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Abstract

Background: There are observational data suggesting an inverse association between

circulating concentrations of sex hormone binding globulin (SHBG) and risk of postmen-

opausal breast cancer. However, causality is uncertain and few studies have investigated

this association by tumour receptor status. We aimed to investigate these associations

under the causal framework of Mendelian randomization (MR).

Methods: We used summary association estimates extracted from published genome-

wide association study (GWAS) meta-analyses for SHBG and breast cancer, to perform

two-sample MR analyses. Summary statistics were available for 122 977 overall breast

cancer cases, of which 69 501 were estrogen receptor positive (ERþve) and 21 468 were

ER-ve, and 105 974 controls. To control for potential horizontal pleiotropy acting via body

mass index (BMI), we performed multivariable inverse-variance weighted (IVW) MR

as the main analysis, with the robustness of this approach further tested in sensitivity

analyses.

Results: The multivariable IVW MR analysis indicated a lower risk of overall (odds ratio

[OR]: 0.94; 95% confidence interval [CI]: 0.90, 0.98; P: 0.006) and ERþve (OR: 0.92; 95%

CI: 0.87, 0.97; P: 0.003) breast cancer, and a higher risk of ER-ve disease (OR: 1.09; 95%
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CI: 1.00, 1.18; P: 0.047) per 25 nmol/L higher SHBG levels. Sensitivity analyses were con-

sistent with the findings of the main analysis.

Conclusions: We corroborated the previous literature evidence coming from observa-

tional studies for a potentially causal inverse association between SHBG concentrations

and risk of ERþve breast cancer, but our findings also suggested a potential novel positive

association with ER-ve disease that warrants further investigation, given the low prior

probability of being true.

Key words: Sex hormone binding globulin, breast cancer, Mendelian randomization

Introduction

Multiple lines of observational evidence suggest that en-

dogenous sex steroid hormones play a central role in the

development of breast cancer. Exposures related to ele-

vated lifetime circulating estrogen concentrations, such as

early age at menarche, nulliparity, late age at menopause

and hormone replacement therapy, are well-established

breast cancer risk factors.1,2 Among postmenopausal

women, positive associations of circulating estrogens and

androgens with breast cancer are consistently reported in

observational studies.3 However, these associations are

confirmed only for estrogen receptor-positive (ERþve)

breast cancer and the literature is sparse and inconsistent

for estrogen receptor-negative (ER-ve) disease.4–10 Sex

hormone-binding globulin (SHBG) is a glycoprotein that

binds sex steroid hormones. It plays a vital role in regulat-

ing concentrations of free estradiol and testosterone in cir-

culation,11 but may also have biological functions beyond

sex hormone binding.12,13 An inverse association between

SHBG concentrations and risk of postmenopausal breast

cancer has been consistently shown.3,14 In contrast, associ-

ations by tumour receptor status have been inconsis-

tent,4,6,8,9 and for premenopausal disease they have been

null.15,16

Residual confounding, reverse causation and exposure

measurement error occur frequently in observational stud-

ies and may bias their results, hindering the ability to make

robust causal inference. An alternative approach to con-

ventional analyses of directly assessed exposures in obser-

vational studies is Mendelian randomization (MR). MR

uses genetic variants robustly associated with the exposure

of interest in an instrumental variable analysis, to make

causal inferences about the effects of the exposure on an

outcome.17 The random and fixed allocation of alleles at

conception makes confounding and reverse causation less

likely explanations for associations identified in MR

studies.18

Twin studies indicate that approximately half of the

variance in circulating SHBG concentrations within popu-

lations is accounted for by genetic factors.19 A meta-

analysis of 10 genome-wide association studies (GWAS) in

21 791 individuals identified several genomic regions asso-

ciated with circulating SHBG. These regions explained ap-

proximately 16% and 8% of the genetic variation in

SHBG in men and women, respectively,20 providing suit-

able genetic instruments to undertake MR analyses of ge-

netically determined SHBG concentrations.

The aim of the present study was to investigate associa-

tions of genetically determined circulating SHBG concen-

trations with risk of overall breast cancer and risk

stratified by ER status of the tumour under the MR causal

framework. We used publicly available summary associa-

tion data for 28 837 individuals with measured circulating

SHBG concentrations and 122 977 breast cancer cases,

adopting a two-sample MR design since the exposure and

outcome were measured in separate non-overlapping sam-

ples.21 To control for potential horizontal pleiotropy act-

ing via body mass index (BMI) (Figure 1), we performed

multivariable MR22 because some of the selected genetic

variants for SHBG were also associated with BMI.23

Key Messages

• Using a Mendelian randomization analytical framework, we corroborated previous literature evidence coming from

observational studies for a potentially causal inverse association between sex hormone binding globulin (SHBG) con-

centrations and risk of overall and estrogen receptor positive (ERþve) breast cancer.

