å for aromatic, 0.98 Å for methyl, 0.99 Å for methyl­ene and 1.00 Å for methine H atoms) and refined as riding atoms with relative isotropic displacement parameters U iso(H)= 1.5U eq(C) for methyl H atoms and 1.2U eq(C) otherwise. A rotating group model was applied for methyl groups. For (II), reflections Inline graphic10 and 221 were affected by the beam stop and were omitted from the refinement. The extinction correction in SHELXL was used for (II) (Sheldrick, 2015).

Table 4. Experimental details.

  (I) (II)
Crystal data
Chemical formula C23H22O2 C24H24O3
M r 330.40 360.43
Crystal system, space group Orthorhombic, P b c a Triclinic, P Inline graphic
Temperature (K) 150 150
a, b, c (Å) 16.9915 (6), 9.3183 (3), 22.0129 (7) 11.4136 (6), 14.0145 (7), 19.0339 (10)
α, β, γ (°) 90, 90, 90 92.3394 (18), 101.5461 (17), 105.0129 (19)
V3) 3485.3 (2) 2867.3 (3)
Z 8 6
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.40 × 0.35 × 0.20 0.50 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.869, 0.928 0.856, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 39896, 4625, 4025 31335, 11202, 8043
R int 0.041 0.039
(sin θ/λ)max−1) 0.682 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.055, 0.136, 1.11 0.051, 0.136, 1.04
No. of reflections 4625 11202
No. of parameters 314 758
H-atom treatment All H-atom parameters refined H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.23 0.36, −0.24

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXS and SHELXTL (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), publCIF (Westrip, 2010) and Mercury (Macrae et al.,2006).

Supplementary Material

Crystal structure: contains datablock(s) I, II, New_Global_Publ_Block. DOI: 10.1107/S2056989019008673/fy2139sup1.cif

e-75-01035-sup1.cif (2.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019008673/fy2139Isup2.hkl

e-75-01035-Isup2.hkl (368.7KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019008673/fy2139IIsup3.hkl

e-75-01035-IIsup3.hkl (888.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019008673/fy2139Isup4.cml

Supporting information file. DOI: 10.1107/S2056989019008673/fy2139IIsup5.cml

CCDC references: 1929065, 1929064

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The equipment from the collective exploitation center ‘New petrochemical processes, polymer composites and adhesives’ of TIPS RAS was used. The X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

supplementary crystallographic information

(1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol (I) . Crystal data

C23H22O2 Dx = 1.259 Mg m3
Mr = 330.40 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 9996 reflections
a = 16.9915 (6) Å θ = 3.0–30.4°
b = 9.3183 (3) Å µ = 0.08 mm1
c = 22.0129 (7) Å T = 150 K
V = 3485.3 (2) Å3 Prism, colourless
Z = 8 0.40 × 0.35 × 0.20 mm
F(000) = 1408

(1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol (I) . Data collection

Bruker SMART APEXII diffractometer 4625 independent reflections
Radiation source: fine-focus sealed tube 4025 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
ω scans θmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −22→23
Tmin = 0.869, Tmax = 0.928 k = −12→12
39896 measured reflections l = −30→29

(1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: difference Fourier map
wR(F2) = 0.136 All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0649P)2 + 1.4502P] where P = (Fo2 + 2Fc2)/3
4625 reflections (Δ/σ)max < 0.001
314 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.23 e Å3

(1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.24602 (5) 0.55215 (10) 0.18770 (4) 0.0209 (2)
H1 0.2241 (12) 0.469 (2) 0.1826 (9) 0.037 (5)*
O2 0.31200 (6) 0.78090 (10) 0.16702 (5) 0.0211 (2)
H2 0.2699 (13) 0.731 (2) 0.1629 (9) 0.040 (5)*
C1 0.32785 (7) 0.53090 (13) 0.20268 (6) 0.0154 (2)
C2 0.36409 (7) 0.69000 (13) 0.20090 (6) 0.0156 (2)
C3 0.36604 (8) 0.73633 (14) 0.26866 (6) 0.0197 (3)
H3A 0.4214 (10) 0.7274 (18) 0.2843 (8) 0.026 (4)*
H3B 0.3500 (10) 0.8380 (19) 0.2727 (7) 0.023 (4)*
C4 0.31240 (7) 0.63121 (14) 0.30256 (6) 0.0182 (3)
H4 0.2562 (10) 0.6555 (17) 0.2932 (7) 0.019 (4)*
C5 0.33277 (8) 0.49036 (13) 0.26981 (6) 0.0185 (3)
H5A 0.2978 (10) 0.4132 (19) 0.2798 (8) 0.026 (4)*
H5B 0.3860 (9) 0.4584 (17) 0.2823 (7) 0.018 (4)*
C6 0.36313 (7) 0.42551 (13) 0.15783 (6) 0.0178 (3)
C7 0.39703 (8) 0.29720 (14) 0.17635 (7) 0.0233 (3)
H7 0.3998 (10) 0.2754 (19) 0.2195 (9) 0.030 (5)*
C8 0.42672 (9) 0.20104 (17) 0.13381 (8) 0.0327 (4)
H8 0.4512 (13) 0.112 (2) 0.1483 (9) 0.045 (6)*
C9 0.42272 (10) 0.23193 (19) 0.07249 (8) 0.0371 (4)
H9 0.4433 (12) 0.164 (2) 0.0424 (10) 0.049 (6)*
C10 0.38891 (11) 0.3595 (2) 0.05359 (7) 0.0386 (4)
H10 0.3878 (13) 0.384 (2) 0.0106 (10) 0.050 (6)*
C11 0.35920 (9) 0.45546 (17) 0.09590 (7) 0.0285 (3)
H11 0.3358 (11) 0.546 (2) 0.0819 (8) 0.034 (5)*
C12 0.44573 (7) 0.70012 (13) 0.17266 (6) 0.0163 (2)
C13 0.50697 (8) 0.61131 (14) 0.19234 (6) 0.0209 (3)
H13 0.4978 (11) 0.541 (2) 0.2244 (8) 0.032 (5)*
C14 0.58129 (8) 0.62098 (15) 0.16632 (7) 0.0249 (3)
H14 0.6240 (11) 0.556 (2) 0.1803 (8) 0.033 (5)*
C15 0.59666 (8) 0.72139 (16) 0.12135 (7) 0.0259 (3)
H15 0.6492 (11) 0.730 (2) 0.1042 (8) 0.030 (5)*
C16 0.53730 (9) 0.81218 (16) 0.10270 (6) 0.0266 (3)
H16 0.5474 (11) 0.887 (2) 0.0723 (9) 0.037 (5)*
C17 0.46217 (8) 0.80077 (15) 0.12783 (6) 0.0219 (3)
H17 0.4216 (11) 0.860 (2) 0.1137 (8) 0.034 (5)*
C18 0.32029 (7) 0.62406 (15) 0.37101 (6) 0.0209 (3)
C19 0.36629 (9) 0.71880 (17) 0.40436 (7) 0.0283 (3)
H19 0.3956 (11) 0.791 (2) 0.3842 (8) 0.028 (4)*
C20 0.36941 (10) 0.7090 (2) 0.46775 (8) 0.0374 (4)
H20 0.4009 (13) 0.777 (2) 0.4892 (10) 0.047 (6)*
C21 0.32644 (10) 0.6053 (2) 0.49798 (7) 0.0384 (4)
H21 0.3280 (12) 0.602 (2) 0.5425 (10) 0.044 (5)*
C22 0.28124 (9) 0.5092 (2) 0.46516 (7) 0.0333 (4)
H22 0.2512 (12) 0.437 (2) 0.4862 (9) 0.040 (5)*
C23 0.27780 (8) 0.51904 (17) 0.40237 (6) 0.0255 (3)
H23 0.2437 (11) 0.4513 (19) 0.3798 (8) 0.029 (4)*

(1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0128 (4) 0.0168 (4) 0.0331 (5) −0.0001 (3) −0.0051 (4) −0.0042 (4)
O2 0.0159 (4) 0.0154 (4) 0.0319 (5) 0.0033 (3) −0.0044 (4) 0.0023 (4)
C1 0.0123 (5) 0.0119 (5) 0.0220 (6) −0.0001 (4) −0.0030 (4) −0.0014 (4)
C2 0.0147 (5) 0.0121 (5) 0.0202 (6) 0.0009 (4) −0.0023 (4) −0.0011 (4)
C3 0.0210 (6) 0.0169 (6) 0.0211 (6) −0.0026 (5) −0.0004 (5) −0.0044 (5)
C4 0.0155 (5) 0.0187 (6) 0.0205 (6) 0.0014 (4) 0.0001 (5) −0.0021 (5)
C5 0.0196 (6) 0.0151 (5) 0.0207 (6) −0.0005 (5) −0.0005 (5) −0.0006 (5)
C6 0.0139 (5) 0.0164 (6) 0.0232 (6) −0.0017 (4) −0.0018 (4) −0.0052 (5)
C7 0.0215 (6) 0.0177 (6) 0.0307 (7) 0.0018 (5) −0.0010 (5) −0.0026 (5)
C8 0.0287 (7) 0.0225 (7) 0.0470 (9) 0.0059 (6) −0.0001 (7) −0.0099 (6)
C9 0.0317 (8) 0.0394 (9) 0.0402 (9) 0.0042 (7) 0.0004 (7) −0.0231 (7)
C10 0.0436 (9) 0.0476 (10) 0.0245 (7) 0.0074 (8) −0.0038 (7) −0.0133 (7)
C11 0.0334 (8) 0.0286 (7) 0.0236 (7) 0.0053 (6) −0.0064 (6) −0.0052 (6)
C12 0.0158 (5) 0.0136 (5) 0.0194 (5) −0.0012 (4) −0.0023 (4) −0.0032 (4)
C13 0.0174 (6) 0.0165 (6) 0.0288 (7) −0.0004 (5) −0.0020 (5) 0.0025 (5)
C14 0.0167 (6) 0.0195 (6) 0.0385 (8) 0.0017 (5) −0.0018 (5) −0.0015 (6)
C15 0.0192 (6) 0.0267 (7) 0.0317 (7) −0.0038 (5) 0.0050 (5) −0.0056 (6)
C16 0.0283 (7) 0.0292 (7) 0.0224 (6) −0.0044 (6) 0.0028 (5) 0.0032 (6)
C17 0.0210 (6) 0.0216 (6) 0.0230 (6) 0.0005 (5) −0.0024 (5) 0.0019 (5)
C18 0.0166 (6) 0.0252 (7) 0.0209 (6) 0.0059 (5) 0.0013 (5) −0.0032 (5)
C19 0.0264 (7) 0.0326 (8) 0.0260 (7) −0.0002 (6) −0.0008 (6) −0.0065 (6)
C20 0.0332 (8) 0.0514 (10) 0.0275 (8) 0.0014 (8) −0.0042 (6) −0.0121 (7)
C21 0.0321 (8) 0.0627 (12) 0.0202 (7) 0.0069 (8) −0.0008 (6) −0.0020 (7)
C22 0.0274 (7) 0.0458 (9) 0.0267 (7) 0.0042 (7) 0.0053 (6) 0.0054 (7)
C23 0.0204 (6) 0.0311 (7) 0.0250 (7) 0.0025 (6) 0.0020 (5) −0.0006 (6)

