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del Sacro Cuore, Rome, Italy, 61Icahn School of Medicine at Mount Sinai, New York, NY, USA and
62Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA

*Corresponding author. Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Division of Epidemiology, Dalla

Lana School of Public Health, University of Toronto, 60 Murray St, Room L5-215, Box 18, Toronto, ON M5T 3L9, Canada.

E-mail: rayjean.hung@lunenfeld.ca

Editorial decision 6 June 2018; Accepted 14 June 2018

Abstract

Background: Evidence from observational studies of telomere length (TL) has been con-

flicting regarding its direction of association with cancer risk. We investigated the causal

relevance of TL for lung and head and neck cancers using Mendelian Randomization

(MR) and mediation analyses.

Methods: We developed a novel genetic instrument for TL in chromosome 5p15.33, us-

ing variants identified through deep-sequencing, that were genotyped in 2051 cancer-

free subjects. Next, we conducted an MR analysis of lung (16 396 cases, 13 013 controls)

and head and neck cancer (4415 cases, 5013 controls) using eight genetic instruments for

TL. Lastly, the 5p15.33 instrument and distinct 5p15.33 lung cancer risk loci were evalu-

ated using two-sample mediation analysis, to quantify their direct and indirect, telomere-

mediated, effects.

Results: The multi-allelic 5p15.33 instrument explained 1.49–2.00% of TL variation in our

data (p¼2.6� 10–9). The MR analysis estimated that a 1000 base-pair increase in TL

increases risk of lung cancer [odds ratio (OR)¼1.41, 95% confidence interval (CI): 1.20–1.65]

and lung adenocarcinoma (OR¼1.92, 95% CI: 1.51–2.22), but not squamous lung carcinoma

(OR¼1.04, 95% CI: 0.83–1.29) or head and neck cancers (OR¼0.90, 95% CI: 0.70–1.05).

Mediation analysis of the 5p15.33 instrument indicated an absence of direct effects on lung

cancer risk (OR¼1.00, 95% CI: 0.95–1.04). Analysis of distinct 5p15.33 susceptibility variants

estimated that TL mediates up to 40% of the observed associations with lung cancer risk.

Conclusions: Our findings support a causal role for long telomeres in lung cancer aetiol-

ogy, particularly for adenocarcinoma, and demonstrate that telomere maintenance par-

tially mediates the lung cancer susceptibility conferred by 5p15.33 loci.

Key words: lung cancer, telomere length, chromosome 5p15.33, Mendelian Randomization, mediation analysis, TERT

Introduction

Telomeres are highly conserved stretches of tandem repeats

of the TTAGGG sequence, which protect chromosome

ends from degradation and maintain genome stability.1,2

Due to the incomplete replication of chromosomes during

cell division, human telomeres lose between 50 and 200

base pairs with each replication.1–3 In checkpoint

Key Messages

• Genetic predisposition to long telomeres increases the risk of lung cancer, predominately lung adenocarcinoma.

• Genetic determinants of long telomeres are not associated with squamous carcinomas of the lung or head and neck.

• Using two-sample mediation analysis, we determined that the novel 5p15.33 instrument for telomere length (TL)

does not have direct effects on the outcome, and demonstrated that the association between 5p15.33 lung cancer

susceptibility variants is partially mediated by TL, suggesting the presence of other relevant mechanisms.
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proficient cells, critically short telomeres trigger senes-

cence, followed by apoptosis, which represents a barrier

against cancer initiation by limiting cellular prolifera-

tion.4,5 As telomeres shorten, their ability to maintain

chromosomal stability also diminishes, which may increase

cancer susceptibility.6,7 However, long telomeres may also

promote cancer development through an accumulation of

mutations due to prolonged cell survival and proliferation.

In fact, cancer cells are characterized by such a prolifera-

tive advantage, often through reactivation of telomerase,

which is normally silent in somatic cells.4,5,8

Telomere length (TL) has been studied extensively in re-

lation to cancer risk. However, findings of epidemiologic

studies have been conflicting.6,9–11 Observational studies

investigating TL measured after cancer diagnosis are

particularly vulnerable to reverse causation and residual

confounding, so shorter TL observed in cancer cases is

likely to reflect underlying disease or the impact of cancer

treatment.12,13 It is also difficult to isolate the influence of

TL on cancer risk from that of other risk factors that influ-

ence both TL and cancer susceptibility, including biologi-

cal or replicative age.10,14,15

Mendelian Randomization (MR) is an approach for

evaluating causality by using single-nucleotide polymor-

phisms (SNPs) in relevant genes as instrumental variables

(IVs).16 Genome-wide association studies (GWAS) identi-

fied a number of genetic regions involved in TL regulation,

including genes encoding the catalytic subunit of telome-

rase reverse transcriptase (TERT) in chromosome 5p15.33

and its RNA template (TERC) in 3q26.2.17–21 By leverag-

ing these associations, MR can provide a valid test of the

causal hypothesis assuming the genetic IVs only affect can-

cer risk through TL regulation.

Previous studies using genetic proxies for TL suggest

that longer telomeres confer an increased risk of lung can-

cer, especially adenocarcinoma,22–24 which is consistent

with the findings of prospective observational studies.25–27

Lung cancer case–control studies report both increased28

and inverse6,29 associations for long TL, and some impli-

cate high TL variability in lung cancer susceptibility.30 For

head and neck cancers (HNC), which are predominantly

squamous carcinomas, short TL is consistently associated

with increased risk in case–control studies,6,31,32 whereas a

recent MR analysis24 did find evidence supporting a causal

relationship.