• Our findings also suggested a novel positive association with ER-ve disease, which warrants further investigation

given the low prior probability of being true.

• Our study underlines that the role of SHBG in breast cancer development may be complex, potentially exerting differ-

ential effects depending on ER status.
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Methods

Data for the genetic epidemiology of SHBG and

breast cancer

We selected genetic variants for the MR analysis on the

basis of a genome-wide significant association with circu-

lating SHBG concentrations (i.e. P-value threshold for in-

clusion at < 5� 10–8Þ. We extracted summary results for

13 variants reported in a GWAS meta-analysis of 28 837

people (13 899 women and 14 938 men) from 16 studies,

which were adjusted for age, sex and BMI.20 For

these 13 variants (i.e. rs17496332, rs780093, rs3779195,

rs440837, rs7910927, rs4149056, rs8023580,

rs2411984, rs12150660, rs6258, rs1641537, rs1625895,

rs1573036), we obtained publicly available summary as-

sociation estimates for 122 977 women with overall

breast cancer, of whom 69 501 women were ERþve cases

and 21 468 were ER-ve cases, and 105 974 controls. All

women were of European ancestry, from the Breast

Cancer Association Consortium (BCAC), and the GWAS

analysis adjusted for principal components and country

or study.24 We excluded rs6258, having minor allele fre-

quency <1% in the GWAS for breast cancer and exerting

large effect size (Table 1).

Statistical power

Power calculations were performed based on a method

suggested by Brion et al.26 We fixed the type-I error rate at

0.05. Under the current sample size, our study has 80%

power to detect a causal effect of a relative 4% (i.e. OR:

0.96) decrease in breast cancer risk per 25 nmol/L higher

SHBG concentrations, assuming an R2 of 8% (variance

explained by the selected SHBG variants). Corresponding

estimates for ERþve and ER-ve disease were 5% and 7%

relative reductions, respectively. Assuming that a top-to-

bottom quintile comparison is roughly equivalent to an

OR per 2.8 standard deviation change (i.e. 25 nmol/L) in

SHBG concentrations, our study had 80% power to detect

ORs of 0.89, 0.87 and 0.82 or less comparing the top vs

bottom quintiles of SHBG concentrations for overall,

ERþve and ER-ve breast cancer, respectively, which are

smaller than the effect sizes observed in observational stud-

ies.3,14 For completeness, we depict power calculations for

a range of proportions of SHBG variation explained

(Table 2).

Statistical analysis

We employed a multivariable inverse-variance weighted

(IVW) MR approach22 to adjust for potential horizontal

pleiotropy acting through BMI (Figure 1), because some of

the selected genetic variants for SHBG (i.e. rs12150660,

rs1625895, rs7910927, rs780093 and rs17496332) were

also associated with BMI (smallest P-value7:64� 10–5 for

rs780093),23 and BMI has been consistently associated

with SHBG concentrations27 and breast cancer risk.28,29

Publicly available genetic data for BMI were retrieved

from the GIANT consortium for 339 000 individuals,

95% of whom were of European descent23 (Table 1). We

also applied the multivariable MR-Egger method to inves-

tigate for potential pleiotropic pathways other than via

BMI.30 For comparison, we employed two univariable MR

methods, a fixed-effects IVW average of single nucleotide

polymorphism (SNP)-specific associations and a

likelihood-based method,31,32 which do not take into ac-

count potential horizontal pleiotropy. For ease of compari-

son with observational studies, we transformed beta

coefficients from the logarithmic scale, which were origi-

nally reported in the published GWAS,20 into the natural

scale using a formula suggested by Rodriguez-Barranco

et al.25 All MR effect estimates are reported as odds ratios

(OR) per standard deviation (i.e. 25 nmol/L) higher SHBG

concentrations.