(1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol (I) . Geometric parameters (Å, º)

O1—C1 1.4426 (14) C10—C11 1.387 (2)
O1—H1 0.87 (2) C10—H10 0.97 (2)
O2—C2 1.4343 (15) C11—H11 0.98 (2)
O2—H2 0.86 (2) C12—C17 1.3898 (18)
C1—C6 1.5162 (17) C12—C13 1.3985 (17)
C1—C5 1.5274 (18) C13—C14 1.3895 (19)
C1—C2 1.6058 (17) C13—H13 0.978 (19)
C2—C12 1.5230 (17) C14—C15 1.387 (2)
C2—C3 1.5531 (18) C14—H14 0.995 (19)
C3—C4 1.5319 (18) C15—C16 1.379 (2)
C3—H3A 1.005 (17) C15—H15 0.972 (19)
C3—H3B 0.990 (17) C16—C17 1.395 (2)
C4—C18 1.5142 (18) C16—H16 0.980 (19)
C4—C5 1.5369 (17) C17—H17 0.94 (2)
C4—H4 1.002 (16) C18—C19 1.389 (2)
C5—H5A 0.959 (17) C18—C23 1.398 (2)
C5—H5B 0.990 (16) C19—C20 1.399 (2)
C6—C7 1.3883 (18) C19—H19 0.950 (19)
C6—C11 1.3930 (19) C20—C21 1.382 (3)
C7—C8 1.391 (2) C20—H20 0.96 (2)
C7—H7 0.973 (19) C21—C22 1.383 (3)
C8—C9 1.382 (3) C21—H21 0.98 (2)
C8—H8 0.98 (2) C22—C23 1.386 (2)
C9—C10 1.384 (3) C22—H22 0.97 (2)
C9—H9 0.98 (2) C23—H23 0.989 (18)
C1—O1—H1 108.6 (13) C10—C9—H9 120.1 (13)
C2—O2—H2 104.6 (14) C9—C10—C11 120.21 (16)
O1—C1—C6 108.72 (10) C9—C10—H10 120.1 (13)
O1—C1—C5 107.93 (10) C11—C10—H10 119.6 (13)
C6—C1—C5 116.62 (10) C10—C11—C6 120.70 (15)
O1—C1—C2 103.73 (9) C10—C11—H11 119.3 (11)
C6—C1—C2 115.50 (10) C6—C11—H11 120.0 (11)
C5—C1—C2 103.36 (9) C17—C12—C13 118.02 (12)
O2—C2—C12 108.25 (10) C17—C12—C2 120.98 (11)
O2—C2—C3 110.39 (10) C13—C12—C2 120.97 (11)
C12—C2—C3 110.82 (10) C14—C13—C12 120.68 (13)
O2—C2—C1 108.74 (9) C14—C13—H13 119.1 (11)
C12—C2—C1 114.61 (10) C12—C13—H13 120.2 (11)
C3—C2—C1 103.96 (10) C15—C14—C13 120.60 (13)
C4—C3—C2 106.10 (10) C15—C14—H14 119.7 (11)
C4—C3—H3A 109.7 (10) C13—C14—H14 119.7 (11)
C2—C3—H3A 109.0 (10) C16—C15—C14 119.25 (13)
C4—C3—H3B 113.8 (10) C16—C15—H15 120.4 (11)
C2—C3—H3B 110.3 (10) C14—C15—H15 120.3 (11)
H3A—C3—H3B 107.9 (14) C15—C16—C17 120.29 (13)
C18—C4—C3 117.40 (11) C15—C16—H16 120.7 (11)
C18—C4—C5 114.16 (11) C17—C16—H16 119.0 (11)
C3—C4—C5 100.58 (10) C12—C17—C16 121.12 (13)
C18—C4—H4 107.3 (9) C12—C17—H17 119.1 (12)
C3—C4—H4 108.8 (9) C16—C17—H17 119.7 (12)
C5—C4—H4 108.2 (9) C19—C18—C23 118.32 (13)
C1—C5—C4 103.31 (10) C19—C18—C4 123.22 (13)
C1—C5—H5A 111.9 (10) C23—C18—C4 118.45 (12)
C4—C5—H5A 113.2 (10) C18—C19—C20 120.45 (15)
C1—C5—H5B 113.1 (9) C18—C19—H19 120.0 (11)
C4—C5—H5B 109.4 (9) C20—C19—H19 119.5 (11)
H5A—C5—H5B 106.1 (14) C21—C20—C19 120.40 (16)
C7—C6—C11 118.68 (12) C21—C20—H20 121.6 (13)
C7—C6—C1 122.04 (12) C19—C20—H20 118.0 (13)
C11—C6—C1 119.24 (12) C20—C21—C22 119.62 (15)
C6—C7—C8 120.50 (14) C20—C21—H21 119.1 (12)
C6—C7—H7 119.1 (11) C22—C21—H21 121.3 (12)
C8—C7—H7 120.4 (11) C21—C22—C23 120.09 (16)
C9—C8—C7 120.38 (15) C21—C22—H22 119.7 (12)
C9—C8—H8 120.9 (12) C23—C22—H22 120.2 (12)
C7—C8—H8 118.7 (12) C22—C23—C18 121.12 (14)
C8—C9—C10 119.54 (14) C22—C23—H23 118.8 (10)
C8—C9—H9 120.4 (13) C18—C23—H23 120.1 (10)
O1—C1—C2—O2 −18.78 (12) C9—C10—C11—C6 0.2 (3)
C6—C1—C2—O2 100.08 (12) C7—C6—C11—C10 −0.3 (2)
C5—C1—C2—O2 −131.34 (10) C1—C6—C11—C10 −178.18 (14)
O1—C1—C2—C12 −140.05 (10) O2—C2—C12—C17 8.66 (16)
C6—C1—C2—C12 −21.20 (15) C3—C2—C12—C17 −112.53 (13)
C5—C1—C2—C12 107.38 (11) C1—C2—C12—C17 130.20 (12)
O1—C1—C2—C3 98.83 (11) O2—C2—C12—C13 −173.27 (11)
C6—C1—C2—C3 −142.31 (11) C3—C2—C12—C13 65.54 (15)
C5—C1—C2—C3 −13.74 (12) C1—C2—C12—C13 −51.72 (16)
O2—C2—C3—C4 100.69 (12) C17—C12—C13—C14 −1.9 (2)
C12—C2—C3—C4 −139.38 (10) C2—C12—C13—C14 179.92 (12)
C1—C2—C3—C4 −15.77 (12) C12—C13—C14—C15 1.6 (2)
C2—C3—C4—C18 163.45 (10) C13—C14—C15—C16 0.1 (2)
C2—C3—C4—C5 39.00 (12) C14—C15—C16—C17 −1.5 (2)
O1—C1—C5—C4 −71.24 (12) C13—C12—C17—C16 0.62 (19)
C6—C1—C5—C4 166.10 (10) C2—C12—C17—C16 178.74 (12)
C2—C1—C5—C4 38.23 (11) C15—C16—C17—C12 1.1 (2)
C18—C4—C5—C1 −174.72 (10) C3—C4—C18—C19 7.85 (19)
C3—C4—C5—C1 −48.08 (12) C5—C4—C18—C19 125.18 (14)
O1—C1—C6—C7 −121.11 (13) C3—C4—C18—C23 −173.66 (12)
C5—C1—C6—C7 1.13 (17) C5—C4—C18—C23 −56.33 (16)
C2—C1—C6—C7 122.83 (13) C23—C18—C19—C20 −0.3 (2)
O1—C1—C6—C11 56.65 (15) C4—C18—C19—C20 178.23 (14)
C5—C1—C6—C11 178.89 (12) C18—C19—C20—C21 −0.3 (3)
C2—C1—C6—C11 −59.41 (16) C19—C20—C21—C22 1.1 (3)
C11—C6—C7—C8 0.3 (2) C20—C21—C22—C23 −1.4 (3)
C1—C6—C7—C8 178.06 (13) C21—C22—C23—C18 0.8 (2)
C6—C7—C8—C9 −0.1 (2) C19—C18—C23—C22 0.0 (2)
C7—C8—C9—C10 0.0 (3) C4—C18—C23—C22 −178.55 (13)
C8—C9—C10—C11 −0.1 (3)

(1R,2S,4r)-1,2,4-Triphenylcyclopentane-1,2-diol (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.87 (2) 1.89 (2) 2.7509 (13) 173.2 (19)
O2—H2···O1 0.86 (2) 1.80 (2) 2.4510 (14) 131.0 (19)

Symmetry code: (i) −x+1/2, y−1/2, z.