The overarching aim of this study is to investigate the

causal relationship between TL and risk of lung and upper

aero-digestive tract cancers. First, we developed a novel

genetic instrument for TL in chromosome 5p15.33, given

the extensive pleiotropy in this region and potential for

violating MR assumptions.22,33 Next, we conducted the

largest two-sample MR analysis of lung and HNC risk to

date. Lastly, we quantified the direct and telomere-

mediated effects of 5p15.33 genetic variants on cancer

risk using a two-sample mediation analysis approach

(Figure 1).

Methods

Study populations

We used individual-level data from 23 pooled studies of

lung cancer, with 16 396 cases (5690 adenocarcinoma,

4045 squamous carcinoma) and 13 013 controls; and

11 HNC studies with 4415 cases and 5013 controls, all

part of the OncoArray collaboration34 (Supplementary

Tables 1 and 2, available as Supplementary data at IJE on-

line). Descriptions of studies and genotyping methods have

been previously published34,35 (details in Supplementary

File 1, available as Supplementary data at IJE online).

Analyses were restricted to individuals of predominantly

European ancestry (�80% lung, >70% HNC).34,36

Studies received approval from institutional research ethics

review boards and informed consent was obtained from

the participants.

The novel 5p15.33 instrument was developed using data

from two studies: the cancer-free controls from the Mount

Sinai and Princess Margaret Hospital (MSH-PMH) case–

control study in Toronto37 and cancer-free individuals from

the Copenhagen General Population Study (CGPS),38 a

population-based prospective cohort (Table 1). TL was

measured in DNA from peripheral blood leukocytes using

previously described quantitative polymerase chain reaction

assays performed in MSH-PMH37 and CGPS23,38 (details in

Figure 1. Conceptual diagram of Mendelian Randomization and media-

tion analyses. Mendelian Randomization is based the following

assumptions (1–3): the genetic variant is strongly associated with telo-

mere length; there is no direct association between the instrument and

cancer outcome, except through telomere length; the genetic instru-

ment is independent of any confounders (C). Mediation analyses of the

5p15.33 instrument for telomere length and 5p15.33 susceptibility var-

iants test for the presence of direct effects (4) and quantify how much of

the total genetic effect on lung cancer risk is mediated by telomere

length.
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Supplementary File 2, available as Supplementary data at

IJE online).

Statistical analysis

MR analysis

The genetic instruments for TL included independent SNPs

showing strong prior evidence of association with TL, such as

p< 5� 10–8 in the discovery stage of at least one GWAS and

replication in a separate GWAS or meta-analysis.17–21 In addi-

tion to the new 5p15.33 instrument described below, we se-

lected seven additional loci involved in telomere maintenance:

rs10165485 (proxy for rs11125529, r2¼ 1.0) in ACYP2

(2p16.2), rs6772228 in PXK (3p14.3), rs10936599 in TERC

(3q26.2), rs11100479 (proxy for rs7675998, r2¼ 0.99) in

NAF1 (4q32.2), rs9420907 in OBFC1 (10q24.3), rs10419926

in ZNF676 (19p12) and rs755017 near RTEL1 and ZBTB46

(20q13). Only genotyped, non-imputed variants were used.

For the purpose of developing a new instrument in the

5p15.33 region, TL values were converted to Z-scores in

MSH-PMH (n¼ 879) and CGPS (n¼ 1172) studies sepa-

rately, and pooled to increase statistical power. Linear regres-

sion was used to estimate the association between

899 variants in 5p15.33 and TL, adjusting for age, sex, study

and the top five genetic ancestry principal components (PCs).

Selection of variants for the 5p15.33 instrument was

based on statistical significance, consistency across the

two studies and instrument strength, measured by the

F statistic, which depends on the variance in TL explained

by the genetic predictors (R2), sample size (n) and number

of instruments (k): F ¼ n�k�1
k

� �
R2

1�R2

� �
. Variants were con-

sidered for inclusion in the 5p15.33 instrument if they met

the following criteria:

i. F� 5 and p< 0.05 in the Toronto and Copenhagen

combined dataset (n¼ 2051);

ii. F< 5 and p< 0.05 overall (n¼2051) and F> 5 among

never smokers (n¼ 848);

iii. consistent direction of allelic effects in MSH-PMH and

CGPS;

iv. minor allele detected in at least two individuals.

Independent genetic variants (r2< 0.2) that met the se-

lection criteria were combined into an allele score repre-

senting the 5p15.33 region to increase the power of the

resulting instrument.39,40

The MR analysis combined summary statistics across the

genetic IVs to estimate the causal parameter bIV, which is the

log odds ratio (OR) describing the causal effect of increasing

TL on cancer risk (Supplementary Figure 1, available as

Supplementary data at IJE online). Parameters for the MR

analysis included bTL and bY, where bTL is a vector of SNP-

TL associations and bY is a vector of per-allele cancer log

ORs for each instrument. For genetic instruments outside of

5p15.33, bTL and corresponding standard errors (SEs) were

obtained from the literature and scaled to represent a 1000

base-pair (kbp) increase in leukocyte TL, a proxy for TL in

relevant tissues.19–21 For all instruments, bY and correspond-

ing SE were estimated directly using individual-level

OncoArray lung and HNC data. Logistic regression models

were adjusted for age, sex, study and 10 PCs.