A series of statistical tests were performed to investigate

the potential violation of MR assumptions.33,34 The first

assumption (i.e. that the genetic variants are strongly asso-

ciated with circulating SHBG concentrations) was very

likely satisfied by employing genetic variants associated

with circulating SHBG concentrations at a genome-wide

significance level. To test for potential violation of the

second and third MR assumptions (i.e. that the genetic

variants are not associated with any confounder of the

SHBG-breast cancer association and are conditionally in-

dependent of breast cancer, given SHBG concentrations

and all confounders), we acquired information for the as-

sociation of the selected SHBG SNPs with other traits from

the GWAS Catalogue.35 To further statistically probe for

existence of horizontal pleiotropy, which means that the

selected variants have an effect on other traits outside the

pathway of SHBG and have an impact on breast cancer

risk violating the third MR assumption, we employed the

Cochran’s Q statistic that quantifies the heterogeneity in

effect sizes attributed to the selected genetic variants.

Figure 1. Graphical diagram of the Mendelian randomization analysis

between sex hormone binding globulin (SHBG) concentrations and risk

of breast cancer. BMI, body mass index; G, gene or genetic instrument.
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When there was evidence for heterogeneity, we performed

a random-effects IVW approach in order to take into ac-

count this source of uncertainty.36 MR-Egger regression

was also used, where values away from zero for the inter-

cept term are an indication of horizontal pleiotropy.37 The

slope of the MR-Egger regression37 and the estimator from

the weighted median38 and weighted mode39 approaches

were used to estimate causal effects accounting for poten-

tial violations of the second and third MR assumptions.

The MR pleiotropy residual sum and outlier test (MR-

PRESSO) was also used to identify pleiotropic variants (P-

value threshold set at 0.05) and if there was evidence for

pleiotropy, those variants were excluded.40 The weighted

median, weighted mode and MR-PRESSO analyses were

performed only in the univariable MR approach, as these

methods have not been extended in multivariable MR.

Further, sensitivity analyses were performed to test the

robustness of the genetic instrument for SHBG concentra-

tions after: (i) excluding one SNP (i.e. rs780093) due to po-

tential pleiotropy with several other traits (e.g. urate levels,

triglycerides, Crohn’s disease, breast size41–44); (ii) exclud-

ing three SNPs (i.e. rs1641537, rs1625895 and rs3779195)

that were derived from conditional analyses (i.e. adjusting

for other genetic variants) in the GWAS for SHBG; (iii) us-

ing only three SNPs (i.e. rs12150660, rs7910927,

rs780093) that were genome-wide significant in the GWAS

analysis only among women; (iv) using female-specific esti-

mates for the SNP-SHBG associations (for three SNPs, i.e.

rs1641537, rs1625895 and rs3779195, estimates were

only reported in males and females together); (v) using

only two SNPs in the SHBG gene as instruments (i.e.

rs12150660 and rs1641537); and (vi) excluding five SNPs

(i.e. rs12150660, rs1625895, rs7910927, rs780093 and

rs17496332) associated with BMI. Sensitivity analyses (v)

and (vi) were performed only in the univariable MR

framework.

All the statistical analyses were implemented in the

Mendelian randomization R package,45 apart from the

weighted mode approach where we used the MR robust

package in STATA.46

Results

Mendelian randomization estimates

Figure 2 shows the multivariable IVW MR analysis adjust-

ing for the potential horizontal pleiotropy via BMI. A 6%

decreased risk for overall breast cancer was observed per

25 nmol/L higher SHBG concentrations [odds ratio (OR):

0.94; 95% confidence interval (CI): 0.90, 0.98; P: 0.006]

and an 8% decreased risk for ERþve disease (OR:

0.92; 95% CI: 0.87, 0.97; P: 0.003). In contrast, there was

a 9% increased risk for ER-ve disease per 25 nmol/L higher

SHBG concentrations (OR: 1.09; 95% CI: 1.00, 1.18; P:

0.047). There was little evidence of heterogeneity in the ef-

fect sizes attributed to each of the genetic variants for asso-

ciations with overall (Cochran’s Q P: 0.74), ERþve (P:

0.75) and ER-ve breast cancer (P: 0.55). The multivariable

MR-Egger analysis yielded large P-values for the intercept

term, indicating low probability of horizontal pleiotropy;

the point estimates of the slope were consistent with our

main MVMR IVW analysis, but the confidence intervals

were wider for overall breast cancer (OR: 0.97; 95% CI:

0.88, 1.08; P: 0.572; P-intercept: 0.385) and by tumour re-

ceptor status (ERþve OR: 0.97; 95% CI: 0.86, 1.10; P:

0.564; P-intercept: 0.325 and ER-ve disease OR: 1.00;