(1R,2S,4r)-4-(2-Methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol (II) . Crystal data

C24H24O3 Z = 6
Mr = 360.43 F(000) = 1152
Triclinic, P1 Dx = 1.252 Mg m3
a = 11.4136 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 14.0145 (7) Å Cell parameters from 8113 reflections
c = 19.0339 (10) Å θ = 2.4–29.8°
α = 92.3394 (18)° µ = 0.08 mm1
β = 101.5461 (17)° T = 150 K
γ = 105.0129 (19)° Prism, colourless
V = 2867.3 (3) Å3 0.50 × 0.20 × 0.10 mm

(1R,2S,4r)-4-(2-Methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol (II) . Data collection

Bruker SMART APEXII diffractometer 11202 independent reflections
Radiation source: fine-focus sealed tube 8043 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
ω scans θmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −14→14
Tmin = 0.856, Tmax = 0.928 k = −16→17
31335 measured reflections l = −23→22

(1R,2S,4r)-4-(2-Methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.062P)2 + 0.7914P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
11202 reflections Δρmax = 0.36 e Å3
758 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXL2017 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0066 (10)

(1R,2S,4r)-4-(2-Methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(1R,2S,4r)-4-(2-Methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.14728 (13) 0.13460 (10) 0.67974 (7) 0.0287 (3)
H1A 0.102 (3) 0.079 (2) 0.6584 (15) 0.072 (9)*
O2A 0.35980 (13) 0.26985 (10) 0.71380 (7) 0.0295 (3)
H2A 0.301 (2) 0.2451 (19) 0.6748 (14) 0.056 (8)*
C1A 0.22327 (18) 0.12411 (13) 0.74694 (10) 0.0256 (4)
C2A 0.31467 (17) 0.22962 (13) 0.77471 (10) 0.0238 (4)
C3A 0.42356 (18) 0.20437 (14) 0.82332 (10) 0.0270 (4)
H3AA 0.402647 0.184037 0.869502 0.032*
H3AB 0.498165 0.262023 0.833524 0.032*
C4A 0.44566 (19) 0.11847 (15) 0.78056 (11) 0.0326 (5)
H4A 0.495937 0.147876 0.745420 0.039*
C5A 0.31299 (19) 0.06137 (15) 0.73604 (12) 0.0355 (5)
H5AA 0.314106 0.052394 0.684338 0.043*
H5AB 0.285661 −0.004918 0.753057 0.043*
C6A 0.14252 (18) 0.08553 (13) 0.79971 (10) 0.0278 (4)
C7A 0.1801 (2) 0.03115 (15) 0.85577 (12) 0.0417 (6)
H7A 0.258336 0.017061 0.861285 0.050*
C8A 0.1053 (3) −0.00218 (19) 0.90302 (14) 0.0575 (7)
H8A 0.132981 −0.038195 0.941167 0.069*
C9A −0.0091 (3) 0.01592 (19) 0.89579 (14) 0.0567 (7)
H9A −0.060895 −0.008400 0.928134 0.068*
C10A −0.0481 (2) 0.06996 (16) 0.84087 (12) 0.0433 (6)
H10A −0.127221 0.082528 0.835362 0.052*
C11A 0.02736 (19) 0.10568 (14) 0.79406 (11) 0.0306 (5)
H11A 0.000747 0.144447 0.757541 0.037*
C12A 0.26047 (16) 0.30269 (12) 0.80976 (10) 0.0222 (4)
C13A 0.20814 (18) 0.36708 (14) 0.76830 (11) 0.0292 (4)
H13A 0.203599 0.362933 0.717838 0.035*
C14A 0.1626 (2) 0.43709 (15) 0.79939 (12) 0.0358 (5)
H14A 0.126196 0.479605 0.770007 0.043*
C15A 0.1697 (2) 0.44537 (15) 0.87243 (12) 0.0374 (5)
H15A 0.140423 0.494505 0.893829 0.045*
C16A 0.2199 (2) 0.38141 (16) 0.91441 (11) 0.0369 (5)
H16A 0.224158 0.386125 0.964841 0.044*
C17A 0.26397 (19) 0.31062 (14) 0.88348 (10) 0.0297 (4)
H17A 0.297182 0.266636 0.912960 0.036*
C18A 0.51525 (19) 0.05483 (14) 0.82424 (12) 0.0343 (5)
C19A 0.5404 (2) 0.06080 (17) 0.89954 (12) 0.0438 (6)
H19A 0.511702 0.106584 0.925091 0.053*
C20A 0.6054 (2) 0.00245 (18) 0.93782 (15) 0.0520 (6)
H20A 0.619549 0.007599 0.988917 0.062*
C21A 0.6495 (2) −0.06274 (17) 0.90258 (15) 0.0506 (7)
H21A 0.694726 −0.102728 0.929014 0.061*
C22A 0.6279 (2) −0.07035 (16) 0.82751 (15) 0.0451 (6)
H22A 0.659841 −0.114413 0.802520 0.054*
C23A 0.5596 (2) −0.01324 (15) 0.78987 (13) 0.0390 (5)
O3A 0.53096 (16) −0.01728 (11) 0.71594 (9) 0.0487 (4)
C24A 0.5601 (3) −0.09494 (19) 0.67718 (15) 0.0593 (7)
H24A 0.531866 −0.092688 0.625301 0.089*
H24B 0.518130 −0.159399 0.691013 0.089*
H24C 0.650153 −0.085771 0.688765 0.089*
O1B 0.72932 (14) 0.59540 (10) 0.70807 (7) 0.0325 (3)
H1B 0.667 (3) 0.551 (2) 0.6768 (16) 0.075 (9)*
O2B 0.54682 (14) 0.44673 (10) 0.71982 (7) 0.0300 (3)
H2B 0.496 (2) 0.3930 (18) 0.7227 (12) 0.040 (7)*
C1B 0.68651 (18) 0.59658 (13) 0.77392 (10) 0.0248 (4)
C2B 0.62450 (17) 0.48732 (13) 0.78901 (9) 0.0239 (4)
C3B 0.54589 (17) 0.50509 (14) 0.84122 (10) 0.0253 (4)
H3BA 0.598426 0.529602 0.889875 0.030*
H3BB 0.482352 0.443150 0.844548 0.030*
C4B 0.48449 (17) 0.58350 (13) 0.80977 (10) 0.0264 (4)
H4B 0.407801 0.547362 0.773456 0.032*
C5B 0.57701 (18) 0.64378 (14) 0.76731 (10) 0.0282 (4)
H5BA 0.535520 0.641122 0.716063 0.034*
H5BB 0.607415 0.714096 0.787718 0.034*
C6B 0.79924 (18) 0.64960 (13) 0.83207 (10) 0.0279 (4)
C7B 0.7894 (2) 0.70761 (14) 0.89084 (11) 0.0330 (5)
H7B 0.710772 0.716166 0.894287 0.040*
C8B 0.8941 (2) 0.75301 (16) 0.94442 (12) 0.0463 (6)
H8B 0.886614 0.792497 0.984190 0.056*
C9B 1.0082 (2) 0.74091 (17) 0.94001 (15) 0.0530 (7)
H9B 1.079536 0.772039 0.976589 0.064*
C10B 1.0188 (2) 0.68325 (18) 0.88210 (15) 0.0515 (7)
H10B 1.097535 0.674489 0.879250 0.062*
C11B 0.91550 (19) 0.63821 (16) 0.82828 (13) 0.0389 (5)
H11B 0.923985 0.599297 0.788524 0.047*
C12B 0.71105 (18) 0.42414 (13) 0.81557 (10) 0.0255 (4)
C13B 0.77772 (19) 0.43761 (15) 0.88672 (11) 0.0319 (5)
H13B 0.770028 0.488052 0.918968 0.038*
C14B 0.8550 (2) 0.37885 (16) 0.91130 (13) 0.0419 (5)
H14B 0.900588 0.389782 0.959841 0.050*
C15B 0.8658 (2) 0.30442 (17) 0.86533 (13) 0.0450 (6)
H15B 0.918043 0.263540 0.882187 0.054*
C16B 0.8005 (2) 0.28981 (17) 0.79511 (13) 0.0436 (6)
H16B 0.807719 0.238573 0.763358 0.052*
C17B 0.7242 (2) 0.34933 (15) 0.77018 (11) 0.0338 (5)
H17B 0.680232 0.338749 0.721309 0.041*
C18B 0.44390 (17) 0.64346 (15) 0.86390 (11) 0.0317 (5)
C19B 0.4625 (2) 0.63124 (17) 0.93707 (12) 0.0405 (5)
H19B 0.506993 0.585623 0.955254 0.049*
C20B 0.4182 (2) 0.6835 (2) 0.98427 (14) 0.0542 (7)
H20B 0.430586 0.672705 1.033846 0.065*
C21B 0.3564 (2) 0.7507 (2) 0.95862 (15) 0.0593 (8)
H21B 0.326291 0.787077 0.990813 0.071*
C22B 0.3371 (2) 0.76666 (18) 0.88654 (16) 0.0520 (7)
H22B 0.295509 0.814533 0.869395 0.062*
C23B 0.37916 (19) 0.71186 (15) 0.83939 (12) 0.0375 (5)
O3B 0.35836 (14) 0.71818 (10) 0.76626 (9) 0.0427 (4)
C24B 0.2835 (2) 0.78050 (18) 0.73784 (17) 0.0621 (8)
H47D 0.278101 0.780666 0.685806 0.093*
H47E 0.320979 0.848241 0.761150 0.093*
H47F 0.200007 0.755498 0.746985 0.093*
O1C 0.83623 (13) 0.78847 (10) 0.67276 (7) 0.0293 (3)
H1C 0.810 (2) 0.7296 (19) 0.6878 (12) 0.046 (7)*
O2C 1.00942 (13) 0.92850 (10) 0.64099 (8) 0.0287 (3)
H2C 0.980 (2) 0.9079 (18) 0.6767 (14) 0.051 (8)*
C1C 0.85364 (17) 0.77202 (13) 0.60124 (9) 0.0224 (4)
C2C 0.91281 (17) 0.87784 (13) 0.57931 (9) 0.0237 (4)
C3C 0.97825 (17) 0.85444 (13) 0.52145 (10) 0.0241 (4)
H3CA 1.041397 0.914312 0.514056 0.029*
H3CB 0.917915 0.829337 0.475174 0.029*
C4C 1.04010 (17) 0.77404 (13) 0.55018 (10) 0.0235 (4)
H4C 1.122322 0.809106 0.582118 0.028*
C5C 0.95607 (17) 0.71870 (13) 0.59948 (10) 0.0246 (4)
H5CA 0.918233 0.648414 0.579981 0.029*
H5CB 1.006011 0.720663 0.648723 0.029*
C6C 0.72964 (17) 0.71953 (12) 0.55061 (9) 0.0225 (4)
C7C 0.72397 (18) 0.66404 (13) 0.48685 (9) 0.0246 (4)
H7C 0.798411 0.656154 0.475394 0.029*
C8C 0.61058 (19) 0.62020 (15) 0.43994 (11) 0.0320 (5)
H8C 0.608086 0.582538 0.396759 0.038*
C9C 0.5012 (2) 0.63106 (15) 0.45574 (12) 0.0372 (5)
H9C 0.423755 0.601828 0.423356 0.045*
C10C 0.50610 (19) 0.68497 (16) 0.51921 (12) 0.0376 (5)
H10C 0.431508 0.692317 0.530778 0.045*
C11C 0.61908 (18) 0.72833 (14) 0.56603 (11) 0.0301 (4)
H11C 0.620852 0.764836 0.609582 0.036*
C12C 0.82353 (17) 0.94100 (13) 0.55790 (10) 0.0249 (4)
C13C 0.74574 (19) 0.92723 (15) 0.48961 (11) 0.0304 (4)
H13C 0.746555 0.876044 0.455561 0.036*
C14C 0.6674 (2) 0.98699 (16) 0.47066 (12) 0.0379 (5)
H14C 0.615020 0.976387 0.423859 0.045*
C15C 0.6646 (2) 1.06201 (16) 0.51930 (13) 0.0417 (6)
H15C 0.611136 1.103224 0.506051 0.050*
C16C 0.7400 (2) 1.07624 (16) 0.58697 (14) 0.0438 (6)
H16C 0.738493 1.127377 0.620812 0.053*
C17C 0.81854 (19) 1.01628 (15) 0.60615 (12) 0.0350 (5)
H17C 0.869919 1.026903 0.653229 0.042*
C18C 1.06489 (17) 0.70730 (13) 0.49336 (10) 0.0251 (4)
C19C 1.03585 (18) 0.71550 (14) 0.41988 (10) 0.0285 (4)
H19C 0.994730 0.763803 0.403130 0.034*
C20C 1.06512 (19) 0.65517 (16) 0.37003 (11) 0.0343 (5)
H20C 1.044696 0.662858 0.320080 0.041*
C21C 1.12357 (19) 0.58454 (15) 0.39328 (11) 0.0348 (5)
H21C 1.142862 0.542847 0.359249 0.042*
C22C 1.15471 (18) 0.57361 (14) 0.46625 (11) 0.0313 (5)
H22C 1.194781 0.524405 0.482294 0.038*
C23C 1.12666 (18) 0.63544 (14) 0.51566 (10) 0.0271 (4)
O3C 1.15809 (14) 0.63245 (10) 0.58874 (7) 0.0342 (3)
C24C 1.2122 (2) 0.55618 (16) 0.61470 (12) 0.0391 (5)
H24G 1.229764 0.562486 0.667487 0.059*
H24H 1.289720 0.562436 0.598343 0.059*
H24I 1.154227 0.491171 0.596126 0.059*