Table 1. Characteristics of the Toronto (MSH-PMH) and Copenhagen (CGPS) OncoArray studies that comprise the dataset for

the development of genetic instruments for telomere length in chromosome 5p15.33

Characteristic and description Toronto (MSH-PMH) Copenhagen (CGPS) Total

N (%) N (%) N (%)

Age (years) <50 135 (17.4) 287 (24.5) 422 (20.6)

50–59 241 (28.6) 259 (22.1) 500 (24.4)

60–69 313 (35.0) 264 (22.5) 577 (28.1)

70–79 143 (14.7) 237 (20.2) 380 (18.5)

�80 47 (4.3) 125 (10.7) 172 (8.4)

Mean (SD) 61.0 (11.7) 61.3 (12.8) 61.2 (12.3)

Sex Males 436 (49.6) 470 (40.1) 906 (44.2)

Females 443 (50.4) 702 (59.9) 1145 (55.8)

Smoking status Never smokers 438 (50.1) 410 (36.4) 848 (41.3)

Ever smokers 436 (49.6) 717 (61.2) 1153 (56.2)

Former smokers 366 (41.7) 717 (61.2) 1083 (52.8)

Current smokers 59 (6.7) 0 (0) 59 (2.9)

Unknown 5 (0.6) 45 (3.8) 50 (2.4)

Mean cigarette pack-years (SD) 8.7 (17.2) 14.4 (20.2) 12.0 (19.2)

Total 879 1172 2051 (100.0)

CGPS, Copenhagen General Population Study; MSH-PMH, Mount Sinai Hospital-Princess Margaret Hospital study; SD, standard deviation.
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The causal parameter bIV was estimated using the maxi-

mum likelihood-based (ML) approach and the inverse-

variance weighted (IVW) method.41,42 This was comple-

mented by sensitivity analyses using the weighted median esti-

mator (WME), which provides valid estimates of the causal

parameter even when up to 50% of the statistical weights are

contributed by genetic instruments violate MR assumptions.43

Mediation analysis

The aim of the mediation analysis was to quantify how much

of the lung cancer association in the 5p15.33 region is medi-

ated by TL. First, we validated the 5p15.33 instrument by

decomposing its total effect on lung cancer into direct and in-

direct effects, mediated by TL. Next, we extended this analy-

sis to independent (r2< 0.20) variants that capture the lung

cancer association signal in 5p15.33 (details in Supplementary

File 3, available as Supplementary data at IJE online).

Our mediation approach is based on the counterfactual

framework44,45 and extends the sensitivity analysis using two

randomized–controlled trials proposed by Vanderweele, which

allows the mediator–outcome (h2) and exposure–mediator

(b1) relationships to be estimated in separate studies.46

Application of this approach in the present context assumes

that a valid estimate for the mediator–outcome relationship

can be obtained from independent MR or cohort studies.

Based on previously published formulae for mediation analy-

sis,44,45 the total effect (TE) of increasing the exposure from

reference level a* to level a on lung cancer (Y) conditional on

covariates c can be decomposed into natural direct effects

(NDE) and natural indirect effects (NIE):

ORTE
a;a�jc ¼

PðYa ¼ 1jcÞ=f1� PðYa ¼ 1jcÞg
PðYa� ¼ 1jcÞ=f1� PðYa� ¼ 1jcÞg

¼ ORNIE
a;a�jc �ORNDE

a;a�jc: (1)

Assuming a rare outcome and absence of exposure–

mediator interaction, mediated effects are given by:

ORNIE
a;a�jc � exp fh2 � b1ða� a�Þg; (2)

where h2 is log-OR per one-unit increment in TL and b1 is the

effect of the 5p15.33 instrument on TL. Based on Equation 1,

NDE can be obtained by subtracting the NIE from the TE:

logðORNDE
a;a�jcÞ � logðORTE

a;a�jcÞ � logðORNIE
a;a�jcÞ: (3)

In the presence of interaction between the exposure and

mediator, the NIE is given by:

ORNIE
a;a�jc � exp fðh2 � b1 þ h3 � b1aÞ � ða� a�Þg; (4)

where h2 now represents the main effect of the mediator,

TL, and h3 is the exposure–mediator interaction

parameter, with NDE having a more complicated form

given by Valeri and VanderWeele.45 Formulae for a dichot-

omized mediator are provided in Supplementary File 4,

available as Supplementary data at IJE online.

The b1 parameter for the 5p15.33 instrument is equiva-

lent to bTL estimated in the cancer-free subset of the

MSH-PMH and CGPS studies, adjusting for appropriate

covariates. For 5p15.33 cancer susceptibility variants, b1

estimates were selected from Bojesen et al.47—the largest

fine-mapping analysis of common 5p15.33 loci and TL

with 15 567 cancer-free controls. Per-allele associations

were reported as percent increase in TL and base-pair

change. ORTE for all variants was estimated in 23 lung

cancer OncoArray studies, and is equivalent to bY for the

5p15.33 instrument.

External estimates of the mediator–outcome relation-

ship (h2) were substituted into Equation (2) to avoid esti-

mating the effect of TL on lung cancer risk directly using

MSH-PMH case–control data, which are likely to be bi-

ased due to the post-diagnostic timing of TL measurement.

The effect of TL on lung cancer risk was obtained from

two studies: an MR analysis TL by Zhang et al.22 and a

meta-analysis of prospective studies by Zhu et al.11

(Supplementary Figure 2, available as Supplementary data

at IJE online).