95% CI: 0.83, 1.21; P: 0.970; P-intercept: 0.294), but this

method is known to have low power when few genetic

instruments are used.47

When we performed the univariable IVW MR analysis

that does not account for potential horizontal pleiotropic

effects via BMI (Supplementary Table 1, available as

Supplementary data at IJE online), the results were similar

to the multivariable IVW analysis, but they were slightly

attenuated for overall (OR: 0.96; 95% CI: 0.92, 1.00; P:

0.07) and ERþve breast cancer (OR: 0.95; 95% CI: 0.91,

1.00; P: 0.06). The results were almost identical for ER-ve

Table 2. Number of cancer cases and controls and statistical power in Mendelian randomization study of SHBG and breast can-

cer risk

Cancer type Cases Controls Total Proportion

of cases

Minimum detectable odds ratioa

R2 ¼ 0.06/F

statistic¼153.3

R2 ¼ 0.08/F

statistic¼208.9

R2 ¼ 0.10/F

statistic¼266.9

Overall 122 977 105 974 228 951 0.54 0.953/1.049 0.960/1.042 0.963/1.038

ERþve 69 501 95 042 164 543 0.42 0.945/1.058 0.952/1.050 0.957/1.045

ER-ve 21 468 100 594 122 062 0.18 0.922/1.085 0.930/1.075 0.937/1.067

aMinimum detectable odds ratio per 25 nmol/L increase/decrease in SHBG levels: assume 80% power, 5% alpha level and that 6% to 10% of SHBG variance

is explained by the 12 SNPs used in the MR analysis.
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breast cancer (OR: 1.09; 95% CI: 1.01, 1.18; P: 0.03). The

maximum likelihood univariable MR approach yielded al-

most identical results.

Sensitivity analyses

The multivariable IVW results for overall and ERþve breast

cancer did not change in sensitivity analyses that removed

genetic variants from the instrument of SHBG to test its ro-

bustness (Figure 2). The association for ER-ve disease

remained after excluding rs780093 (sensitivity analysis 1)

and when using female-specific SNP-SHBG association

estimates (sensitivity analysis 4), but it was not observed in

other sensitivity analyses (Figure 2).

We applied several statistical tests and sensitivity anal-

yses in the univariable IVW MR approach to further test

the robustness of MR assumptions (Supplementary Table

1). There was some evidence of heterogeneity for associa-

tions of SHBG with overall (Cochran’s Q P: 0.01) and

ERþve (P: 0.02) breast cancer. However, the random-

effects IVW analyses provided similar estimates with

only slightly wider confidence intervals for overall (OR:

0.96; 95% CI: 0.90, 1.02) and ERþve disease (OR:

0.95; 95% CI: 0.88 1.02). The MR-Egger intercept

yielded large P-values. suggesting absence of horizontal

pleiotropy, but this analysis was likely underpowered due

to the relatively small number of genetic variants

(Supplementary Table 1). When we applied the MR-

Egger regression slope approach, the weighted median

and the weighted mode approaches, the point estimates

were on the same direction as the IVW approach but the

P-values were large (Supplementary Table 1). The MR-

PRESSO test indicated one SNP, rs7910927, as an outlier

for overall and ERþve disease, which was also evident

when we estimated and plotted MR results by each sepa-

rate SNP (Supplementary Figures 1–3, available as

Supplementary data at IJE online). When this variant

was excluded from the multivariable IVW analysis, the

results were very similar with the multivariable analysis

including all SNPs (overall breast cancer, OR: 0.95; 95%

CI: 0.90, 1.00; P: 0.045; ERþve, OR: 0.94; 95%

CI: 0.88, 1.00; P: 0.046; ER-ve, OR: 1.10; 95% CI: 1.00,

1.22; P: 0.051). In addition, when rs7910927 variant

was excluded along with other four variants associated

with BMI (sensitivity analysis 6) and univariable MR

was run, we observed evidence for association for overall

(OR: 0.93; 95% CI: 0.86, 1.00; P: 0.04), ERþve (OR:

0.91; 95% CI: 0.83, 0.99; P: 0.03) and ER-ve breast can-

cer (OR: 1.15; 95% CI: 1.00, 1.32; P: 0.04) in agree-

ment with the results from the multivariable IVW

analysis. Similar evidence for association was observed in

most other sensitivity analyses that removed genetic var-

iants from the instrument of SHBG to test its robustness

(Supplementary Table 1).