(1R,2S,4r)-4-(2-Methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0318 (8) 0.0254 (7) 0.0242 (7) 0.0063 (6) −0.0022 (6) −0.0010 (6)
O2A 0.0326 (8) 0.0310 (7) 0.0230 (7) 0.0055 (6) 0.0067 (6) 0.0013 (6)
C1A 0.0277 (10) 0.0206 (9) 0.0257 (9) 0.0081 (8) −0.0019 (8) −0.0014 (8)
C2A 0.0257 (10) 0.0220 (9) 0.0220 (9) 0.0039 (8) 0.0047 (8) 0.0014 (7)
C3A 0.0255 (10) 0.0258 (10) 0.0287 (10) 0.0075 (8) 0.0038 (8) −0.0003 (8)
C4A 0.0314 (11) 0.0308 (11) 0.0361 (11) 0.0103 (9) 0.0067 (9) −0.0002 (9)
C5A 0.0357 (12) 0.0299 (11) 0.0388 (12) 0.0137 (9) −0.0007 (9) −0.0065 (9)
C6A 0.0324 (11) 0.0156 (9) 0.0294 (10) 0.0023 (8) −0.0014 (8) 0.0017 (8)
C7A 0.0379 (13) 0.0329 (11) 0.0466 (13) 0.0018 (10) −0.0010 (11) 0.0178 (10)
C8A 0.0536 (17) 0.0531 (15) 0.0540 (15) −0.0015 (13) 0.0012 (13) 0.0286 (13)
C9A 0.0576 (17) 0.0534 (15) 0.0511 (15) −0.0071 (13) 0.0204 (13) 0.0177 (13)
C10A 0.0410 (13) 0.0377 (12) 0.0474 (13) 0.0014 (10) 0.0132 (11) 0.0037 (11)
C11A 0.0356 (11) 0.0205 (9) 0.0323 (11) 0.0033 (8) 0.0048 (9) 0.0026 (8)
C12A 0.0193 (9) 0.0178 (8) 0.0265 (9) 0.0006 (7) 0.0041 (8) 0.0001 (7)
C13A 0.0306 (11) 0.0288 (10) 0.0276 (10) 0.0085 (9) 0.0042 (8) 0.0028 (8)
C14A 0.0361 (12) 0.0292 (11) 0.0445 (12) 0.0145 (9) 0.0060 (10) 0.0081 (9)
C15A 0.0372 (12) 0.0299 (11) 0.0491 (13) 0.0132 (9) 0.0145 (10) −0.0028 (10)
C16A 0.0453 (13) 0.0397 (12) 0.0285 (11) 0.0114 (10) 0.0159 (10) −0.0008 (9)
C17A 0.0343 (11) 0.0275 (10) 0.0291 (10) 0.0102 (9) 0.0086 (9) 0.0055 (8)
C18A 0.0247 (10) 0.0250 (10) 0.0527 (13) 0.0058 (8) 0.0084 (10) 0.0046 (9)
C19A 0.0422 (13) 0.0419 (13) 0.0437 (13) 0.0168 (11) −0.0042 (11) −0.0029 (11)
C20A 0.0526 (15) 0.0415 (13) 0.0604 (16) 0.0182 (12) 0.0019 (13) 0.0038 (12)
C21A 0.0363 (13) 0.0368 (13) 0.0756 (18) 0.0156 (11) −0.0034 (12) 0.0113 (12)
C22A 0.0370 (13) 0.0309 (11) 0.0714 (17) 0.0156 (10) 0.0123 (12) 0.0049 (11)
C23A 0.0310 (12) 0.0296 (11) 0.0590 (15) 0.0071 (9) 0.0165 (11) 0.0087 (10)
O3A 0.0668 (11) 0.0407 (9) 0.0534 (10) 0.0282 (8) 0.0288 (9) 0.0082 (8)
C24A 0.085 (2) 0.0468 (15) 0.0678 (17) 0.0359 (14) 0.0431 (16) 0.0106 (13)
O1B 0.0421 (9) 0.0314 (8) 0.0265 (7) 0.0082 (7) 0.0142 (7) 0.0094 (6)
O2B 0.0366 (8) 0.0254 (7) 0.0219 (7) 0.0020 (7) 0.0007 (6) 0.0031 (6)
C1B 0.0299 (10) 0.0239 (9) 0.0218 (9) 0.0069 (8) 0.0079 (8) 0.0077 (8)
C2B 0.0253 (10) 0.0245 (9) 0.0190 (9) 0.0036 (8) 0.0020 (8) 0.0038 (7)
C3B 0.0228 (10) 0.0268 (9) 0.0238 (9) 0.0028 (8) 0.0040 (8) 0.0042 (8)
C4B 0.0222 (10) 0.0257 (10) 0.0276 (10) 0.0037 (8) 0.0008 (8) 0.0007 (8)
C5B 0.0290 (11) 0.0252 (10) 0.0283 (10) 0.0067 (8) 0.0012 (8) 0.0061 (8)
C6B 0.0264 (10) 0.0235 (9) 0.0315 (10) 0.0022 (8) 0.0055 (8) 0.0109 (8)
C7B 0.0352 (12) 0.0269 (10) 0.0316 (11) 0.0018 (9) 0.0034 (9) 0.0050 (9)
C8B 0.0531 (16) 0.0318 (12) 0.0383 (12) −0.0044 (11) −0.0050 (11) 0.0047 (10)
C9B 0.0378 (14) 0.0368 (13) 0.0629 (17) −0.0092 (11) −0.0157 (12) 0.0177 (12)
C10B 0.0265 (12) 0.0425 (13) 0.0800 (19) 0.0035 (10) 0.0038 (12) 0.0201 (14)
C11B 0.0295 (12) 0.0331 (11) 0.0535 (14) 0.0051 (9) 0.0101 (10) 0.0152 (10)
C12B 0.0272 (10) 0.0220 (9) 0.0281 (10) 0.0033 (8) 0.0108 (8) 0.0087 (8)
C13B 0.0339 (11) 0.0291 (10) 0.0329 (11) 0.0101 (9) 0.0051 (9) 0.0067 (9)
C14B 0.0397 (13) 0.0437 (13) 0.0422 (13) 0.0165 (11) 0.0010 (10) 0.0119 (11)
C15B 0.0442 (14) 0.0432 (13) 0.0575 (15) 0.0252 (11) 0.0143 (12) 0.0177 (11)
C16B 0.0499 (14) 0.0401 (13) 0.0519 (14) 0.0224 (11) 0.0234 (12) 0.0070 (11)
C17B 0.0385 (12) 0.0334 (11) 0.0334 (11) 0.0109 (9) 0.0145 (9) 0.0071 (9)
C18B 0.0171 (9) 0.0313 (10) 0.0404 (11) 0.0003 (8) 0.0024 (8) −0.0065 (9)
C19B 0.0284 (11) 0.0497 (13) 0.0378 (12) 0.0044 (10) 0.0053 (9) −0.0084 (10)
C20B 0.0309 (13) 0.0759 (18) 0.0469 (14) 0.0026 (13) 0.0090 (11) −0.0200 (13)
C21B 0.0296 (13) 0.0715 (18) 0.0677 (18) 0.0051 (13) 0.0097 (12) −0.0353 (15)
C22B 0.0239 (12) 0.0432 (13) 0.084 (2) 0.0084 (10) 0.0054 (12) −0.0188 (13)
C23B 0.0214 (10) 0.0333 (11) 0.0500 (13) 0.0019 (9) 0.0000 (9) −0.0080 (10)
O3B 0.0346 (8) 0.0324 (8) 0.0584 (10) 0.0164 (7) −0.0051 (7) 0.0023 (7)
C24B 0.0457 (15) 0.0407 (13) 0.091 (2) 0.0219 (12) −0.0171 (14) −0.0009 (14)
O1C 0.0412 (8) 0.0262 (7) 0.0194 (6) 0.0047 (6) 0.0095 (6) 0.0031 (6)
O2C 0.0288 (8) 0.0240 (7) 0.0265 (7) 0.0002 (6) 0.0001 (6) −0.0013 (6)
C1C 0.0286 (10) 0.0207 (9) 0.0166 (8) 0.0040 (8) 0.0055 (7) 0.0028 (7)
C2C 0.0254 (10) 0.0200 (9) 0.0219 (9) 0.0009 (7) 0.0034 (8) 0.0001 (7)
C3C 0.0254 (10) 0.0220 (9) 0.0253 (9) 0.0044 (8) 0.0087 (8) 0.0074 (8)
C4C 0.0237 (10) 0.0222 (9) 0.0238 (9) 0.0050 (8) 0.0044 (8) 0.0046 (7)
C5C 0.0275 (10) 0.0226 (9) 0.0219 (9) 0.0052 (8) 0.0028 (8) 0.0052 (7)
C6C 0.0267 (10) 0.0170 (8) 0.0238 (9) 0.0034 (7) 0.0079 (8) 0.0055 (7)
C7C 0.0280 (10) 0.0232 (9) 0.0233 (9) 0.0072 (8) 0.0068 (8) 0.0039 (8)
C8C 0.0363 (12) 0.0303 (10) 0.0258 (10) 0.0071 (9) 0.0016 (9) −0.0019 (8)
C9C 0.0270 (11) 0.0364 (11) 0.0399 (12) 0.0019 (9) −0.0020 (9) −0.0014 (10)
C10C 0.0250 (11) 0.0389 (12) 0.0487 (13) 0.0054 (9) 0.0124 (10) 0.0034 (10)
C11C 0.0321 (11) 0.0276 (10) 0.0306 (10) 0.0052 (9) 0.0112 (9) −0.0003 (8)
C12C 0.0243 (10) 0.0189 (9) 0.0300 (10) 0.0008 (7) 0.0089 (8) 0.0041 (8)
C13C 0.0346 (11) 0.0303 (10) 0.0298 (10) 0.0126 (9) 0.0100 (9) 0.0046 (8)
C14C 0.0363 (12) 0.0428 (12) 0.0394 (12) 0.0174 (10) 0.0090 (10) 0.0123 (10)
C15C 0.0364 (12) 0.0345 (12) 0.0629 (15) 0.0186 (10) 0.0178 (12) 0.0114 (11)
C16C 0.0375 (13) 0.0321 (11) 0.0625 (16) 0.0106 (10) 0.0140 (12) −0.0091 (11)
C17C 0.0307 (11) 0.0310 (11) 0.0402 (12) 0.0035 (9) 0.0087 (9) −0.0063 (9)
C18C 0.0217 (10) 0.0245 (9) 0.0277 (10) 0.0028 (8) 0.0062 (8) 0.0052 (8)
C19C 0.0265 (10) 0.0297 (10) 0.0297 (10) 0.0070 (8) 0.0074 (8) 0.0066 (8)
C20C 0.0331 (11) 0.0415 (12) 0.0275 (10) 0.0072 (10) 0.0090 (9) 0.0035 (9)
C21C 0.0340 (12) 0.0366 (11) 0.0339 (11) 0.0082 (9) 0.0115 (9) −0.0051 (9)
C22C 0.0267 (10) 0.0274 (10) 0.0408 (12) 0.0090 (8) 0.0080 (9) 0.0039 (9)
C23C 0.0249 (10) 0.0263 (10) 0.0287 (10) 0.0046 (8) 0.0056 (8) 0.0042 (8)
O3C 0.0447 (9) 0.0330 (8) 0.0287 (7) 0.0206 (7) 0.0034 (6) 0.0059 (6)
C24C 0.0460 (13) 0.0355 (12) 0.0407 (12) 0.0205 (10) 0.0065 (10) 0.0121 (10)