Since interaction between the 5p15.33 instrument and

TL is plausible, we conducted sensitivity analyses under

different magnitudes of h3 (details in Supplementary File 4,

available as Supplementary data at IJE online). Confidence

intervals (CIs) for the NIE and NDE were approximated as

Bayesian credible intervals. Analyses were conducted using

R version 3.3.3.

Results

Characteristics of the combined Toronto and Copenhagen

dataset (n¼ 2051), used to develop the 5p15.33 instru-

ment, are summarized in Table 1. The cancer-free partici-

pants in the MSH-PMH and CGPS studies were of similar

mean age—61.0 and 61.30 years, respectively. Age was the

strongest predictor of TL (p¼ 2.6� 10–30), whereas sex,

smoking status and cigarette pack-years among smokers

were not associated with relative TL (Supplementary

Table 3, available as Supplementary data at IJE online).

Novel 5p15.33 instrument for TL

The 5p15.33 variants comprising this instrument were not

used in any previous MR studies of TL. After excluding 17

singletons and other SNPs that did not meet our criteria,

14 variants were included in the multi-allelic instrument

for 5p15.33 (Table 2; regional plot and linkage
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disequilibrium (LD) illustrated in Supplementary Figure 3,

available as Supplementary data at IJE online). Most var-

iants were located in non-coding intronic regions of several

genes, including SLC6A3, TERT, LPCAT1 and a long-non-

coding RNA (LINC01511) except for rs35033501, a synon-

ymous TERT variant. The resulting multi-allelic 5p15.33 IV

accounted for 1.49% of variation in the telomere Z-score in

all subjects (F¼ 35.83; bTL¼ 0.14, SE¼0.02) and 2.00% in

never smokers (F¼ 20.81), but was not predictive of smok-

ing status (p¼0.19) or cigarette pack-years among smokers

(p¼ 0.59) (Table 3). The 5p15.33 instrument was positively

associated with lung cancer (OR¼ 1.04, 95% CI: 1.01–

1.07) and lung adenocarcinoma (OR¼ 1.06, 95% CI: 1.03–

1.10), but not squamous lung carcinomas (OR¼ 1.03, 95%

CI: 0.98–1.07). An inverse association was observed for

HNC (OR¼ 0.95, 95% CI: 0.90–1.00) and oral cavity can-

cer (OR¼ 0.93, 95% CI: 0.87–0.98).

TL and cancer risk

Results of the MR analysis based on eight genetic instru-

ments are presented in Table 4 and Figure 2. The likelihood-

based model estimated a 41% increase in lung cancer risk

per kbp increase in TL (ORML¼ 1.41, 95% CI: 1.20–1.65).

Estimates of the causal OR for lung cancer remained consis-

tent across MR estimation methods. Genetic determinants

of TL were predominantly associated with adenocarcinoma

(ORML¼ 1.92, 95% CI: 1.51–2.45), and appeared unre-

lated to squamous carcinoma (ORML¼ 1.04, 95% CI:

0.83–1.29) and small cell carcinoma (ORML¼ 1.03, 95%

CI: 0.76–1.39).

The effect of long TL on lung cancer risk was larger in

magnitude among never smokers (ORML¼ 1.78, 95% CI:

1.22–2.61) compared with smokers (ORML¼ 1.36, 95%

CI: 1.14–1.63), although the former was attenuated in sensi-

tivity analyses (ORWME¼ 1.55, 95% CI: 0.98–2.46). Effects

on adenocarcinoma risk were also substantial in never

smokers (ORML¼2.68, 95% CI: 1.70–4.24). Genetic deter-

minants of long telomeres conferred a 68% increase in lung

cancer risk (ORML¼ 1.68, 95% CI: 1.07–2.62) in subjects

aged 50 years or younger. In contrast to lung cancer, genetic

predisposition for longer TL did not seem related to risk of

HNC overall (ORML¼ 0.90, 95% CI: 0.70–1.05), oral cav-

ity (ORML¼ 0.88, 95% CI: 0.65–1.19) and oropharynx

cancers (ORML¼ 0.83, 95% CI: 0.59–1.16).

Several additional sensitivity analyses were undertaken

to further interrogate the MR results. Since smoking is an

established risk factor for both HNC and lung cancer, MR

analyses were repeated with adjustment for cigarette pack-

years and smoking status. No appreciable changes were

observed in the causal effect estimates for lung cancer over-

all (ORML¼ 1.50, 95% CI: 1.27–1.78), lung adenocarci-

noma (ORML¼ 1.95, 95% CI: 1.53–2.49), HNC

(ORML¼0.91, 95% CI: 0.67–1.23), oral cavity

(ORML¼0.82, 95% CI: 0.57–1.18) or oropharynx cancers

(ORML¼0.86, 95% CI: 0.57–1.31).

