Skip to main content
. 2018 Nov 13;48(3):834–848. doi: 10.1093/ije/dyy223

Table 3.

Associations between higher BMI and three negative control variables, using regression and instrumental variable analysis and based on the unrelated individuals used in the one sample MR. Our depression variable is included for reference

Observationalb
Geneticc
Geneticd
Negative control variable N Beta or LN(OR)e representing change in negative control variable or depression per SD higher BMI P Beta or LN(OR)e representing change in negative control variable per SD higher genetically instrumented BMI P Beta or LN(OR)e representing change in negative control variable per SD higher genetically instrumented BMI P
Regular sun protection usea 375 720 −0.041 (−0.047, −0.036) <1 x 10−15 −0.052 (−0.098, −0.006) 0.028 −0.040 (−0.087, 0.006) 0.09
Nitrogen dioxide pollution level 372 791 0.023 (0.020, 0.026) <1 x 10−15 0.025 (0.000, 0.050) 0.050 −0.006 (−0.030, 0.018) 0.63
Rural dwelling 386 131 −0.067 (−0.076, −0.058) <1 x 10−15 −0.023 (−0.094, 0.048) 0.52 0.006 (−0.065, 0.077) 0.88
Depression 41 397 (246 106) 0.150 (0.139, 0.160) <1 x 10−15 0.166 (0.084, 0.247) 7 x 10−5 0.153 (0.07, 0.235) 0.0002
a

Coded as never, sometimes, most of the time, always. Analysed using ordinal logistic regression.

b

Regression analysis adjusting for age and sex.

c

One-sample instrumental variable analysis with a BMI GRS.

d

One-sample instrumental variable analysis with a BMI GRS and accounting for socioeconomic position using the Townsend deprivation index.

e

On natural log scale, LN(OR).