(1R,2S,4r)-4-(2-Methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol (II) . Geometric parameters (Å, º)

O1A—C1A 1.431 (2) C11B—H11B 0.9500
O1A—H1A 0.85 (3) C12B—C17B 1.388 (3)
O2A—C2A 1.439 (2) C12B—C13B 1.393 (3)
O2A—H2A 0.88 (3) C13B—C14B 1.385 (3)
C1A—C6A 1.519 (3) C13B—H13B 0.9500
C1A—C5A 1.550 (3) C14B—C15B 1.380 (3)
C1A—C2A 1.572 (2) C14B—H14B 0.9500
C2A—C12A 1.521 (2) C15B—C16B 1.372 (3)
C2A—C3A 1.523 (3) C15B—H15B 0.9500
C3A—C4A 1.528 (3) C16B—C17B 1.387 (3)
C3A—H3AA 0.9900 C16B—H16B 0.9500
C3A—H3AB 0.9900 C17B—H17B 0.9500
C4A—C18A 1.510 (3) C18B—C19B 1.391 (3)
C4A—C5A 1.567 (3) C18B—C23B 1.396 (3)
C4A—H4A 1.0000 C19B—C20B 1.385 (3)
C5A—H5AA 0.9900 C19B—H19B 0.9500
C5A—H5AB 0.9900 C20B—C21B 1.367 (4)
C6A—C7A 1.399 (3) C20B—H20B 0.9500
C6A—C11A 1.399 (3) C21B—C22B 1.382 (4)
C7A—C8A 1.376 (4) C21B—H21B 0.9500
C7A—H7A 0.9500 C22B—C23B 1.390 (3)
C8A—C9A 1.375 (4) C22B—H22B 0.9500
C8A—H8A 0.9500 C23B—O3B 1.375 (3)
C9A—C10A 1.385 (3) O3B—C24B 1.423 (3)
C9A—H9A 0.9500 C24B—H47D 0.9800
C10A—C11A 1.381 (3) C24B—H47E 0.9800
C10A—H10A 0.9500 C24B—H47F 0.9800
C11A—H11A 0.9500 O1C—C1C 1.433 (2)
C12A—C13A 1.394 (3) O1C—H1C 0.88 (3)
C12A—C17A 1.395 (3) O2C—C2C 1.451 (2)
C13A—C14A 1.387 (3) O2C—H2C 0.85 (3)
C13A—H13A 0.9500 C1C—C6C 1.526 (2)
C14A—C15A 1.375 (3) C1C—C5C 1.547 (3)
C14A—H14A 0.9500 C1C—C2C 1.573 (2)
C15A—C16A 1.383 (3) C2C—C3C 1.518 (3)
C15A—H15A 0.9500 C2C—C12C 1.523 (3)
C16A—C17A 1.383 (3) C3C—C4C 1.541 (2)
C16A—H16A 0.9500 C3C—H3CA 0.9900
C17A—H17A 0.9500 C3C—H3CB 0.9900
C18A—C23A 1.388 (3) C4C—C18C 1.517 (3)
C18A—C19A 1.399 (3) C4C—C5C 1.561 (3)
C19A—C20A 1.377 (3) C4C—H4C 1.0000
C19A—H19A 0.9500 C5C—H5CA 0.9900
C20A—C21A 1.365 (3) C5C—H5CB 0.9900
C20A—H20A 0.9500 C6C—C11C 1.386 (3)
C21A—C22A 1.395 (4) C6C—C7C 1.395 (3)
C21A—H21A 0.9500 C7C—C8C 1.389 (3)
C22A—C23A 1.381 (3) C7C—H7C 0.9500
C22A—H22A 0.9500 C8C—C9C 1.385 (3)
C23A—O3A 1.375 (3) C8C—H8C 0.9500
O3A—C24A 1.435 (3) C9C—C10C 1.382 (3)
C24A—H24A 0.9800 C9C—H9C 0.9500
C24A—H24B 0.9800 C10C—C11C 1.384 (3)
C24A—H24C 0.9800 C10C—H10C 0.9500
O1B—C1B 1.434 (2) C11C—H11C 0.9500
O1B—H1B 0.90 (3) C12C—C17C 1.390 (3)
O2B—C2B 1.433 (2) C12C—C13C 1.394 (3)
O2B—H2B 0.83 (2) C13C—C14C 1.384 (3)
C1B—C6B 1.517 (3) C13C—H13C 0.9500
C1B—C5B 1.545 (3) C14C—C15C 1.383 (3)
C1B—C2B 1.576 (3) C14C—H14C 0.9500
C2B—C12B 1.518 (3) C15C—C16C 1.373 (3)
C2B—C3B 1.519 (3) C15C—H15C 0.9500
C3B—C4B 1.530 (3) C16C—C17C 1.388 (3)
C3B—H3BA 0.9900 C16C—H16C 0.9500
C3B—H3BB 0.9900 C17C—H17C 0.9500
C4B—C18B 1.518 (3) C18C—C19C 1.388 (3)
C4B—C5B 1.555 (3) C18C—C23C 1.405 (3)
C4B—H4B 1.0000 C19C—C20C 1.391 (3)
C5B—H5BA 0.9900 C19C—H19C 0.9500
C5B—H5BB 0.9900 C20C—C21C 1.371 (3)
C6B—C11B 1.392 (3) C20C—H20C 0.9500
C6B—C7B 1.396 (3) C21C—C22C 1.388 (3)
C7B—C8B 1.392 (3) C21C—H21C 0.9500
C7B—H7B 0.9500 C22C—C23C 1.391 (3)
C8B—C9B 1.374 (4) C22C—H22C 0.9500
C8B—H8B 0.9500 C23C—O3C 1.370 (2)
C9B—C10B 1.383 (4) O3C—C24C 1.425 (2)
C9B—H9B 0.9500 C24C—H24G 0.9800
C10B—C11B 1.384 (3) C24C—H24H 0.9800
C10B—H10B 0.9500 C24C—H24I 0.9800
C1A—O1A—H1A 112.0 (19) C10B—C11B—C6B 120.4 (2)
C2A—O2A—H2A 107.8 (17) C10B—C11B—H11B 119.8
O1A—C1A—C6A 110.11 (15) C6B—C11B—H11B 119.8
O1A—C1A—C5A 111.34 (15) C17B—C12B—C13B 117.69 (18)
C6A—C1A—C5A 113.96 (16) C17B—C12B—C2B 121.09 (17)
O1A—C1A—C2A 106.48 (14) C13B—C12B—C2B 121.20 (17)
C6A—C1A—C2A 111.94 (15) C14B—C13B—C12B 121.2 (2)
C5A—C1A—C2A 102.56 (15) C14B—C13B—H13B 119.4
O2A—C2A—C12A 109.77 (14) C12B—C13B—H13B 119.4
O2A—C2A—C3A 106.20 (15) C15B—C14B—C13B 120.0 (2)
C12A—C2A—C3A 115.04 (15) C15B—C14B—H14B 120.0
O2A—C2A—C1A 106.81 (14) C13B—C14B—H14B 120.0
C12A—C2A—C1A 115.93 (15) C16B—C15B—C14B 119.6 (2)
C3A—C2A—C1A 102.28 (14) C16B—C15B—H15B 120.2
C2A—C3A—C4A 104.60 (15) C14B—C15B—H15B 120.2
C2A—C3A—H3AA 110.8 C15B—C16B—C17B 120.5 (2)
C4A—C3A—H3AA 110.8 C15B—C16B—H16B 119.8
C2A—C3A—H3AB 110.8 C17B—C16B—H16B 119.8
C4A—C3A—H3AB 110.8 C16B—C17B—C12B 121.0 (2)
H3AA—C3A—H3AB 108.9 C16B—C17B—H17B 119.5
C18A—C4A—C3A 115.73 (17) C12B—C17B—H17B 119.5
C18A—C4A—C5A 114.89 (17) C19B—C18B—C23B 117.2 (2)
C3A—C4A—C5A 104.00 (16) C19B—C18B—C4B 123.68 (18)
C18A—C4A—H4A 107.2 C23B—C18B—C4B 119.02 (19)
C3A—C4A—H4A 107.2 C20B—C19B—C18B 122.1 (2)
C5A—C4A—H4A 107.2 C20B—C19B—H19B 119.0
C1A—C5A—C4A 107.50 (15) C18B—C19B—H19B 119.0
C1A—C5A—H5AA 110.2 C21B—C20B—C19B 119.2 (3)
C4A—C5A—H5AA 110.2 C21B—C20B—H20B 120.4
C1A—C5A—H5AB 110.2 C19B—C20B—H20B 120.4
C4A—C5A—H5AB 110.2 C20B—C21B—C22B 121.0 (2)
H5AA—C5A—H5AB 108.5 C20B—C21B—H21B 119.5
C7A—C6A—C11A 117.7 (2) C22B—C21B—H21B 119.5
C7A—C6A—C1A 122.19 (19) C21B—C22B—C23B 119.3 (2)
C11A—C6A—C1A 120.06 (16) C21B—C22B—H22B 120.4
C8A—C7A—C6A 120.8 (2) C23B—C22B—H22B 120.4
C8A—C7A—H7A 119.6 O3B—C23B—C22B 123.7 (2)
C6A—C7A—H7A 119.6 O3B—C23B—C18B 115.09 (18)
C9A—C8A—C7A 120.9 (2) C22B—C23B—C18B 121.2 (2)
C9A—C8A—H8A 119.6 C23B—O3B—C24B 117.21 (19)
C7A—C8A—H8A 119.6 O3B—C24B—H47D 109.5
C8A—C9A—C10A 119.3 (2) O3B—C24B—H47E 109.5