The potential for directional pleiotropy was evaluated

by checking for asymmetry in the plots depicting ratio

Table 2. Genetic variants included in the novel 5p15.33 instrumental variable and their associations with the telomere length

Z-score in the combined dataset (n¼2051)

Variant Gene Alleles EAF Per-allele estimate P-value

Long TL Other ba,b (SE)

rs956942 LINC01511 A G 2.4�10–3 1.11 (0.29) 1.7�10–4

Chr5: 1383486 CLPTM1L-SLC6A3 A G 4.9�10–4 2.09 (0.65) 1.4�10–3

Chr5: 1404329 SLC6A3 T C 9.8�10–4 1.28 (0.46) 5.8�10–3

Chr5: 1501109 LPCAT1 A G 7.4�10–4 1.46 (0.53) 6.1�10–3

Chr5: 1297379 TERT A C/G 1.5�10–3 0.68 (0.27) 0.01

rs80022192 LINC01511 G A 4.9�10–4 1.60 (0.65) 0.01

rs35033501 TERT A G 0.03 0.22 (0.09) 0.01

rs28363089 SLC6A3 A G 0.03 0.23 (0.02) 0.01

Chr5: 1434327 SLC6A3 A T 0.99 0.89 (0.38) 0.02

Chr5: 1402812 SLC6A3 T C 4.9�10–4 1.49 (0.65) 0.02

rs79717857 CLPTM1L A C 0.02 0.21 (0.09) 0.02

rs35334674 TERT G A 0.97 0.19 (0.08) 0.02

rs7733853 LPCAT1 A G 0.24 0.08 (0.03) 0.02

rs72715516 SLC6A3 G A 0.96 0.21 (0.10) 0.04

EAF, effect allele frequency, where the effect allele is the long telomere allele; SE, standard error; LINC01511, long intergenic non-protein coding RNA 151;

CLPTM1L, cleft lip and palate associated transmembrane protein 1-like; SLC6A3, solute carrier family 6 member 3; LPCAT1, lysophosphatidylcholine acyltrans-

ferase 1; TERT, telomerase reverse transcriptase. aLinear regression models adjusted for age, sex, study and ethnicity principal components. bRegression coeffi-

cients are standardized and correspond to a 1 standard deviation (1 unit) change in the telomere length Z-score, approximately 1000 base pairs.
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Table 3. Per-allele associations for the 5p15.33 genetic instrument and relevant telomere and cancer endpoints

Outcome Sample size (cases, controls) ba/ORb (SE)/95% CI P-value F statistic R2 (%)

Telomere length 2051 0.14 (0.02) 2.6�10–9 35.83 1.49

Telomere length in never smokers 848 0.18 (0.04) 7.0�10–6 20.81 2.02

Smoking status (ever/never) 2051 –0.08 (0.06) 0.19 – –

Cigarette pack-years 1101 0.40 (0.73) 0.59 0.29 0.00

Lung cancer 16 396 13 013 1.04 1.01, 1.07 4.89�10–3 – –

Adenocarcinoma 5690 13 013 1.06 1.03, 1.10 1.4�10–3 – –

Squamous cell carcinoma 4045 13 013 1.03 0.98, 1.07 0.23 – –

Head and neck cancer 4415 5013 0.95 0.90, 1.00 0.04 – –

Oral cavity 2284 5013 0.93 0.87, 0.98 0.01 – –

Oropharynx 1849 5013 0.96 0.90, 1.03 0.26 – –

Never smokers

Lung cancer 1619 3923 1.06 0.99, 1.14 0.08 – –

Adenocarcinoma 836 3923 1.12 1.02, 1.22 0.02 – –

Head and neck cancer 773 1827 0.85 0.77, 0.95 3.8�10–3 – –

Alcohol non-drinkers

Head and neck cancer 614 795 0.86 0.74, 0.99 0.04 – –

R2, coefficient of determination estimating the proportion of the variance in the telomere length Z-score that is explained by the 5p15.33 genetic instrument;

SE, standard error; TL, telomere length. aLinear regression models were adjusted for age, sex, study and top five ethnicity principal components; bLogistic regres-

sion models were adjusted for age, sex, study and top 10 ethnicity principal components.

Table 4. Mendelian Randomization estimates of the causal odds ratios for lung and head and neck cancers per 1000 base-pair in-

crease in telomere length

Outcome Cases Controls Estimation method

Maximum likelihood Inverse-variance weighted Weighted median estimator

ORa 95% CI P-value ORa 95% CI P-value ORa 95% CI P-value

Lung cancer 16 396 13 013 1.41 1.20, 1.65 2.0�10–5 1.39 1.21, 1.60 3.7�10–6 1.37 1.12, 1.67 2.0�10–3

Adenocarcinoma 5690 13 013 1.92 1.51, 2.45 1.3�10–7 1.83 1.51, 2.22 5.5�10–10 1.63 1.23, 2.16 6.5�10–4

Squamous 4045 13 013 1.04 0.83, 1.29 0.74 1.04 0.83, 1.29 0.74 1.09 0.82, 1.46 0.57

Small cell 1846 13 013 1.03 0.76, 1.39 0.86 1.03 0.76, 1.38 0.86 0.96 0.66, 1.38 0.82

Head and neck cancer 4415 5013 0.90 0.70, 1.15 0.39 0.90 0.70, 1.15 0.41 0.71 0.51, 0.98 0.04

Oral cavity 2284 5013 0.88 0.65, 1.19 0.40 0.88 0.65, 1.19 0.40 0.67 0.44, 1.03 0.07

Oropharynx 1849 5013 0.83 0.59, 1.16 0.28 0.83 0.60, 1.16 0.28 0.72 0.46, 1.12 0.14

Ever smokers

Lung cancer 14 498 8815 1.36 1.14, 1.63 5.3�10–4 1.36 1.15, 1.60 2.6�10–4 1.31 1.05, 1.63 0.02

Adenocarcinoma 4754 8815 1.72 1.33, 2.24 4.2�10–5 1.66 1.33, 2.07 5.2�10–6 1.71 1.26, 2.32 6.1�10–4

Squamous 3835 8815 1.06 0.84, 1.35 0.60 1.06 0.84, 1.35 0.61 1.08 0.80, 1.47 0.63

Head and neck 3108 2865 1.12 0.79, 1.58 0.54 1.11 0.79, 1.56 0.54 0.91 0.60, 1.39 0.69

Never smokers

Lung cancer 1619 3923 1.78 1.22, 2.61 3.1�10–3 1.76 1.23, 2.52 2.0�10–3 1.55 0.98, 2.46 0.06

Adenocarcinoma 836 3923 2.68 1.70, 4.24 2.4�10–5 2.68 1.70, 4.24 2.4�10–5 2.24 1.18, 4.27 0.01

Squamous 149 3923 0.72 0.26, 1.97 0.52 0.72 0.26, 1.95 0.51 0.80 0.22, 2.90 0.75

Head and neck 773 1827 0.72 0.42, 1.22 0.22 0.72 0.42, 1.22 0.22 0.71 0.32, 1.55 0.39

Early-onset (�50 years)

Lung cancer 1868 1557 1.68 1.07, 2.62 0.02 1.67 1.08, 2.59 0.02 1.76 0.98, 3.22 0.06

Alcohol non-drinkers

Head and neck 614 795 0.76 0.37, 1.56 0.45 0.76 0.37, 1.57 0.46 0.45 0.17, 1.16 0.10

CI, confidence intervals; OR, odds ratio. aRegression models for each genetic instrument were adjusted for age, sex, study and the top 10 ethnicity principal

components.
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estimates for each instrument, bY/bTL, plotted against in-

strument strength, bTL/SE(bY) (Supplementary Figure 4,

available as Supplementary data at IJE online). These

results were not suggestive of pleiotropy and none of the

genetic instruments was associated with cigarette smoking

status or pack-years (Supplementary Table 4, available as

Supplementary data at IJE online). Lastly, selected causal

effects were re-estimated using the weighted mode-based

estimator (MBE), which is robust to horizontal pleiotropy

when the largest number of similar causal effect estimates

are based on valid instruments, even if the majority of

instruments are invalid.48 Estimates for lung cancer overall

(ORMBE¼ 1.34, 95% CI: 1.08–1.66), lung adenocarci-

noma (ORMBE¼ 1.55, 95% CI: 1.14–2.12) and adenocar-

cinoma in never smokers (ORMBE¼ 2.04, 95% CI: 1.04–

4.04) were consistent with the primary results in Table 4.

Mediation analysis of the 5p15.33 instrument

We conducted mediation analyses to quantify direct

(ORNDE) and indirect effects (ORNIE) of the 5p15.33 in-

strument on lung cancer. The ORNIE we report is the pro-

portional change in the odds of lung cancer for a change in

TL that occurs when the 5p15.33 allele score increases by

Figure 2. Scatter plots showing the association estimates for telomere length (bTL) and cancer risk (bY) for each instrumental variable (IV), overlaid on

the causal log odds ratio for the effect of increasing telomere length on cancer risk (solid red line) and corresponding 95% confidence intervals (dotted

red lines), estimated using the likelihood-based method.
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one from the reference level, corresponding to the mean of

the allele score distribution. The estimate of the TL effect on

lung cancer (h2) was selected from the strict model reported

by Zhang et al.22 (OR per kbp increase: 1.37, 95% CI:

1.12–1.68), which excluded rs2736100 (TERT). ORTE for

the 5p15.33 IV was re-estimated after removing overlapping

subjects (n¼ 3498) between the OncoArray and Zhang

et al.22 Assuming no interaction between the 5p15.33 IV

and TL, the lung cancer effect appeared to be almost en-

tirely mediated by TL (ORNIE¼ 1.05, 95% CI: 1.01–1.08),

whereas the direct effects of the 5p15.33 IV appeared null

(ORNDE¼ 1.00, 95% CI: 0.95–1.04) (Figure 3;

Supplementary Table 5, available as Supplementary data at

IJE online). For lung adenocarcinoma, the 5p15.33 effects

mediated by TL were larger in magnitude (ORNIE¼ 1.11,

95% CI: 1.05–1.18) than direct effects, which were close to

unity (ORNDE¼ 0.97, 95% CI: 0.90–1.03).

Interaction sensitivity analyses for the NIE and NDE

were carried out across three levels of h3: 0.10, 0.20 and

0.30. As the magnitude of the interaction parameter in-

creased, so did the NIE, whereas TL-independent effects

were not observed (Figure 3). Indirect effects on lung can-

cer risk mediated by TL ranged from ORNIE¼ 1.06 (95%

CI: 1.03–1.10) for h3¼ 0.10, to ORNIE¼ 1.09 (95% CI:

1.05–1.15) for h3¼ 0.30. For adenocarcinoma, increasing

the magnitude of interaction between the 5p15.33 IV and

TL was also associated with increasing NIE and diminish-

ing direct effects.

The prospective meta-analysis estimate of h2 from Zhu

et al.11 reported an OR of 1.28 (95% CI: 1.09–1.50) for

lung cancer comparing long vs short TL. Based on this

binary mediator, the NIE mediated by TL was attenuated,

but remained statistically significant (ORNIE¼ 1.01, 95%

CI: 1.00–1.03). A positive direct effect on lung cancer risk

was also observed (ORNDE¼ 1.03, 95% CI: 1.00–1.06).

Assuming interaction between the 5p15.33 instrument and

TL, the mediated effects ranged from ORNIE¼ 1.02 (95%

CI: 1.01–1.03) when h3¼ 0.10, to ORNIE¼ 1.03 (95% CI:

1.01–1.05) when h3¼ 0.30, whereas the direct effects de-

creased (Figure 3; Supplementary Table 5, available as

Supplementary data at IJE online).