Figure 2. Multivariable inverse-variance weighted Mendelian randomization estimates between sex hormone binding globulin (SHBG) concentrations

and risk of breast cancer, adjusting for the genetic effects of body mass index (BMI). Main analysis: the odds ratios represent increase/decrease of

risk per 25nmol/L increase in SHBG levels (N ¼ 12 SNPs). Sensitivity analysis 1: we used 11 SNPs after excluding rs780093 due to potential pleiotropy

with several other traits.41–44 Sensitivity analysis 2: we used nine SNPs after excluding rs1641537, rs1625895 and rs3779195 derived from conditional

analyses in the GWAS of SHBG.20 Sensitivity analysis 3: we used as instruments only the three SNPs (i.e. rs12150660, rs7910927, rs780093), which

were significant in the GWAS analysis for SHBG only in women.20 Sensitivity analysis 4: we used female-specific estimates for the SNP-SHBG associ-

ations (for three SNPs i.e. rs1641537, rs1625895 and rs3779195, estimates were only reported in males and females together).20.
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Discussion

We conducted a large MR study using summary statistics

based on 122 977 women with breast cancer, of whom

69 501 cases had ERþve disease and 21 468 cases had ER-ve

disease. We demonstrated for the first time under the MR

causal framework an inverse association of genetically deter-

mined SHBG concentrations with risk of overall and ERþve

breast cancer, but a positive association for ER-ve disease.

A substantial number of observational studies have

assessed the association of circulating SHBG concentra-

tions with risk of postmenopausal breast cancer. A meta-

analysis of 26 prospective studies involving 5172 postmen-

opausal breast cancer cases and 10 939 controls estimated

an OR of 0.64 (95% CI; 0.57, 0.72) comparing the highest

versus the lowest concentrations of SHBG, and had low

between-study heterogeneity and little evidence of small-

study effects.14 Similar results were observed in a pooled

analysis of nine prospective studies.3 These findings are

concordant with the results of the current MR study.

Assuming that a top-to-bottom quintile comparison is

roughly equivalent to an OR per 2.8 standard deviations

(i.e. 25 nmol/L), our MR study estimated an OR equal to

0.84 (95% CI: 0.74, 0.95) for overall breast cancer risk,

0.80 (95% CI: 0.69, 0.93) for ERþve and 1.26 (95%

CI: 1.00, 1.58) for ER-ve breast cancer.

The literature on the association of circulating SHBG con-

centrations with breast cancer risk stratified by tumour recep-

tor status is limited. The largest available study using data

from 382 postmenopausal ERþve (602 controls) and 172 ER-

ve breast cancer cases (219 controls) suggested an inverse as-

sociation for ERþve disease (OR: 0.71; 95% CI: 0.51, 1.00)

and a similar but imprecise association for ER-ve disease (OR:

0.73; 95% CI: 0.43, 1.25) comparing the top vs bottom ter-

tiles of SHBG concentrations.6 A case-cohort analysis in the

Melbourne Collaborative Cohort that included 132 ERþve

and 45 ER-ve women with breast cancer observed inverse

associations for SHBG concentrations with both ERþve [haz-

ard ratio (HR) per doubling of SHBG: 0.41; 95% CI: 0.27,

0.63] and ER-ve disease (HR: 0.44; 95% CI: 0.23, 0.83).4

Results from the Nurses’ Health Study nested case-control

study that included 147 women with ERþ/progesterone re-

ceptor positive (PRþ) postmenopausal breast cancer and 622

controls, yielded an OR of 0.50 (95% CI: 0.30, 0.80) com-

paring women in the highest versus the lowest quartile of

SHBG concentrations. However, there was little evidence of

associations for ER-/PR- (N¼ 38 cases) and ERþ/PR- (N¼33

cases) disease.8 No associations of circulating SHBG concen-

trations with ERþve (N¼ 127 cases) and ER-ve(N¼ 30) post-

menopausal breast cancer were recorded in the ORDET

cohort.9 Our MR investigation observed an inverse associa-

tion between genetically determined SHBG concentrations

and risk of ERþve breast cancer in agreement with the direc-

tion of the majority of the existing observational literature,

but we also observed an increased risk for ER-ve disease,

which is a novel finding and warrants further investigation

given the wider observed variability in this analysis and the

low prior probability of being true.48

Breast cancer is a complex and heterogeneous disease

with a variety of histopathological and molecular subtypes

that have diverse risk factors and clinical outcomes.49 The

associations of estrogens and androgens with a higher risk

of postmenopausal ERþve breast cancer are well estab-

lished, but the literature is sparse and inconsistent for ER-ve

disease. The observed positive association between geneti-

cally determined circulating SHBG concentrations and

risk of ER-ve breast cancer, which was qualitatively differ-

ent from the association observed for ERþve disease, does

not have a straightforward explanation, but it is biologi-

cally plausible given the pleiotropic actions of SHBG.12,13

For many years, SHBG was believed to serve exclusively as

a transporter or reservoir for sex steroids. However, in the

past two decades it became clear that cell membranes of

many tissues express a receptor for SHBG and that SHBG

is found intracellularly.12,13 Binding of SHBG to its recep-

tor has been shown to activate cyclic adenosine monophos-

phate (cAMP),13 an intracellular signal transduction

pathway important for many biological processes including

cancer growth.50,51 It has been also shown that the ligand-

bound SHBG receptor can activate the androgen receptor

in the prostate in the absence of androgens.52 Preclinical

evidence indicates that testosterone has antiproliferative

effects on mammary cell growth regulated by the androgen

receptor.53 A case-cohort study in the Women’s Health

Initiative Observational Study showed that higher serum

concentrations of bioavailable testosterone were associated

with lower risks of ER-ve postmenopausal breast cancer,54

providing indirect evidence in accordance with our findings

for SHBG and ER-ve disease. Additional studies on SHBG

and ER-ve breast cancer are required to delineate potential

mechanisms linking SHBG to this subtype.

This is the first study, to our knowledge, that investigated

the potential causal association between SHBG concentra-

tions with risk of overall breast cancer and cancer by ER sta-

tus, overcoming the potential limitations of observational

studies. Our MR study was powered to detect the effect sizes

that we found. The F statistic was 208.9, assuming that the

variance explained by the genetic instrument is approxi-

mately 8%, indicating a strong instrument. Nevertheless, sev-

eral limitations should also be considered in interpreting our

findings. MR estimates have a causal interpretation only if

the assumptions of the method hold. Though it is not possible

to prove the validity of some of these assumptions, we per-

formed sensitivity analyses and used several statistical tests to
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investigate potential violations. One out of the 12 variants as-

sociated with SHBG concentrations (i.e. rs12150660) has

been also associated at a genome-wide significance level with

testosterone concentrations in men,55 but this variant is lo-

cated in the SHBG gene, and will likely lead to vertical (not

horizontal) pleiotropy, not violating thus the results of the

present study.56 In addition, most known genetic signals for

estradiol and testosterone have only captured variability in

men, precluding an MR analysis for these hormones in rela-

tion to breast cancer.55,57–59 The summary-level data that we

used did not allow for stratified analyses by covariates of in-

terest, such as menopausal status, exogenous hormone use or

according to breast cancer by progesterone and HER2 recep-

tor status. Information on menopausal status was not avail-

able in the large genetic network that we used, but

approximately 85% of breast cancer cases in the sample

were postmenopausal at diagnosis.24 Moreover, summary

statistics for all genome-wide significant SNPs for BMI60

were not available in the respective GWAS for SHBG,20 and

thus these could not be incorporated in a unified multivari-

able MR framework as was performed for other traits.61

Consequently, the potential causal association of BMI with

breast cancer cannot be quantified by this study or compared

with estimates from another MR study.62 Future large pool-

ing consortia, genome-wide association studies of estradiol,

testosterone and SHBG concentrations in women with ex-

panded sample size, and MR studies with individual-level

data could provide improved understanding of the role of sex

steroids in breast tumorigenesis.

In summary, using a comprehensive MR analytical

framework, we corroborated the previous literature evi-

dence coming from observational studies for a potentially

causal inverse association between SHBG concentrations

and risk of ERþve breast cancer. At the same time, our find-

ings suggested a novel positive association with ER-ve dis-

ease, which warrants further investigation given the low

prior probability of being true, but might indicate that the

role of SHBG in breast cancer development is complex,

exerting differential effects depending on ER status.

Supplementary Data

Supplementary data are available at IJE online.
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Multiple important causes of cancer have been successfully

identified over the past 70 years, including cigarette smoking,

alcohol, obesity and UV light, as well as carcinogens in the

occupational environment and different infections. However,

despite these successes, about half of the cancer burden can-

not be linked to known causes.1 Difficulties in identifying

causal factors for different cancers are due to a number of

reasons, including limitations in epidemiological study

designs and the inherent problems of confounding and re-

verse causation, as well as inadequate statistical power to

study relatively rare cancer types. Potential causes may also

be relatively ubiquitous within populations, such as air
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