C8A—C9A—H9A 120.3 H47D—C24B—H47E 109.5
C10A—C9A—H9A 120.3 O3B—C24B—H47F 109.5
C11A—C10A—C9A 120.3 (2) H47D—C24B—H47F 109.5
C11A—C10A—H10A 119.8 H47E—C24B—H47F 109.5
C9A—C10A—H10A 119.8 C1C—O1C—H1C 106.9 (15)
C10A—C11A—C6A 120.88 (19) C2C—O2C—H2C 103.6 (18)
C10A—C11A—H11A 119.6 O1C—C1C—C6C 110.23 (15)
C6A—C11A—H11A 119.6 O1C—C1C—C5C 112.18 (14)
C13A—C12A—C17A 117.48 (17) C6C—C1C—C5C 113.42 (14)
C13A—C12A—C2A 120.01 (16) O1C—C1C—C2C 105.54 (14)
C17A—C12A—C2A 122.47 (16) C6C—C1C—C2C 112.39 (14)
C14A—C13A—C12A 121.18 (18) C5C—C1C—C2C 102.62 (14)
C14A—C13A—H13A 119.4 O2C—C2C—C3C 106.63 (15)
C12A—C13A—H13A 119.4 O2C—C2C—C12C 109.57 (14)
C15A—C14A—C13A 120.44 (19) C3C—C2C—C12C 115.35 (15)
C15A—C14A—H14A 119.8 O2C—C2C—C1C 106.13 (14)
C13A—C14A—H14A 119.8 C3C—C2C—C1C 102.59 (14)
C14A—C15A—C16A 119.29 (19) C12C—C2C—C1C 115.77 (15)
C14A—C15A—H15A 120.4 C2C—C3C—C4C 104.93 (14)
C16A—C15A—H15A 120.4 C2C—C3C—H3CA 110.8
C15A—C16A—C17A 120.44 (19) C4C—C3C—H3CA 110.8
C15A—C16A—H16A 119.8 C2C—C3C—H3CB 110.8
C17A—C16A—H16A 119.8 C4C—C3C—H3CB 110.8
C16A—C17A—C12A 121.13 (18) H3CA—C3C—H3CB 108.8
C16A—C17A—H17A 119.4 C18C—C4C—C3C 115.56 (15)
C12A—C17A—H17A 119.4 C18C—C4C—C5C 114.86 (15)
C23A—C18A—C19A 116.3 (2) C3C—C4C—C5C 104.57 (14)
C23A—C18A—C4A 120.1 (2) C18C—C4C—H4C 107.1
C19A—C18A—C4A 123.56 (19) C3C—C4C—H4C 107.1
C20A—C19A—C18A 122.1 (2) C5C—C4C—H4C 107.1
C20A—C19A—H19A 118.9 C1C—C5C—C4C 107.41 (14)
C18A—C19A—H19A 118.9 C1C—C5C—H5CA 110.2
C21A—C20A—C19A 120.2 (3) C4C—C5C—H5CA 110.2
C21A—C20A—H20A 119.9 C1C—C5C—H5CB 110.2
C19A—C20A—H20A 119.9 C4C—C5C—H5CB 110.2
C20A—C21A—C22A 119.7 (2) H5CA—C5C—H5CB 108.5
C20A—C21A—H21A 120.2 C11C—C6C—C7C 118.08 (17)
C22A—C21A—H21A 120.2 C11C—C6C—C1C 120.41 (16)
C23A—C22A—C21A 119.4 (2) C7C—C6C—C1C 121.49 (17)
C23A—C22A—H22A 120.3 C8C—C7C—C6C 120.68 (18)
C21A—C22A—H22A 120.3 C8C—C7C—H7C 119.7
O3A—C23A—C22A 123.7 (2) C6C—C7C—H7C 119.7
O3A—C23A—C18A 114.08 (19) C9C—C8C—C7C 120.42 (19)
C22A—C23A—C18A 122.3 (2) C9C—C8C—H8C 119.8
C23A—O3A—C24A 116.64 (18) C7C—C8C—H8C 119.8
O3A—C24A—H24A 109.5 C10C—C9C—C8C 119.14 (19)
O3A—C24A—H24B 109.5 C10C—C9C—H9C 120.4
H24A—C24A—H24B 109.5 C8C—C9C—H9C 120.4
O3A—C24A—H24C 109.5 C9C—C10C—C11C 120.4 (2)
H24A—C24A—H24C 109.5 C9C—C10C—H10C 119.8
H24B—C24A—H24C 109.5 C11C—C10C—H10C 119.8
C1B—O1B—H1B 104.6 (19) C10C—C11C—C6C 121.27 (19)
C2B—O2B—H2B 110.9 (16) C10C—C11C—H11C 119.4
O1B—C1B—C6B 106.18 (15) C6C—C11C—H11C 119.4
O1B—C1B—C5B 111.73 (14) C17C—C12C—C13C 117.52 (18)
C6B—C1B—C5B 113.99 (15) C17C—C12C—C2C 120.56 (17)
O1B—C1B—C2B 110.01 (14) C13C—C12C—C2C 121.92 (16)
C6B—C1B—C2B 113.17 (14) C14C—C13C—C12C 121.01 (19)
C5B—C1B—C2B 101.86 (15) C14C—C13C—H13C 119.5
O2B—C2B—C12B 111.05 (15) C12C—C13C—H13C 119.5
O2B—C2B—C3B 110.25 (15) C15C—C14C—C13C 120.5 (2)
C12B—C2B—C3B 114.29 (15) C15C—C14C—H14C 119.7
O2B—C2B—C1B 101.57 (14) C13C—C14C—H14C 119.7
C12B—C2B—C1B 117.05 (15) C16C—C15C—C14C 119.24 (19)
C3B—C2B—C1B 101.58 (14) C16C—C15C—H15C 120.4
C2B—C3B—C4B 105.00 (15) C14C—C15C—H15C 120.4
C2B—C3B—H3BA 110.7 C15C—C16C—C17C 120.3 (2)
C4B—C3B—H3BA 110.7 C15C—C16C—H16C 119.8
C2B—C3B—H3BB 110.7 C17C—C16C—H16C 119.8
C4B—C3B—H3BB 110.7 C16C—C17C—C12C 121.4 (2)
H3BA—C3B—H3BB 108.8 C16C—C17C—H17C 119.3
C18B—C4B—C3B 114.93 (16) C12C—C17C—H17C 119.3
C18B—C4B—C5B 116.17 (16) C19C—C18C—C23C 116.97 (17)
C3B—C4B—C5B 104.48 (15) C19C—C18C—C4C 124.14 (16)
C18B—C4B—H4B 106.9 C23C—C18C—C4C 118.81 (16)
C3B—C4B—H4B 106.9 C18C—C19C—C20C 122.01 (18)
C5B—C4B—H4B 106.9 C18C—C19C—H19C 119.0
C1B—C5B—C4B 107.35 (14) C20C—C19C—H19C 119.0
C1B—C5B—H5BA 110.2 C21C—C20C—C19C 119.72 (19)
C4B—C5B—H5BA 110.2 C21C—C20C—H20C 120.1
C1B—C5B—H5BB 110.2 C19C—C20C—H20C 120.1
C4B—C5B—H5BB 110.2 C20C—C21C—C22C 120.40 (19)
H5BA—C5B—H5BB 108.5 C20C—C21C—H21C 119.8
C11B—C6B—C7B 118.68 (19) C22C—C21C—H21C 119.8
C11B—C6B—C1B 119.53 (18) C21C—C22C—C23C 119.33 (18)
C7B—C6B—C1B 121.76 (18) C21C—C22C—H22C 120.3
C8B—C7B—C6B 120.4 (2) C23C—C22C—H22C 120.3
C8B—C7B—H7B 119.8 O3C—C23C—C22C 123.31 (17)
C6B—C7B—H7B 119.8 O3C—C23C—C18C 115.13 (16)
C9B—C8B—C7B 120.2 (2) C22C—C23C—C18C 121.55 (18)
C9B—C8B—H8B 119.9 C23C—O3C—C24C 117.90 (15)
C7B—C8B—H8B 119.9 O3C—C24C—H24G 109.5
C8B—C9B—C10B 119.8 (2) O3C—C24C—H24H 109.5
C8B—C9B—H9B 120.1 H24G—C24C—H24H 109.5
C10B—C9B—H9B 120.1 O3C—C24C—H24I 109.5
C9B—C10B—C11B 120.5 (2) H24G—C24C—H24I 109.5
C9B—C10B—H10B 119.7 H24H—C24C—H24I 109.5
C11B—C10B—H10B 119.7
O1A—C1A—C2A—O2A −43.86 (18) C1B—C6B—C11B—C10B −177.79 (18)
C6A—C1A—C2A—O2A −164.24 (14) O2B—C2B—C12B—C17B 11.0 (2)
C5A—C1A—C2A—O2A 73.19 (17) C3B—C2B—C12B—C17B 136.46 (19)
O1A—C1A—C2A—C12A 78.81 (19) C1B—C2B—C12B—C17B −105.0 (2)
C6A—C1A—C2A—C12A −41.6 (2) O2B—C2B—C12B—C13B −167.48 (17)
C5A—C1A—C2A—C12A −164.14 (16) C3B—C2B—C12B—C13B −42.0 (2)
O1A—C1A—C2A—C3A −155.21 (15) C1B—C2B—C12B—C13B 76.6 (2)
C6A—C1A—C2A—C3A 84.41 (17) C17B—C12B—C13B—C14B 0.3 (3)
C5A—C1A—C2A—C3A −38.16 (18) C2B—C12B—C13B—C14B 178.85 (19)