Mediation analysis of 5p15.33 lung cancer

susceptibility loci

Five common (MAF>0.05), independent (r2< 0.20) var-

iants were selected to represent the lung cancer susceptibil-

ity signal in 5p15.33 (details in Supplementary File 3,

available as Supplementary data at IJE online): rs7705526

(PAdeno¼ 4.6� 10–13; PLung¼ 8.0� 10–7), rs2736108

(PAdeno¼ 1.7� 10–12; PLung¼ 1.8� 10–11), rs421629

(PAdeno¼ 6.2� 10–9; PLung¼1.2� 10–16), rs13167280

(PAdeno¼ 1.4� 10–8; PLung¼ 1.1� 10–6) and rs56345976

(PAdeno¼ 2.2� 10–7; PLung¼ 3.6� 10–9). These variants

have been associated with lung cancer and lung adenocar-

cinoma in previous studies,37,49–51 and are representative

of the genetic susceptibility architecture in this region.

Estimates of b1 were obtained from Bojesen et al.47

and three TERT lung cancer risk variants were signifi-

cantly associated with TL: rs7705526 (PTL¼ 2.3� 10–14),

rs2736108 (PTL¼ 5.8� 10–7) and rs13167280 (PTL¼
1.2� 10–5). Estimates of h2 were selected from the MR

Figure 3. Odds ratio (OR) plot summarizing the direct effects (triangle, dotted line) and indirect effects (circle, solid line) of the 5p15.33 genetic instru-

ment on lung cancer risk. Estimates of the direct and indirect effects are presented across different levels of interaction and for different versions of

the mediator (dichotomous and continuous), indicated by different colours.
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analysis22 and ORTE were re-estimated for each variant af-

ter removing the overlapping subjects. For all variants, the

TL-increasing allele was positively associated with cancer

risk, and both direct and indirect TL-mediated effects

were significant (Supplementary Table 6, available as

Supplementary data at IJE online).

For lung cancer, the proportion mediated (PM) by TL was

the largest for rs13167280 (ORNIE¼ 1.05, 95% CI: 1.03–

1.07; PM¼ 40.5%), followed by rs7705526 (ORNIE¼ 1.03,

95% CI: 1.01–1.05; PM¼28.7%) and rs2736108

(ORNIE¼1.02, 95% CI: 1.01–1.03; PM¼ 13.7%). The mag-

nitude and proportion of the SNP effects that were mediated

by TL were larger for adenocarcinoma compared with lung

cancer overall: rs7705526 (ORNIE¼1.07, 95% CI: 1.04–

1.10; PM¼ 36.5%), rs13167280 (ORNIE¼1.05, 95% CI:

1.03–1.07; PM¼ 24.8%) and rs2736108 (ORNIE¼ 1.04,

95% CI: 1.03–1.06; PM¼ 22.9%).

Discussion

We observed an association between genetic determinants

of long telomeres and increased risk of lung cancer, but not

HNC. Our findings lend support to a causal relationship

between longer leukocyte TL and increased risk of lung ad-

enocarcinoma, but not squamous or small cell carcinoma.

The magnitude of the increased risk was larger in never

smokers and participants aged 50 or younger, consistently

with a stronger influence of genetic susceptibility in indi-

viduals with a lower burden of modifiable risk factors.52

Although histology and smoking status are closely linked,

our results suggest that the associations were histology-

specific for adenocarcinoma.53,54 Lastly, our mediation

analysis demonstrated that mechanisms resulting in long

telomeres mediate a proportion of the increase in lung can-

cer and lung adenocarcinoma risk conferred by 5p15.33

loci, and that the proportion of genetic susceptibility at-

tributed to telomere maintenance differs between distinct

5p15.33 susceptibility loci.

Other analyses using multi-SNP telomere scores have

also observed excess risks of lung cancer22–24 and lung ade-

nocarcinoma,22,24 but did not observe an effect of TL on

oral cancer risk.23,24 Opposite directions of effect for the

5p15.33 instrument on lung and HNC are consistent with

earlier reports of opposing allelic effects for 5p15.33 SNPs

on lung and oral cancer, respectively.35,55 Leukocyte

TL and functional TERT variants were previously reported

to be unrelated to squamous HNC risk,56 although one

study linked short TL to increased HNC risk based

on rs2736100, which may be an invalid instrument.22,57

With the exception of the 5p15.33 IV, the instruments

used in this study overlap with those used in other MR

analyses of TL.22–24

Our findings lend support to the hypothesis that a

greater number of telomere-increasing alleles increase lung

cancer susceptibility. Although the precise molecular

mechanisms remain to be elucidated, telomere mainte-

nance may promote carcinogenesis by enabling prolonged

cell survival and accumulation of mutations. This is sup-

ported by the hallmark observation that telomerase is over-

expressed in 85–90% of adult tumours,8,58 as well as

recent data showing that long telomeres increase chromo-

somal instability59 and promote immortalization of cancer

cells.60 Excessively long telomeres may also be more fragile

and dysfunctional, which is supported by the observation

that TERT not only replenishes telomeres, but also regu-

lates a trimming process to maintain TL homeostasis.61–63

Differences in the effect of TL persisted after stratifying

by smoking status, suggesting that underlying mechanisms

differ across tissues and histological types. Longer TL does

not appear to increase risk of small cell lung cancer or

squamous lung carcinoma, the histology that also com-

prises 90% of HNC tumours, and for which the causal ef-

fect of tobacco smoking is the strongest.64 Since our

genetic instruments are unrelated to smoking, confounding

is unlikely to account for these differences. It is plausible

that genetic predisposition for telomere maintenance offers

some protection against genomic instability due to oxida-

tive stress, declining regenerative capacity and immune

function.7,65,66 Although human papillomavirus (HPV), a

known cause of oropharynx cancer,67 has been reported to

correlate with TL,31 the similarity of associations observed

for oropharynx and oral cancers, only 2% of which are at-

tributed to HPV,68 suggests that HPV infection is unlikely

to modify the influence of TL.

This analysis has several important strengths. Genetic

instruments are unaffected by reverse causality and are

more likely to reflect causality due to the independence of

genotypes from confounding factors. In addition to the

large sample size, our analysis leveraged rich genetic data

in 5p15.33, including rare sequence variations, to develop

a robust, novel instrument. Furthermore, the use of multi-

ple genetic instruments from essential genes for telomere

maintenance mitigates the possibility for weak instruments

bias and genetic confounding due to pleiotropy. The asso-

ciation between genetic predisposition to long TL and in-

creased lung cancer risk persisted in analyses using the

weighted median and MBEs, which further supports the

causal interpretation of these results.

Our mediation analysis offers insight not only by vali-

dating the new 5p15.33 instrument, by demonstrating an

absence of direct effects, but also by formally quantifying

the contribution of telomere-related mechanisms to the

observed association between the established lung and ade-

nocarcinoma susceptibility loci and lung cancer risk in this
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region. Although we confirmed that TL is an important

molecular mechanism underlying the associations observed

for 5p15.33 lung cancer risk loci, our results also indicated

that only a fraction of these genetic effects operate through

telomere maintenance. For instance, only 3–8% of the to-

tal effect of rs421629 (CLPTM1L) was mediated TL, and

approximately half of the association between the TERT

loci and lung cancer risk can be attributed to telomere

mechanisms.

These findings are consistent with our knowledge that

5p15.33 is a complex susceptibility locus for multiple can-

cers33,55,69 and GWAS peaks in this region also encompass

non-cancer traits, such as red blood cell counts, prostate-

specific antigen levels and lung diseases.69–72 In addition,

non-canonical functions of TERT, related to proliferation

and differentiation via regulation of Wnt/b-catenin and

Myc signalling, have been proposed.73 Therefore, although

telomere maintenance is clearly an important 5p15.33

mechanism, cancer susceptibility loci in this region likely

invoke additional pathways.

Several limitations of this work should be acknowl-

edged. The time lag between genotype assignment at con-

ception and the assessment of genetic effects on TL and

cancer risk, as well as the time-varying nature of TL, pose

challenges for interpreting MR estimates of the causal ef-

fect.74 However, whereas genetic instruments do not reca-

pitulate all aspects of telomere function and dynamics,

they can still provide a valid test of the causal hypothesis

that inherited predisposition to telomere maintenance

increases lung cancer susceptibility.75 Second, genetic

instruments for leukocyte TL may not be accurate proxies

for TL in target tissues, which would reduce the power of

our genetic instruments. However, the validity of instru-

ments based on leukocyte TL is supported by correlation

between TL in leukocytes and other tissues, including lung,

and comparable rates of telomere shortening across so-

matic tissues.76–78 Third, our MR analysis may be affected

by winner’s curse, with the magnitude and strength of as-

sociation with TL observed in the discovery dataset likely

to be exaggerated, particularly the 5p15.33 instrument.

However, since the instrument discovery and MR analysis

populations are independent, any potential bias in the

causal parameter due to winner’s curse or limited instru-

ment strength will be towards the null.79 A related concern

involves our ability to detect subtle effects of TL on cancer

risk due to the modest proportion of variation in TL

explained by our genetic instruments (approximately 5%),

which is comparable to most genetic instruments for com-

plex phenotypes.80–82 Based on our power calculations,

this analysis was adequately powered (>80%) to detect

effects with OR of 1.5 and above for all lung and HNC his-

tological subtypes and smoking-stratified analyses.

Lastly, the validity of our mediation analysis depends in

part on the validity of the published estimates of the medi-

ator–outcome relationship. MR-based estimates of the me-

diator–outcome relationship are likely to satisfy the

assumption of no unmeasured confounding, but must as-

sume that all instruments used in Zhang et al.22 were valid.

Whereas observational studies are more susceptible to con-

founding and bias due measurement error in the molecular

mediator,83 a synthesis of prospective studies provides

complementary evidence that does not depend on MR

assumptions, and is less vulnerable to reverse causation

than case–control designs.

In summary, we demonstrated that genetic determi-

nants of long telomeres are associated with an increased

risk of lung cancer, particularly adenocarcinoma. The

associations observed for HNC were less consistent with a

causal relationship, although we cannot preclude the possi-

bility of very subtle telomere effects (OR< 1.5). Using me-

diation analysis that incorporates independent published

data, we validated the novel 5p15.33 instrument and quan-

tified the proportion of the lung cancer association signal

in 5p15.33 that is mediated by TL. Whereas this work pro-

vides insight into the role of TL in cancer aetiology, further

research is needed to identify appropriate ways of utilizing

this complex biomarker in the context of disease preven-

tion or clinical intervention.
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Supplementary data are available at IJE online.
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