O2A—C2A—C3A—C4A −67.63 (18) C12B—C13B—C14B—C15B −0.9 (3)
C12A—C2A—C3A—C4A 170.73 (16) C13B—C14B—C15B—C16B 0.7 (4)
C1A—C2A—C3A—C4A 44.18 (19) C14B—C15B—C16B—C17B 0.1 (4)
C2A—C3A—C4A—C18A −158.98 (17) C15B—C16B—C17B—C12B −0.6 (3)
C2A—C3A—C4A—C5A −32.0 (2) C13B—C12B—C17B—C16B 0.4 (3)
O1A—C1A—C5A—C4A 132.32 (17) C2B—C12B—C17B—C16B −178.11 (19)
C6A—C1A—C5A—C4A −102.40 (19) C3B—C4B—C18B—C19B 1.4 (3)
C2A—C1A—C5A—C4A 18.8 (2) C5B—C4B—C18B—C19B −121.0 (2)
C18A—C4A—C5A—C1A 134.97 (19) C3B—C4B—C18B—C23B −175.52 (17)
C3A—C4A—C5A—C1A 7.5 (2) C5B—C4B—C18B—C23B 62.1 (2)
O1A—C1A—C6A—C7A 153.34 (17) C23B—C18B—C19B—C20B 0.6 (3)
C5A—C1A—C6A—C7A 27.4 (2) C4B—C18B—C19B—C20B −176.4 (2)
C2A—C1A—C6A—C7A −88.4 (2) C18B—C19B—C20B—C21B −1.4 (4)
O1A—C1A—C6A—C11A −27.9 (2) C19B—C20B—C21B—C22B 0.4 (4)
C5A—C1A—C6A—C11A −153.85 (17) C20B—C21B—C22B—C23B 1.3 (4)
C2A—C1A—C6A—C11A 90.3 (2) C21B—C22B—C23B—O3B 176.2 (2)
C11A—C6A—C7A—C8A 0.8 (3) C21B—C22B—C23B—C18B −2.1 (3)
C1A—C6A—C7A—C8A 179.5 (2) C19B—C18B—C23B—O3B −177.27 (18)
C6A—C7A—C8A—C9A 0.9 (4) C4B—C18B—C23B—O3B −0.1 (3)
C7A—C8A—C9A—C10A −1.1 (4) C19B—C18B—C23B—C22B 1.1 (3)
C8A—C9A—C10A—C11A −0.3 (4) C4B—C18B—C23B—C22B 178.27 (19)
C9A—C10A—C11A—C6A 2.0 (3) C22B—C23B—O3B—C24B −3.6 (3)
C7A—C6A—C11A—C10A −2.2 (3) C18B—C23B—O3B—C24B 174.72 (19)
C1A—C6A—C11A—C10A 179.01 (18) O1C—C1C—C2C—O2C 44.87 (18)
O2A—C2A—C12A—C13A 29.2 (2) C6C—C1C—C2C—O2C 165.05 (14)
C3A—C2A—C12A—C13A 148.90 (18) C5C—C1C—C2C—O2C −72.76 (16)
C1A—C2A—C12A—C13A −91.9 (2) O1C—C1C—C2C—C3C 156.57 (14)
O2A—C2A—C12A—C17A −148.79 (17) C6C—C1C—C2C—C3C −83.25 (17)
C3A—C2A—C12A—C17A −29.1 (3) C5C—C1C—C2C—C3C 38.94 (16)
C1A—C2A—C12A—C17A 90.1 (2) O1C—C1C—C2C—C12C −76.92 (18)
C17A—C12A—C13A—C14A 0.7 (3) C6C—C1C—C2C—C12C 43.3 (2)
C2A—C12A—C13A—C14A −177.40 (18) C5C—C1C—C2C—C12C 165.45 (15)
C12A—C13A—C14A—C15A 0.9 (3) O2C—C2C—C3C—C4C 69.39 (17)
C13A—C14A—C15A—C16A −1.7 (3) C12C—C2C—C3C—C4C −168.72 (15)
C14A—C15A—C16A—C17A 0.8 (3) C1C—C2C—C3C—C4C −41.95 (17)
C15A—C16A—C17A—C12A 0.8 (3) C2C—C3C—C4C—C18C 155.40 (15)
C13A—C12A—C17A—C16A −1.6 (3) C2C—C3C—C4C—C5C 28.12 (18)
C2A—C12A—C17A—C16A 176.49 (18) O1C—C1C—C5C—C4C −134.59 (15)
C3A—C4A—C18A—C23A −168.32 (19) C6C—C1C—C5C—C4C 99.72 (17)
C5A—C4A—C18A—C23A 70.4 (3) C2C—C1C—C5C—C4C −21.77 (17)
C3A—C4A—C18A—C19A 10.8 (3) C18C—C4C—C5C—C1C −130.87 (16)
C5A—C4A—C18A—C19A −110.5 (2) C3C—C4C—C5C—C1C −3.16 (18)
C23A—C18A—C19A—C20A −0.1 (3) O1C—C1C—C6C—C11C 25.1 (2)
C4A—C18A—C19A—C20A −179.2 (2) C5C—C1C—C6C—C11C 151.88 (17)
C18A—C19A—C20A—C21A 1.1 (4) C2C—C1C—C6C—C11C −92.3 (2)
C19A—C20A—C21A—C22A −0.3 (4) O1C—C1C—C6C—C7C −156.75 (16)
C20A—C21A—C22A—C23A −1.4 (4) C5C—C1C—C6C—C7C −30.0 (2)
C21A—C22A—C23A—O3A −178.4 (2) C2C—C1C—C6C—C7C 85.8 (2)
C21A—C22A—C23A—C18A 2.5 (3) C11C—C6C—C7C—C8C 0.9 (3)
C19A—C18A—C23A—O3A 179.10 (19) C1C—C6C—C7C—C8C −177.29 (16)
C4A—C18A—C23A—O3A −1.7 (3) C6C—C7C—C8C—C9C 0.1 (3)
C19A—C18A—C23A—C22A −1.7 (3) C7C—C8C—C9C—C10C −0.8 (3)
C4A—C18A—C23A—C22A 177.4 (2) C8C—C9C—C10C—C11C 0.6 (3)
C22A—C23A—O3A—C24A 8.7 (3) C9C—C10C—C11C—C6C 0.4 (3)
C18A—C23A—O3A—C24A −172.2 (2) C7C—C6C—C11C—C10C −1.1 (3)
O1B—C1B—C2B—O2B −46.09 (18) C1C—C6C—C11C—C10C 177.08 (18)
C6B—C1B—C2B—O2B −164.67 (15) O2C—C2C—C12C—C17C −18.7 (2)
C5B—C1B—C2B—O2B 72.53 (16) C3C—C2C—C12C—C17C −139.00 (18)
O1B—C1B—C2B—C12B 75.0 (2) C1C—C2C—C12C—C17C 101.2 (2)
C6B—C1B—C2B—C12B −43.6 (2) O2C—C2C—C12C—C13C 160.22 (17)
C5B—C1B—C2B—C12B −166.40 (15) C3C—C2C—C12C—C13C 39.9 (2)
O1B—C1B—C2B—C3B −159.84 (14) C1C—C2C—C12C—C13C −79.8 (2)
C6B—C1B—C2B—C3B 81.58 (18) C17C—C12C—C13C—C14C 0.5 (3)
C5B—C1B—C2B—C3B −41.22 (16) C2C—C12C—C13C—C14C −178.47 (19)
O2B—C2B—C3B—C4B −63.58 (18) C12C—C13C—C14C—C15C 0.0 (3)
C12B—C2B—C3B—C4B 170.51 (15) C13C—C14C—C15C—C16C −0.4 (3)
C1B—C2B—C3B—C4B 43.51 (17) C14C—C15C—C16C—C17C 0.3 (3)
C2B—C3B—C4B—C18B −156.71 (15) C15C—C16C—C17C—C12C 0.2 (3)
C2B—C3B—C4B—C5B −28.22 (18) C13C—C12C—C17C—C16C −0.6 (3)
O1B—C1B—C5B—C4B 141.76 (15) C2C—C12C—C17C—C16C 178.34 (19)
C6B—C1B—C5B—C4B −97.88 (18) C3C—C4C—C18C—C19C 0.2 (3)
C2B—C1B—C5B—C4B 24.37 (18) C5C—C4C—C18C—C19C 122.14 (19)
C18B—C4B—C5B—C1B 129.23 (17) C3C—C4C—C18C—C23C 176.88 (17)
C3B—C4B—C5B—C1B 1.50 (19) C5C—C4C—C18C—C23C −61.2 (2)
O1B—C1B—C6B—C11B −34.6 (2) C23C—C18C—C19C—C20C 0.5 (3)
C5B—C1B—C6B—C11B −158.06 (17) C4C—C18C—C19C—C20C 177.27 (18)
C2B—C1B—C6B—C11B 86.1 (2) C18C—C19C—C20C—C21C 0.5 (3)
O1B—C1B—C6B—C7B 147.27 (17) C19C—C20C—C21C—C22C −0.6 (3)
C5B—C1B—C6B—C7B 23.8 (2) C20C—C21C—C22C—C23C −0.4 (3)
C2B—C1B—C6B—C7B −92.0 (2) C21C—C22C—C23C—O3C −177.47 (19)
C11B—C6B—C7B—C8B 0.0 (3) C21C—C22C—C23C—C18C 1.5 (3)
C1B—C6B—C7B—C8B 178.12 (18) C19C—C18C—C23C—O3C 177.48 (17)
C6B—C7B—C8B—C9B −0.1 (3) C4C—C18C—C23C—O3C 0.6 (3)
C7B—C8B—C9B—C10B −0.1 (3) C19C—C18C—C23C—C22C −1.6 (3)
C8B—C9B—C10B—C11B 0.5 (4) C4C—C18C—C23C—C22C −178.46 (17)
C9B—C10B—C11B—C6B −0.6 (3) C22C—C23C—O3C—C24C −5.8 (3)
C7B—C6B—C11B—C10B 0.4 (3) C18C—C23C—O3C—C24C 175.19 (18)

(1R,2S,4r)-4-(2-Methoxyphenyl)-1,2-diphenylcyclopentane-1,2-diol (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O2Ci 0.85 (3) 2.08 (3) 2.8931 (19) 160 (3)
O2A—H2A···O1A 0.88 (3) 2.04 (3) 2.605 (2) 121 (2)
O1B—H1B···O2B 0.90 (3) 2.05 (3) 2.590 (2) 117 (2)
O2B—H2B···O2A 0.83 (2) 1.98 (2) 2.802 (2) 170 (2)
O1C—H1C···O1B 0.88 (3) 1.96 (3) 2.833 (2) 171 (2)
O2C—H2C···O1C 0.85 (3) 2.00 (3) 2.587 (2) 125 (2)

Symmetry code: (i) x−1, y−1, z.

Funding Statement

This work was funded by the State Program of TIPS RAS grant .

References

  1. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, H.-Y., Mialon, L., Abboud, K. A. & Miller, S. A. (2012). Organometallics, 31, 5252–5261.
  3. Choi, T., Cizmeciyan, D., Khan, S. I. & Garcia-Garibay, M. A. (1995). J. Am. Chem. Soc. 117, 12893–12894.
  4. Davies, J. E., Mays, M. J., Raithby, P. R., Sarveswaran, K. & Solan, G. A. (2000). Chem. Commun. pp. 1313–1314.
  5. Deck, P. A., McCauley, B. D. & Slebodnick, C. (2006). J. Organomet. Chem. 691, 1973–1983.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090–4094.
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Minyaev, M. E., Nifant’ev, I. E., Shlyakhtin, A. V., Ivchenko, P. V. & Lyssenko, K. A. (2018). Acta Cryst. C74, 548–557. [DOI] [PubMed]
  11. Minyaev, M. E., Roitershtein, D. M., Nifant’ev, I. E., Ananyev, I. V., Minyaeva, T. V. & Mikhaylyev, T. A. (2015). Acta Cryst. C71, 491–498. [DOI] [PubMed]
  12. Minyaev, M. E., Vinogradov, A. A., Roitershtein, D. M., Borisov, R. S., Ananyev, I. V., Churakov, A. V. & Nifant’ev, I. E. (2016). J. Organomet. Chem. 818, 128–136.
  13. Nifant’ev, I. E., Shlyakhtin, A. V., Bagrov, V. V., Minyaev, M. E., Churakov, A. V., Karchevsky, S. G., Birin, K. P. & Ivchenko, P. V. (2017). Dalton Trans. 46, 12132–12146. [DOI] [PubMed]
  14. Nifant’ev, I. E., Shlyakhtin, A. V., Tavtorkin, A. N., Ivchenko, P. V., Borisov, R. S. & Churakov, A. V. (2016). Catal. Commun. 87, 106–111.
  15. Roitershtein, D. M., Minyaev, M. E., Mikhaylyuk, A. A., Lyssenko, K. A., Glukhov, I. V. & Belyakov, P. A. (2012). Russ. Chem. Bull. 61, 1726–1732.
  16. Roitershtein, D. M., Puntus, L. N., Vinogradov, A. A., Lyssenko, K. A., Minyaev, M. E., Dobrokhodov, M. D., Taidakov, I. V., Varaksina, E. A., Churakov, A. V. & Nifant’ev, I. E. (2018). Inorg. Chem. 57, 10199–10213. [DOI] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Thornberry, M. P., Reynolds, N. T., Deck, P. A., Fronczek, F. R., Rheingold, A. L. & Liable-Sands, L. M. (2004). Organometallics, 23, 1333–1339.
  20. Thornberry, M. P., Slebodnick, C., Deck, P. A. & Fronczek, F. R. (2000). Organometallics, 19, 5352–5369.
  21. Visseaux, M., Zinck, P., Terrier, M., Mortreux, A. & Roussel, P. (2008). J. Alloys Compd. 451, 352–357.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  23. Wu, Q.-L., Su, Q., Ye, L. & Mu, Y. (2007). Acta Cryst. E63, m1160–m1161.
  24. Xu, J., Gao, W., Zhang, Y., Li, J. & Mu, Y. (2007). J. Organomet. Chem. 692, 1505–1510.
  25. Xu, J., Mu, X., Zhang, Y., Su, Q., Ni, J. & Mu, Y. (2006). J. Chem. Res. (S), pp. 552–554.
  26. Yang, L., Ye, J., Xu, L., Yang, X., Gong, W., Lin, Y. & Ning, G. (2012). RSC Adv. 2, 11529–11535.
  27. Ye, J., Gao, Y., He, L., Tan, T., Chen, W., Liu, Y., Wang, Y. & Ning, G. (2016). Dyes Pigments, 124, 145–155.
  28. Ye, J., Huang, X., Li, Y., Zheng, T., Ning, G., Liang, J., Liu, Y. & Wang, Y. (2017). Dyes Pigments, 147, 465–475.
  29. Zhang, F., Mu, Y., Wang, J., Shi, Z., Bu, W., Hu, S., Zhang, Y. & Feng, S. (2000). Polyhedron, 19, 1941–1947.
  30. Zhang, X., Ye, J., Xu, L., Yang, L., Deng, D. & Ning, G. (2013). J. Lumin. 139, 28–34.
  31. Zhang, Y., Wang, J., Mu, Y., Shi, Z., Lü, C., Zhang, Y., Qiao, L. & Feng, S. (2003). Organometallics, 22, 3877–3883.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, New_Global_Publ_Block. DOI: 10.1107/S2056989019008673/fy2139sup1.cif

e-75-01035-sup1.cif (2.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019008673/fy2139Isup2.hkl

e-75-01035-Isup2.hkl (368.7KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019008673/fy2139IIsup3.hkl

e-75-01035-IIsup3.hkl (888.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019008673/fy2139Isup4.cml

Supporting information file. DOI: 10.1107/S2056989019008673/fy2139IIsup5.cml

CCDC references: 1929065, 1929064

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES