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Multi-omic analysis in transgenic mice implicates
omega-6/omega-3 fatty acid imbalance as a risk
factor for chronic disease
Kanakaraju Kaliannan1, Xiang-Yong Li1, Bin Wang1, Qian Pan1, Chih-Yu Chen1, Lei Hao1, Shanfu Xie1 &

Jing X. Kang1

An unbalanced increase in dietary omega-6 (n-6) polyunsaturated fatty acids (PUFA) and

decrease in omega-3 (n-3) PUFA in the Western diet coincides with the global rise in chronic

diseases. Whether n-6 and n-3 PUFA oppositely contribute to the development of chronic

disease remains controversial. By using transgenic mice capable of synthesizing PUFA to

eliminate confounding factors of diet, we show here that alteration of the tissue n-6/n-3

PUFA ratio leads to correlated changes in the gut microbiome and fecal and serum meta-

bolites. Transgenic mice able to overproduce n-6 PUFA and achieve a high tissue n-6/n-3

PUFA ratio exhibit an increased risk for metabolic diseases and cancer, whereas mice able to

convert n-6 to n-3 PUFA, and that have a lower n-6/n-3 ratio, show healthy phenotypes. Our

study demonstrates that n-6 PUFA may be harmful in excess and suggests the importance of

a low tissue n-6/n-3 ratio in reducing the risk for chronic diseases.
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Chronic illnesses, including obesity, type 2 diabetes, cardi-
ovascular disease, cancer, and Alzheimer’s disease, are
rising exponentially in the modern world1. These diseases

are multi-factorial in nature, but their prevalence coincides with
the unbalanced increase in dietary omega-6 (n-6) polyunsaturated
fatty acids (PUFA) and decrease in omega-3 (n-3) PUFA in
today’s diets, suggesting that there may be differential effects of n-
6 and n-3 PUFA on the development of chronic disease2,3. Recent
research has focused mainly on overall PUFA levels or on the level
of n-3 PUFA alone, ignoring the important interplay between n-6
and n-3 PUFA levels4,5. It is challenging to clarify the differential
effects of n-6 and n-3 PUFA or varying n-6/n-3 PUFA ratios due
to the confounding factors of diet6,7. As a result, studies on PUFA
show inconsistent results about the role of PUFA in health and
disease8,9. Therefore, it is critical to establish a model that allows
us to accurately study the importance of the n-6/n-3 ratio and the
potential dangers of excess n-6 PUFA6,10,11.

Chronic low-grade inflammation, often caused by metabolic
endotoxemia, is considered to be a critical contributor to the
development of many modern chronic diseases12–16. Metabolic
endotoxemia can often result from gut microbiota dysbiosis and
intestinal barrier dysfunction16. Previous work has shown that
diet is an important modulating factor for both metabolic
endotoxemia and chronic low-grade inflammation16. Thus,
identifying dietary components that can optimize the gut
microbiome is important for research into chronic disease pre-
vention and treatment.

The transgenic FAT-1 mouse model was previously developed
in our lab to understand the importance of the PUFA ratio in
health and disease6,10. This mouse model contains the FAT-1
gene from Caenorhabditis elegans, encoding an enzyme that can
endogenously convert n-6 to n-3 PUFA10. This conversion
enables FAT-1 mice to markedly increase their tissue levels of n-3
PUFA and decrease the levels of n-6 PUFA correspondently,
resulting in a significant reduction of tissue ratio of n-6/n-3
PUFA, close to 1:1, with no need for additional supplementation
of PUFA in the diet. This unique feature allows for studies to be
performed without the confounding factors of diet6,17, and these
mice have been widely used over the last decade to study the
beneficial effects of increased tissue levels of n-3 PUFA and
balanced (reduced or low) tissue ratio of n-6/n-3 PUFA (i.e.
changing a ratio from a high to a relatively lower one) on various
diseases18–24. Recently, we have also developed another mouse
model (FAT-2) to evaluate the effects of increased tissue levels of
n-6 PUFA and a high tissue ratio of n-6/n-3 PUFA on the
development of chronic diseases11. FAT-2 mice were engineered
to expresses the FAT-2 gene from C. elegans and are capable of
converting monounsaturated fatty acids (MUFA) into n-6
PUFA11. Therefore, FAT-2 mice have increased tissue levels of
n-6 PUFA and a high tissue ratio of n-6/n-3 PUFA11. With the
availability of FAT-1 and FAT-2 mice and crossbreeding, we were
able to create a compound transgenic mouse model, namely the
FAT-1+2 mouse, carrying both FAT-1 and FAT-2 genes that can
endogenously synthesize both n-6 and n-3 PUFA11. Therefore,
FAT-1+2 mice exhibit high tissue levels of both omega-6 and
omega-3 fatty acids, with a balanced ratio of close to 1:1. Con-
sequently, we have four genotypes of mice for use: wild type
(incapable of producing essential fatty acids), FAT-1 (producing
n-3 fatty acids), FAT-2 (producing only n-6 fatty acids), and
FAT-1+2 (producing both n-6 and n-3 fatty acids)11. These mice
exhibit four distinct PUFA phenotypes varying in the quantity of
PUFA and n-6/n-3 ratio, even though they are all fed an identical
diet with no need for dietary supplementation with correspond-
ing PUFA11. Thus, use of these transgenic mice allows us to
evaluate the authentic effects of different quantities and ratios of
PUFA without the confounding factors of diet6,11.

In the present study, we used these unique transgenic mouse
models in combination with multi-omics technologies to deter-
mine the impact of varying amounts of omega-6 and omega-3
PUFA and their ratio on metabolic conditions and chronic dis-
ease development. We found that mice with varying n-6/n-3
PUFA ratios resulted in distinct gut microbiota, fecal and serum
metabolites, and susceptibilities to cancer and certain metabolic
disorders. FAT-2 transgenic mice with elevated n-6 PUFA levels
and the highest n-6/n-3 PUFA ratios showed the most unfavor-
able metabolic conditions and the highest rate of liver cancer.
These adverse health outcomes were largely prevented in FAT-1
and FAT-1+2 mice, which can convert n-6 PUFA to n-3 PUFA
and have a balanced n-6/n-3 PUFA ratio. Our multi-omics study
of host–microbiome interactions therefore uncovers differential
health impacts of n-6 PUFA and n-3 PUFA and suggests an
important role for a low tissue n-6/n-3 PUFA ratio in reducing
the risk of chronic diseases.

Results
n-6/n-3 ratio influences the development of chronic disease.
The PUFA phenotypes of the four groups of mice used in this
study (wild type, FAT-2, FAT-1, and FAT-1+2 mice) have been
reported previously11. The tissue n-6 and n-3 PUFA content in
these mice was further validated and shown in Supplementary
Fig. 1. Although the levels of total PUFA in the tissues are the
same between wild type and FAT-1 and between FAT-2 and
FAT-1+2, the n-6/n-3 PUFA ratio is higher in the wild type and
FAT-2 groups compared to FAT-1 and FAT-1+2 groups,
respectively (Supplementary Fig. 1d, e, l). Specifically, the FAT-2
mice had the highest tissue n-6/n-3 PUFA ratio (Supplementary
Fig. 1d, p), followed by the wild type mice, with the FAT-1 and
FAT-1+2 mice having the lowest and most balanced n-6/n-3
PUFA ratios (Supplementary Fig. 1d, p). The FAT-1 and FAT-1
+2 groups had a similar n-6/n-3 PUFA ratio, while the FAT-1+2
group had a higher quantity of PUFA compared to the FAT-1
group (Supplementary Fig. 1d, e, l).

We examined whether the four genotypes differed in the
development of metabolic disorders, including metabolic endo-
toxemia, systemic inflammation, obesity, fatty liver, glucose
intolerance, and cancer. The body weight of adult mice at the
age of 8 months differed between the genotypes, with the highest
body weights for the FAT-2 group and the lowest body weights
for the FAT-1 and FAT-1+2 groups (Fig. 1a), while the food
intake was not different between the groups (Supplementary
Fig. 2a). Usually, the difference in fat mass observed during the
young age would diminish when they become older. We thus
followed up the phenotype of these mice for a prolonged Western
diet exposure. Even after 16 months, the FAT-2 group maintained
the highest body weight and the FAT-1+2 maintained the lowest
body weight (Supplementary Fig. 2b). Increased body weight was
correlated with increases in body fat mass, especially abdominal
fat (Fig. 1b, c) in the 16-month-old mice. To assess the cause of
this persisting body weight difference between groups, especially
between FAT-2 and FAT-1+2, we investigated energy metabo-
lism at the age of 16 months. As shown in Supplementary Fig. 2,
FAT-2 mice spent less energy than FAT-1+2 and FAT-1 mice in
the dark and light phases (Supplementary Fig. 2d, e), together
with lower CO2 production (Supplementary Fig. 2f, g) and O2

consumption (Supplementary Fig. 2h, i). The respiratory
exchange ratio (RER) was unaltered (Supplementary Fig. 2j, k).
Moreover, it is notable that this difference in the energy
expenditure was not due to a difference in physical activity
(Supplementary Fig. 2l, m). Furthermore, morphological analyses
of the adipose tissue showed that the size of adipocytes was much
larger in white adipose tissue from the FAT-2 and wild type
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groups (Fig. 1d), and whitening of brown fat (an increase in large
adipocytes) was observed in the brown adipose tissue of the FAT-
2 and wild type mice, compared to the FAT-1 and FAT-1+2
groups (Fig. 1e). Likewise, glucose tolerance testing showed that
FAT-1 and FAT-1+2 mice exhibited better glucose tolerance than
the wild type and FAT-2 mice (Fig. 1f, Supplementary Fig. 3a).
Oil red O staining revealed striking differences in lipid

accumulation among the four groups; specifically, the FAT-2
mice exhibited more lipid accumulation (5+ grade based on the
number and size of stained fat droplets) and fatty liver
development compared to their wild-type littermates (3+ grade),
while lipid accumulation was markedly reduced in the FAT-1 and
FAT-1+2 mice (1+ grade) (Fig. 1g). Furthermore, estimation of
hepatic fibrosis showed a dramatically higher collagen deposition
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(cirrhosis) in the FAT-2 liver specimens compared to the FAT-1
and FAT-1+2 groups (Fig. 1h). Strikingly, when the animals were
sacrificed at the age of 16 months, we discovered that most of the
FAT-2 mice (86%) had developed liver tumors (nodules and
irregularities), while only very few mice from each of the other
groups had liver tumors (Fig. 1i, j). Collectively, these findings
indicate an increased risk for metabolic disorders and cancer in
the groups with a high n-6/n-3 PUFA ratio, especially the FAT-2
mice that have the highest tissue level of n-6 PUFA, compared to
the FAT-1 and FAT-1+2 groups with a balanced (lower) n-6/n-3
PUFA ratio.

Chronic low-grade inflammation is an underlying factor of
many chronic diseases and closely associated with gut dysbiosis
and metabolic endotoxemia16. We found that markers of
metabolic endotoxemia (serum LPS, LBP, and sCD14, and
intestinal permeability) (Fig. 1k–n) and chronic low-grade
inflammation (TNF-a, IL-6, IL-1b, and MCP-1) (Fig. 1o–r) were
increased in the FAT-2 mice compared to the wild-type mice,
while these markers were reduced in the FAT-1 and FAT-1+2
mice. Furthermore, immunohistological staining showed that the
expression of Toll-like receptor-4 (TLR4), a key regulator of the
inflammatory pathway, was upregulated in the ileum, liver, and
epididymal adipose tissue of the FAT-2 mice (Supplementary
Fig. 3b–d), while expression of ZO-1, a tight junction protein, was
downregulated in ileal tissue of the FAT-2 mice, compared to the
other groups (Supplementary Fig. 3e), consistent with the
increased metabolic endotoxemia and inflammation observed in
the FAT-2 mice.

n-6/n-3 PUFA ratio alters the composition of gut microbiota.
To examine the relationship between these divergent tissue fatty
acid profiles and the microbial communities hosted by mice of
differing genotypes, we performed high-throughput metagenomic
sequencing and metabolomics of fecal samples. With principal
coordinate analysis (Fig. 2a, Supplementary Fig. 4a) and hier-
archical clustering (Supplementary Fig. 4b) methods, we dis-
covered a distinct clustering of global microbiota composition
among wild type, FAT-2, FAT-1, and FAT-1+2 genotypes, with
the FAT-1 and FAT-1+2 genotypes forming a single cluster at
one end, the wild-type cluster in the middle, and the FAT-2
cluster on the opposite end of the primary ordination axis
(PERMANOVA results showed differences between groups
except between FAT-1 and FAT-1+2 groups). The distribution of
operational taxonomic units (OTUs) of seven bacterial groups
with the largest magnitudes also showed distinct separation
between wild type, FAT-2, and FAT-1 plus FAT-1+2 groups
(Fig. 2b). Notably, OTUs belonging to the Enterobacteriacea and

Verromicrobiaceae families were most abundant in FAT-2 mice,
followed by wild-type mice, while OTUs from the Bifidobacter-
iacea, Desulfovibrionaceae, and Bacteroidaceae families were
enriched in FAT-1 and FAT-1+2 mice. Furthermore, hierarchical
clustering based on the relative abundance of representative
OTUs (P < 0.05) separated the mice as well as the bacterial groups
into two primary clusters (Fig. 2c), with wild type and FAT-2
samples forming two distinct clusters in one clade and FAT-1 and
FAT-1+2 samples combined in another clade. Biomarker analysis
showed that Proteobacteria were increased in FAT-2 mice com-
pared to the wild-type group, Firmicutes and Bacteroidetes were
more abundant in FAT-1 mice, and Deltaproteobacteria and
Actinobacteria were enriched in FAT-1+2 mice (Fig. 2d, Sup-
plementary Fig. 4c). Furthermore, comparisons at the phylum
level showed that FAT-2 mice had the highest abundance of
Proteobacteria and the lowest abundance of Bacteroidetes, com-
pared with the other genotypes (Fig. 2e). Both FAT-2 and wild
type had lower abundances of Actinobacteria than FAT-1 and
FAT-1+2 (Fig. 2e). Notably, we found that there was a striking
difference in the Enterobacteriacea and Bifidobacteriacea between
wild type and FAT-2 mice versus FAT-1 and FAT-1+2 mice
(Fig. 2f, g). Relative quantification of bacterial groups by quan-
titative PCR (qPCR) was in accordance with these findings
(Supplementary Fig. 4d, e). There were no differences between
groups in the α-diversity measures (Supplementary Fig. 4f–j).
Together, these results indicate that the n-6/n-3 PUFA ratio can
affect gut microbiota composition. In particular, FAT-2 mice with
an increased n-6/n-3 ratio exhibit greater abundance of Enter-
obacteriacea and depleted Bifidobacteriacea; in contrast, FAT-1
and FAT-1+2 mice with a balanced (lower) n-6/n-3 ratio exhibit
enriched Bifidobacteriacea and reduced Enterobacteriacea. These
findings support the notion that n-6 and n-3 PUFA have
opposing effects on the gut microbiota.

Furthermore, similar to the patterns shown above in gut
microbial profiles, the abundance of genes involved in functional
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways
were distinctly clustered by genotype (PERMANOVA results
showed differences between groups except between FAT-1 and
FAT-1+2 groups) (Fig. 2h). Next, from the list of differentially
expressed KEGG pathways (false discovery rate (FDR)-corrected
P < 0.05) represented by the inferred genomic content, we
selected those associated with metabolic syndrome (MS),
inflammation, bacterial translocation, non-alcoholic fatty liver
disease (NAFLD), and cancer (Supplementary Table 1) and then
analyzed the abundance of these pathways among the different
mouse genotypes. We found that these KEGG pathways were
upregulated in the FAT-2 mice compared to wild type mice, and

Fig. 1 Tissue omega-6/omega-3 PUFA ratio influences the development of metabolic disorders and cancer. Wild type (WT) and FAT-2, FAT-1, and FAT-1
+2 transgenic mice fed an identical Western diet for 16 months were subjected to several types of analyses at different time points. a Body weight at the
age of 8 months. b Visceral white adipose tissue weight (g) after sacrificing the mice. c Nuclear magnetic resonance technique-based body composition
analysis at the age of 16 months. Histopathological analysis (hematoxylin & eosin staining) of subcutaneous white adipose tissue (d) and inter-scapular
brown adipose tissue (e) after sacrificing the mice. f Oral glucose tolerance test results obtained at the age of 8 months. g Fatty liver analysis performed on
Oil Red O-stained liver specimens after sacrificing the mice. h Masson’s trichrome staining (red, keratin and muscle fibers; blue, collagen; light red or pink,
cytoplasm and dark brown to black, cell nuclei) performed on liver specimens to estimate the extent of fibrosis. i Anatomical shape and gross appearance
of the livers with tumors from the FAT-2 mice. j Differences in the incidence rate of liver cancer between wild type, FAT-2, FAT-1, and FAT-1+2 mice.
Markers of metabolic endotoxemia [lipopolysaccharides (LPS) (k), LPS-binding protein (LBP) (l), soluble CD14 (m) and intestinal permeability (serum
levels of FITC-dextran macromolecules) (n)] and chronic low-grade inflammation [tumor necrosis factor-α (TNF-α) (o), interleukin-6 (IL-6) (p), IL-1β (q),
and monocyte chemoattractant protein 1 (MCP-1) (r)] measured at the age of 12 months. For c, n= 6 per group. For f, k–n and p–r, wild type (n= 7), FAT-
2, FAT-1, and FAT-1+2 (n= 8 per group). For o, wild type (n= 7), FAT-2 and FAT-1 (n= 8 per group), FAT-1+2 (n= 7 per group). For others, wild type
(n= 9), FAT-2, FAT-1 and FAT-1+2 (n= 10 per group). Data shown as mean ± standard error of mean. Data with different superscript letters are
significantly different (P < 0.05) according to ordinary one-way (a–c, k–m, o–r) or repeated measures two-way ANOVA (f) or Kruskal–Wallis test (n)
followed by Tukey’s or Dunn’s multiple comparisons test. *FAT-2 vs. FAT-1 and FAT-2 vs. FAT-1+2; &wild type vs. FAT-2; #wild type vs. FAT-1. Scale bar
for images d and e: 1000 µm; g: 2000µm; h: 3000 µm

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0521-4

4 COMMUNICATIONS BIOLOGY |           (2019) 2:276 | https://doi.org/10.1038/s42003-019-0521-4 | www.nature.com/commsbio

www.nature.com/commsbio


the level of these pathways was markedly reduced in the FAT-1/
FAT-1+2 groups (Fig. 2i–k). These findings further support that
the changes in gut microbiota due to the n-6/n-3 ratio alteration
may be associated with disease development.

n-6/n-3 ratio alters fecal and serum metabolite profiles. Next,
we examined the potential differences in fecal metabolite profiles
between the four mouse genotypes using an untargeted metabo-
lomics approach together with partial least squares-discriminant
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analysis (PLS-DA). The relative abundance of fecal metabolites
was distinctly clustered by the four genotypes (Fig. 3a). Abun-
dance analysis of fecal metabolites linked with specific metabolic
and pathological pathways showed distinct patterns among the
four genotypes, as shown by the heat map in Fig. 3b. In particular,
a number of metabolite markers of gut dysbiosis, inflammation
and chronic disease (Supplementary Table 2) were elevated in
FAT-2 mice and depleted in FAT-1 and FAT-1+2 mice
(Fig. 3c–n). For example, levels of 1-methylnicotinamide (a
marker of gut dysbiosis), cysteine and histidine (markers of
increased intestinal permeability), lactate and spermidine (mar-
kers of intestinal inflammation), choline and trimethylamine N-
oxide (TMAO) (markers of atherosclerosis), and gamma-
glutymyl peptides (markers of liver injury) were relatively
higher and indolepropionate (IPA) (which can reduce intestinal
permeability) was lower in FAT-2 mice compared to the other
genotypes (Fig. 3c–n). These results indicate that increased tissue
n-6 PUFA content and n-6/n-3 PUFA ratio, as seen in the FAT-2
mice, could produce a fecal metabolite profile that promotes
disease development. In addition, a correlation analysis found
that the FAT-2 samples were clearly separated from the other
three groups and clustered with increased Proteobacteria as well
as microbial functional markers and fecal metabolite markers of
disease pathways (Supplementary Fig. 4k). Conversely, the FAT-1
and FAT-1+2 samples were clustered on the opposite end of the
axis with beneficial microbial families, including Actinobacteria
(Supplementary Fig. 4k). Together, these findings indicate that
the n-6/n-3 ratio is a key determinant of the gut microbiome and
its functional pathways, as well as the fecal metabolite profile.

To examine whether changes in the n-6/n-3 ratio also affect the
serum metabolite profile, we performed an untargeted metabo-
lomics analysis on serum samples from the four genotypes of
mice. PLS-DA showed that the four groups were separated
according to both genotype and abundance of serum metabolites
(Fig. 3o). Consistent with our findings on fecal metabolite
profiles, serum metabolites known to be markers of inflamma-
tion, liver disease, metabolic syndrome, atherosclerosis, and liver
cancer (Supplementary Table 3) were enriched in the FAT-2 mice
compared to the wild-type group, and were markedly reduced in
FAT-1 and FAT-1+2 mice (Fig. 3p, q). For example, serum
levels of free arachidonic acid (marker of inflammation),
ursodeoxycholate (UDCA) (marker of liver cancer), 12-
hydroxyeicosatetraenoicacid (12-HETE) (marker of non-
alcoholic steatohepatitis), orotidine (marker of liver injury), acyl
carnitines (marker of insulin resistance), bilirubin (marker of type

2 diabetes), TMAO (marker of atherosclerosis), corticosterone
(marker of obesity), and some other metabolites involved in
aberrant amino acid biosynthesis, cell turnover regulation,
reactive oxygen species neutralization, and eicosanoid pathways25

were elevated in FAT-2 mice compared to the other genotypes
(Fig. 3p, q, and Supplementary Fig 4l). These results further
indicate that the increased tissue n-6 content and n-6/n-3 ratio
can generate a serum metabolite profile that promotes the
development of metabolic disorders.

n-6/n-3 ratio influences microbe–metabolite interactions. A
functional relationship between the microbiome and metabolome
is suggested by the similarity between OTU types and metabo-
types26. The three data sets (microbiome, fecal, and serum
metabolome) showed a high degree of concordance that was
statistically significant in Monte Carlo simulations with a P value
of 0.02. Superimposed microbiome and metabolomics data were
separated not only by n-6/n-3 PUFA status but also by OTU type
and metabotype (Fig. 4a). PLS-DA integration of three data sets
(Fig. 4b) discriminated OTUs and metabolites that were corre-
lated with each other and with the different n-6/n-3 PUFA status.
Next, an inter-omic network (Fig. 4c, d) constructed using
microbes and metabolites showed 8334 statistically significant
correlations (Spearman’s non-parametric rank correlation coef-
ficient; P < 0.05) between two microbes, two metabolites, or a
microbe and metabolite. The top three OTUs (Enterobacteriacea,
Desulfovibrionaceae, and Bifidobacterium) and fecal (pyruvate, n-
3 EPA, and n-6 DPA) and serum (n-3 EPA, n-6 DPA, and n-6
adrenate) metabolites were found to have a high inter-omic
centrality as shown in the first two largest modules of the network
(Fig. 4e, f). Betweenness centrality, which signifies the “bottleneck
nodes (Supplementary Fig. 5a) that are crucial to the commu-
nication within the network27, further highlights that this net-
work strategy yields relevant key microbes and metabolites
altered by tissue n-6/n-3 PUFA ratio.

n-6/n-3 PUFA ratio influences host–microbiome interactions.
RV coefficient (0.73; P= 0.001) showed an overall measure of
association between the tissue n-6/n-3 ratio-induced metabolic
changes, microbes, and metabolites. Network-based analytical
approaches extricate complex host–microbe interactions26,28.
Correlation analysis resulted in a correlation network
(Fig. 5a) consists of 1089 edges, 237 nodes, and 4 largest modules
(Fig. 5b–e) (biologically important elementary units28). It is

Fig. 2 Alterations in the tissue-generated omega-6/omega-3 PUFA ratio impact the composition of fecal microbiota. Fecal microbiome analyses (V4 16S
rRNA sequencing and predicted microbial functions) were performed on male wild type (WT), FAT-2, FAT-1, and FAT-1+2 transgenic mice (n= 5 per
group) fed an identical Western diet for 12 months. a β-Diversity analysis performed on whole microbiota relative abundance using principal coordinate
analysis (PCOA) with the Bray–Curtis dissimilarity index (BCD) followed by permutational multivariate analysis of variance (PERMANOVA) significance
test. b Similarity percentage analysis with BCD was used to identify the specific genera with the greatest contribution to the differences observed between
the groups, followed by principal component analysis (PCA) (variance–covariance type) showing the top eight operational taxonomic unit (OTU) scores
included as vectors. The magnitude and direction correspond to the weights. c Hierarchical clustering with a heat map shows the relative abundance of
representative OTUs (those with greatest difference between the four genotypes) group means (normalized to %) from each family selected for false
discovery rate (FDR) corrected P < 0.05, obtained with differential abundance analysis. The OTUs are shown as phylum and family. d Cladogram generated
from linear discriminant analysis (LDA) effect size showing the relationship between taxons (the levels represent, from the inner to outer rings, phylum,
class, order, family, and genus). e Analysis at the phylum level using relative abundance (%). f, g Relative abundance (Y= sqrt(Y) transformed) of
family_Enterobacteriacea (E) and family_Bifidobacteriacea (%). h Relative abundance of predicted microbial genes related to metabolism was identified using
PICRUSt analysis followed by PCOA analysis with BCD and PERMANOVA significance test. i Heat map shows the relative abundance (%) of
representative predicted microbial genes (those with greatest difference between four genotypes) group means from each family selected for FDR-
corrected P < 0.05, obtained with differential abundance analysis. BT, bacterial translocation; DM, diabetes mellitus; NAFLD, non-alcoholic fatty liver
disease. j, k Relative abundance (Y= sqrt (Y) transformed) of predicted bacterial genes involved in LPS biosynthesis and LPS biosynthesis proteins. Data
shown as mean ± standard error of mean. n= 5/group. Data with different superscript letters are significantly different (P < 0.05) according to
Mann–Whitney test (f, g, j, k)
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important to note that, according to the degree values, total n-6
PUFA (73), n-6/n-3 ratio (50), and intestinal permeability (IP)
(52) in the first largest module, serum LPS (45) and LBP (43) and
HCC (40) in the second module, serum IL-6 (37) and TNF-α (36)
and body weight (34) in the third module, and total PUFA (14)
and n-3 PUFA (27) in the fourth module were linked with

microbes and metabolites identified as biologically important
with microbe–metabolite inter-omic analysis (Supplementary
Fig. 5a). Next, parameters contributing to the multivariate PLS
models were compared with the corresponding identified mod-
ules (Fig. 5b–e) in the correlation networks. A variability of 97%,
92%, 93%, 79%, 86%, 89%, and 82% for IP, LPS, LBP, HCC, IL-6,
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TNF-α, and body weight, respectively, were explained by the
combination of key microbes and metabolites (Fig. 5f, Supple-
mentary Data 1) altered by the tissue n-6/n-3 PUFA ratio.

Correlation network and principal component analysis (PCA)
analyses on selected key parameters showed that the FAT-2 group
was found to be closely associated with factors related to
increased levels of n-6 PUFA metabolites, LPS production, gut
permeability, inflammation, obesity, diabetes, fatty liver, and
cancer, whereas FAT-1 and FAT-1+2 groups were associated
with anti-inflammatory factors (Fig. 6a, b). Among the many
correlations we found, the most important correlations are shown
in Supplementary Fig. 5b–m. Notably, among the fecal PUFA
tested, only n-6 PUFA were positively correlated with visceral
adiposity (Supplementary Fig. 5lm). In summary, elevated tissue
omega-6 PUFA status with an increased tissue n-6/n-3 PUFA
ratio alters gut microbiota and gut microbial functional pathways,
fecal metabolites production, and eventually microbiota-derived
serum metabolites levels. These alterations plus adverse changes
in the levels of serum non-microbiota-derived metabolites
impacted directly by the elevated tissue n-6/n-3 ratio lead to
increased intestinal permeability, metabolic endotoxemia, and
chronic low-grade inflammation, resulting in the occurrence of
chronic disease and cancer (Fig. 6c).

Discussion
By using unique transgenic animal models and multi-omics
technologies, our study has uncovered a potential pathway for the
development of modern chronic diseases and cancer stemming
from the dietary imbalance between n-6 and n-3 PUFA. Our
discovery not only provides new insights into the etiology of
chronic disease epidemics but also highlights the importance of
balancing n-6 and n-3 PUFA in the diet to achieve a healthy tissue
n-6/n-3 PUFA ratio as a key strategy for the management of
chronic diseases. Our results emphasize that n-6 PUFA and n-3
PUFA are not equal, but actually exert differential or opposite
effects on certain chronic health problems, indicating a need for
reducing n-6 PUFA intake and increasing n-3 PUFA intake for
improving health. This challenges many current dietary guidelines
issued by governmental or health organizations, including the
United States Dietary Guidelines (2015–2020), which recommends
increasing intake of PUFA in general (mainly n-6 PUFA)29.

We present a unique model for nutritional intervention studies
to reliably elucidate the relationship between n-6/n-3 ratio and
chronic disease by integrated multi-omics measurements of a
series of inter-related biomarkers. Biomarkers including lipidome
(profiles of fatty acids and their metabolites), gut microbiota, and
metabolic endotoxemia (elevated Enterobacteriacea to Bifido-
bacterium ratio, serum LPS/LBP/gut permeability markers),
inflammatory markers (e.g. TNF-a, IL-6, CRP), microbiota-

derived metabolites (e.g. TMAO), host metabolomics, and
pathological parameters can be accurately used for this model.
Our unique genetic approach using transgenic mice allowed us to
eliminate the confounding factors of diet (e.g. different types of
diet30 and the choice of control diet26,31) affecting gut microbiota
composition and metabolite production26. Dietary modification is
conventionally used to investigate the effects of different fatty acid
profiles on gut microbiota and chronic disease development.
However, this method is problematic since the diets used between
study groups may contain not only different fatty acids but also
variations in impurities, flavor, calories, or other components, as
confounding factors that complicate interpretation of results6,8,9.
Our model demonstrates the authentic effects of absolute
amounts of n-6 and n-3 PUFA, total PUFA, and n-6/n-3
PUFA ratios in a single study. Given the fact that the Western
diet consumption is associated with the imbalanced tissue n-6/n-3
ratio32,33, our preclinical results provide evidence that balancing
the n-6/n-3 ratio would be more important for better health
outcomes. Whereas increasing the total PUFA consumption by
only increasing the intake of n-6 PUFA resulted in adverse health
outcomes with FAT-2 mice (Fig. 6c), this was not the case for
FAT-1+2 mice because of their lower n-6/n-3 ratio, although
both groups showed similar total PUFA. Likewise, increasing the
total PUFA intake might not provide additional benefits when a
balanced n-6/n-3 ratio is achieved because FAT-1 and FAT-1+2
mice showed similar healthy outcomes even though the FAT-1
mice have lower total PUFA than FAT-1+2. Similarly, although
the total PUFA was the same between wild type and FAT-1 mice,
lowering the n-6/n-3 ratio by elevating the n-3 PUFA (FAT-1
mice) resulted in better health outcomes. Overall, our results
provide evidence that a balance between n-6 and n-3 PUFA is
critical for good health and suggest that tissue n-6/n-3 ratio may
be an important health biomarker. In this context, excessive
intake of n-6 PUFA might be associated with adverse health
outcomes and a simultaneous increase in n-3 PUFA consumption
to balance the n-6/n-3 ratio is needed for good health.

In addition to the uniqueness of the mouse model, the other
strengths of our study are highlighted as follows. Firstly, inte-
grated multi-omic analyses is a powerful tool because the true
power of our study design comes from the ability to examine
results across the different omics levels to provide an integrated
systems picture26,34,35. Secondly, network-based analytical
approaches have the potential to help disentangle complex
higher-order microbe–microbe, microbe–metabolite and
microbe–host interactions, thereby broadening the applicability
of microbiome research to personalized medicine and public
health28. Finally, understanding host–microbe interactions is
critical during times of disease, and balanced host–microbe
interactions are necessary for maintaining homeostasis.

Fig. 3 Alterations in the tissue-generated omega-6/omega-3 PUFA ratio impact fecal and serum metabolite profiles. Global metabolic profiling on fecal
(a–n) and serum (o–q) samples (n= 6/group) was performed on male wild type, FAT-2, FAT-1, and FAT-1+2 transgenic mice fed an identical Western diet
for 14 months. a Three-dimensional (3D) view of score plots showing the results of supervised partial least squares-discriminant analysis with two-
component model fitness parameters. To confirm the validation of the model, cross-validation analysis of variance (CV-ANOVA) with permutation tests
(n= 1000) were performed.); P < 0.05 (CV-ANOVA); R2X (cum)= 0.715; R2Y (cum)= 0.848; Q2(cum)= 0.794. b Heat map showing the abundance
(normalized to percentage) of fecal metabolites with false discovery rate corrected P < 0.05. c–n Box-plots (box showing the mean, median, and the 25th
and 75th percentiles, and the whiskers of the graph show the largest and smallest values) showing the abundance of selected fecal metabolites with FDR-
corrected P < 0.05. o Partial least squares-discriminant analysis 3D plot with two-component model fitness parameters performed on global serum
metabolite profile. To confirm the validation of the model, cross-validation analysis of variance with permutation tests (n= 1000) were performed; P < 0.05
(CV-ANOVA); R2X (cum)= 0.706; R2Y (cum)= 0.716; Q2 (cum)= 0.695. p Heat map showing the abundance (normalized to percentage) of serum
metabolites with false discovery rate corrected P < 0.05. q Log 2-fold change values of serum metabolites (involved in aberrant amino acid biosynthesis,
cell turnover regulation, reactive oxygen species neutralization, and eicosanoid pathways) obtained with wild type vs. FAT-2 and FAT-2 vs. FAT-1+2
pairwise comparisons using Welch’s two-sample t-test (P < 0.05). Data with different superscript letters are significantly different according to Welch’s
two-sample t-test (P < 0.05)
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Our results showed a marked increase in LPS-producing and/
or pro-inflammatory bacteria (e.g. Proteobacteria) and reductions
in LPS-suppressing and/or anti-inflammatory bacteria (e.g. Bifi-
dobacterium) observed in FAT-2 mice result in elevation of
endotoxemia and inflammation. In support of this key observa-
tion, we found elevated microbial functions related to LPS bio-
synthesis and related proteins in the FAT-2 mice. Chronically
altered changes in the gut–liver axis36–38 and its role in the
development of metabolic endotoxemia39,40 and chronic low-

grade inflammation39,40 have been shown central to the devel-
opment of chronic disease such as obesity, metabolic syndrome41,
and liver cancer42. Increased LPS production due to alterations in
LPS-related gut bacteria and/or gut barrier function lead to the
development of metabolic endotoxemia and associated chronic
low-grade inflammation16,37. Recent studies have shown asso-
ciations between markers of metabolic endotoxemia (LBP and
sCD14) and systemic inflammation (TNF-α and IL-6) in subjects
with obesity and metabolic syndrome43,44. Likewise, increasing
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evidence suggests that the presence of endotoxemia is of sub-
stantial clinical relevance to patients with HCC45. In this context,
decreasing the abundance of LPS-producing bacteria is a key
mechanism for the reduction of metabolic endotoxemia, chronic
low-grade inflammation, and the occurrence of chronic disease in
the FAT-1 and FAT-1+2 mice with a balanced n-6/n-3 ratio. A
recent study has shown that male FAT-1 mice fed high-fat diet
for 6 weeks at young age showed a lean phenotype associated with
higher energy expenditure than wild-type counterparts46. In the
present study, the sustained increase in fat mass and eventually
body weight observed in FAT-2 mice could be partially due to
their lower energy expenditure, which may be another mechan-
ism underlying the body weight gain in FAT-2 mice. The altered
energy homeostasis (lower energy expenditure, CO2 production
and O2 consumption) in the FAT-2 mice with elevated tissue n-6/
n-3 ratio could be associated with impaired browning process47

and altered intestinal endocannabinoid system47. However, this
assumption warrants further investigation.

The altered gut microbiota-derived metabolites (GM-DMs)
and their translocation to the liver and systemic circulation have
been shown to have a role in metabolic syndrome48 and hepa-
tocellular carcinoma25. In our study, several fecal (e.g. indole-
propionate) and serum (e.g. ursodeoxycholate) GM-DMs, which
have been shown in the pathogenesis of metabolic syndrome and
hepatocellular carcinoma (Supplementary Tables 2 and 3), were
altered in the FAT-2 mice and these alterations were prevented in
the FAT-1 and FAT-1+2 groups. Notably, increased abundance
of TMAO-producing bacteria (e.g. Erysipelotrichaceae49 and
Enterobacteriacea50) was associated with elevated levels of fecal
and serum TMAO (associated with insulin sensitivity51, glucose
metabolism51, and atherosclerosis52 and modified by fat inatke51)
were observed in FAT-2 mice. In addition to LPS and GM-DMs,
alterations in the non-microbiota host-derived metabolites may
also play a role in the disease phenotypes of FAT-2 mice. A recent
study identified 40 serum metabolites25 that were elevated in
hepatocellular carcinoma and cirrhosis subjects. Interestingly, the
same 40 metabolites (e.g. UDCA53 and 12-HETE54) were higher
in the FAT-2 mice and lower in the FAT-1+2 mice. Taken
together, unfavorable host–microbe interactions played a major
role in the development of metabolic phenotypes and liver cancer
due to imbalanced tissue n-6/n-3 ratios in the FAT-2 mice with
the exact opposite situation occurring in the FAT-1 and FAT-1
+2 mice. This conclusion is further supported by our high-
throughput integrated multi-omic and host–microbiome inter-
action analyses. Modules derived from these analyses clearly
showed a microbe–microbe, microbe–metabolite, and
metabolite–metabolite interactions, and a strong association

between tissue n-6/n-3 ratio with LPS-related bacterial groups,
several fecal and serum metabolites involved in chronic disease
and markers of metabolic endotoxemia and chronic low-grade
inflammation. This is important because a “module” in the net-
work is an elementary unit of any biological network and bio-
logically important when considered in isolation. Overall, our
results indicate the necessity of having a balanced tissue n-6/n-3
ratio to create the balanced microbiome essential for the man-
agement of chronic disease.

The Western human diet has shifted dramatically in the last
few decades from the diets that were consumed during most of
human evolution. Key changes include increases in saturated fat,
carbohydrates, and n-6 PUFA, and a decrease in n-3 PUFA3,32.
As a result, many people today have an n-6 to n-3 PUFA ratio
that favors n-6 PUFA by as much as 20:1. Historically, this ratio
would have been closer to 1:1, and the discrepancy may con-
tribute to modern health problems, including chronic diseases
such as cancer. Our discovery that elevating tissue n-3 PUFA
status and lowering the n-6/n-3 PUFA ratio can improve the gut
microbiome profile, create a balanced host–microbiome interac-
tion landscape, and suppress metabolic endotoxemia, and chronic
low-grade inflammation provides two major implications for
dealing with modern health problems. First, it supports the
hypothesis that an excess of n-6 PUFA and deficiency of n-3
PUFA in the Western diet can contribute to modern
chronic diseases (Fig. 6c). Second, it provides a new strategy for
the prevention and treatment of chronic diseases by reducing the
tissue n-6/n-3 ratio through n-3 PUFA supplementation and
reducing n-6 PUFA intake. Further, the methodologies and
results of our preclinical study emphasize the potential impor-
tance of reducing n-6 PUFA intake and/or increasing n-3 PUFA
intake, rather than just increasing the total PUFA intake mainly
through foods rich in n-6 PUFA.

In order to bridge the gap to clinical implementation, our
results should be validated with future large-scale multi-omic
analyses of the human gastrointestinal microbiome through
nutritional intervention studies. Our work suggests that nutri-
tional policies should be established that emphasize the differ-
ential effects of n-6 and n-3 PUFA rather than simply replacing
saturated fatty acids with PUFA for the prevention of chronic
disease. Finally, we acknowledge that a limitation of our study is
the use of only male mice; future research in female mice is
necessary because our findings obtained with male mice may not
be translational to females.

In conclusion, integrated multi-omic analyses of our unique
transgenic animal models uncover the tissue omega-6/omega-3
fatty acid imbalance as a critical risk factor for chronic disease.

Fig. 4 Inter-omic analysis reveals microbe–metabolite interactions between the tissue n-6/n-3 PUFA-associated microbial community type and
metabotype. a Multiple factor analysis using Spearman type principal component analysis was performed to superimpose the microbiome (n= 5 per
group) and fecal and serum metabolites (n= 6 per group) data (Monte Carlo simulations with a P value equal to 0.02) associated with a balanced n-6/n-3
ratio (FAT-1/FAT-1+2 samples) and an imbalanced n-6/n-3 PUFA ratio (wild type/FAT-2 samples). Each line connects the microbial and metabolomics
data from one sample. One end of each connecting line for an observation indicates the metabolites (differently colored to indicate the groups) and another
end (black) indicates the microbiota [(operational taxonomic units (OTUs)]. b Multi-omics data integration showing partial leastsquares-discriminant
analysis plot of all data (OTUs: 706; fecal metabolites: 554; serum metabolites: 554) for balanced n-6/n-3 (negative x axis) versus imbalanced n-6/n-3
ratio (positive x axis); P= 0.003 (CV-ANOVA); R2X= 0.792; R2Y (cum)= 0.906; Q2 (cum)= 0.837. c–f An inter-omic network was constructed with 225
nodes (filled circles) representing microbes (pink) and fecal (green) and serum (olive) metabolites with FDR-corrected P values <0.05. Node size reflects
inter-omic betweeness centrality — a measure of how many shortest paths within the entire network passes through the node in question (crucial to the
communication within the network). Names of the selected microbes and metabolites with higher inter-omic degree centrality — the number of
connections to nodes of the opposite data type (i.e., microbe–metabolite pairs) were shown. Edges represent statistically significant (spearman’s non-
parametric rank correlation coefficient) 5931 positive (gray) and 2403 negative (blue) correlations (P < 0.05) between microbe–microbe,
metabolite–metabolite, or microbe–metabolite pairs. The entire network with 8334 edges showing all the correlations with P < 0.05 (c) and the entire
network with edges showing only correlations having R value > 0.8 for clarity of the inter-omic network (d). The first (e) and second (f) largest modules
(biologically important elementary units of any biological network), which were separated from the full network according to the modularity scores
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Decreased tissue n-6/n-3 ratio leads to beneficial changes in gut
microbiota and gut microbial functional pathways. Subsequently,
the positive alterations in fecal metabolite production and
microbiota-derived and non-microbiota-derived serum metabo-
lites suppress the development of metabolic endotoxemia and

chronic low-grade inflammation and thereby reduce the risks for
chronic diseases and cancer. Overall, this study demonstrates the
importance of a low tissue omega-6/omega-3 PUFA ratio for
maintaining good health and for the management of chronic
diseases and cancer.
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Methods
Generation of transgenic mice. As we described previousy11, we generated a novel
transgenic mouse model that can endogenously synthesize all essential fatty acids. Our
strategy was to first create a FAT-2 transgenic mouse, possessing the C. elegans FAT-2
gene encoding an enzyme that converts monounsaturated fatty acids (MUFA) into
n-6 linoleic acid (LA), and then cross the FAT-2 transgenic mice with FAT-1
transgenic mice, which we generated previously to possess the C. elegans FAT-1 gene,
encoding an enzyme that converts n-6 to n-3 PUFA10. Through this procedure, we
generated a compound FAT-1+2 transgenic mouse (Omega mouse)— that is capable
of producing both n-6 and n-3 PUFA from a diet containing only saturated fat.

As described in our previous study11, genotyping was carried out by removing
the tip of the tail to acquire a DNA sample for reverse transcriptase (RT)-PCR,
which was performed with the following primers: FAT-2 forward, GCGGCCA
GACCCAGACCATC; and FAT-2 reverse, GGGCGAC GTGACCGTTGGTA. PCR
products were run through gel electrophoresis on 2% agarose gel. Phenotyping by
fatty acid composition analysis using gas chromatography (GC) was performed as
previously described55. Tissue samples were ground to powder under liquid
nitrogen and total lipids were extracted using chloroform/methanol (2:1, v/v). Fatty
acids were then methylated by heating them at 100°C for 1 h under 14% boron
trifluoride (BF3)-methanol reagent (Sigma-Aldrich, St. Louis, MO) and hexane
(Sigma-Aldrich). Fatty acid methyl esters were analyzed by GC using a fully
automated 6890N Network GC System (Agilent Technologies, Santa Clara, CA)
equipped with a flame-ionization detector and an Omegawax 250 capillary column
(30 m × 60.25 mm ID). Fatty acid standards (Nuchek Prep, Elysian, MN) were used
to identify peaks of resolved fatty acids, and area percentages for all resolved peaks
were analyzed using GC ChemStation Software (Agilent). The fatty acid C23:0
(20 mg per sample) was used as an internal standard to calculate the amount of
each fatty acid measured. After identifying the genotype and phenotype, the FAT-2
mice were mated with wild-type C57BL6 mice to create the F1 generation. The F1
generation was then backcrossed with wild-type C57BL6 mice at least five times in
order to verify that the gene is transmittable as well as to establish a pure
background, so that FAT-2 lines could be maintained with a significant phenotype.
Each generation was subjected to genotyping by RT-PCR and phenotyping by GC.
The compound FAT-1+2 transgenic mice were created by crossbreeding
heterozygous FAT-2 transgenic mice with heterozygous FAT-1 transgenic mice,
which were previously generated by our group10. Genotyping by RT-PCR of the
Omega mice was carried out with the following primers: FAT-1 forward,
TGTTCATGCCTTCT TCTTTTTCC; FAT-1 reverse, GCGACCATACC
TCAAACTTGGA; FAT-2 forward, GCGGCCA GACCCAGACCATC; FAT-2
reverse, GGGCGAC GTGACCGTTGGTA. Phenotyping by fatty acid composition
analysis using GC was performed as previously described55.

Animals in this study were maintained in accordance with the guidelines
prepared by the institutional animal care and use committee (IACUC) at MGH
based on the Care And Use of Laboratory Animals of the Institute of Laboratory
Resources, National Research Council [Department of Health, Education and
Human Services, Publication 85e23 (National Institutes of Health), revised 1985].
All animal protocols were reviewed and approved by the IACUC at MGH. Animals
were sacrificed by the Animal Veterinary Medical Association (AVMA)-approved
protocol of i.p. injection of pentobarbital (200 mg kg−1).

Animal diets. After weaning and until the end this study, wild type (n= 9), FAT-2,
FAT-1, and FAT-1+2 (n= 10 per group) mice were fed an identical basic diet,
which contained the amount of n-6 and n-3 PUFA required for mice that do not
carry the FAT-1 and/or FAT-2 transgenes. This is a modified Western diet
(modification of TestDiet®AIN-76A Semi-Purified Diet 58B0 with beef tallow,
coconut oil, glucose and fructose; 34.1% kcal from carbohydrate, 14.9% kcal from
protein, 51% kcal from fat, totaling an energy content of 4.85 kcal g−1) ordered
from Test Diet (catalog # 1816187-200) (St. Louis, MO, USA). Please refer to
Supplementary Table 4 for the complete fatty acid composition details of the diet.

Animal experiments. Mice were housed in a biosafety level 2 room in hard top cages
with three or two mice per cage. Mice were maintained in a temperature-controlled
room (22–24°C) with a strictly followed 12-h light/12-h dark diurnal cycle with food
and water ad libitum. Four-week-old male wild type (wild type), FAT-2, FAT-1, and
FAT-1+2 mice (n= 9–10 per group; 2 or 3 mice per cage), which were bred at the
MGH animal facility, were fed an identical modified Western diet for 16 months, with
no additional PUFA supplementation. All four groups of mice were subjected to
several kinds of analysis at different time points. Animal body weight was measured at
different time points and food intake was measured weekly. After 16 months of follow-
up, mice were placed into individual cages in the Oxymax Comprehensive Laboratory
Animal Monitoring System (CLAMS, Columbus Instruments) for an additional 24 h
(at 23°C with a 12 h light/12 h dark cycle) for indirect calorimetry measurements for
long-term phenotyping and assessment of energy expenditure, as previously described
in Marvyn et al.56. Food and water were available ad libitum. The Oxymax system is
an open-circuit indirect calorimeter for lab animal research allowing the measurement
of oxygen consumption (VO2), respiratory exchange ratio, and activity levels of mice.
VO2 is a measure of the volume of oxygen used to convert energy substrate in to ATP.
The respiratory exchange ratio is the ratio of carbondioxide production (VCO2)
divided by VO2, and can be used to estimate the fuel source for energy production
based on the difference in the number of oxygen molecules required for the oxidation
of glucose versus fatty acids56. A respiratory exchange ratio of 0.7 indicates that fatty
acids are the primary substrate for oxidative metabolism, while a respiratory exchange
ratio of 1.0 indicates that carbohydrate is the primary energy substrate56. Activity was
calculated by summing the X axis movement counts associated with horizontal
movement. Body composition (fat and lean mass and fluid weight) of each mouse was
determined by dual-energy X-ray absorptiometry (DEXA) according to the manu-
facturer’s instructions (GE Lunar PIXImus 2). All values (g) were normalized using
each mouse body weight and body composition was expressed as percentages. Mice
were fasted for 6 h during the light phase period and blood was collected from the
facial vein unless otherwise specified. Mouse feces and blood were collected at different
time points as mentioned below and then sacrificed after 6 h fasting. Mouse organs
(intestine, adipose tissue, liver, spleen, bone, brain, testis, tail, etc.) were flash frozen
using liquid nitrogen and then stored at −80°C for further analysis.

Extraction and purification of DNA from fecal samples. At the age of 12 months,
bacterial genomic DNA was extracted from fresh stool samples (~100–180mg) from
wild type, FAT-2, FAT-1, and FAT-1+2 mice using the QIAamp DNA Stool Mini Kit
(Qiagen, Valencia, CA), following the manufacturer’s instructions16. In order to
increase its effectiveness, the lysis temperature was increased to 95°C. The eluted
DNA was treated with RNase, concentration was determined by absorbance at
260 nm (A260), and purity was estimated by determining the A260/A280 ratio with a
Nanodrop spectrophotometer (Biotek, Winooski, VT). DNA samples were diluted to
30 ng μl−1, and this concentration was confirmed using both spectrophotometry
(A260) and fluorometry (DNAQF-1KT; Sigma, USA).

Genomic DNA library preparation. Genomic DNA samples (n= 5 per group)
were sent to the microbiome analysis company (Second Genome, Inc., CA, USA) to
perform V4 16S rRNA gene sequencing. As described previously57, to enrich the
sample for bacterial 16S V4 rDNA region, DNA was amplified using fusion primers
designed against the surrounding conserved regions which are tailed with
sequences to incorporate Illumina (San Diego, CA) adapters and indexing bar-
codes. Each sample was PCR amplified with two differently barcoded V4 fusion
primers. Samples that met the post-PCR quantification minimum were advanced
for pooling and sequencing. For each sample, amplified products were con-
centrated using a solid-phase reversible immobilization method for the purification
of PCR products and quantified by qPCR.

Microbiome profiling. A pool containing 16S V4-enriched, amplified, barcoded
samples was loaded into a MiSeq® reagent cartridge, and then onto the instrument

Fig. 5 Network interactions uncover host–microbiome interactions driven by tissue n-6/n-3 PUFA status. a–e Host–microbiota interaction network built
from Spearman’s non-parametric rank correlation coefficient (P < 0.05) between 11 host parameters (serum total PUFA and n-6 and n-3 PUFA, n-6/n-3
ratio, body weight, HCC incidence, IP, serum LPS, LBP, TNF-α and IL-6) (n= 6 per group) and 66 microbial (n= 5 per group) and 159 metabolite
parameters (n= 6 per group) with FDR-corrected P values <0.05. Two hundred and thirty-seven nodes (filled circles) represents host parameters (cyan),
microbes (pink), fecal (green), and serum (olive) metabolites. Node size reflects betweeness centrality — a measure of how many shortest paths within
the entire network passes through the node in question (crucial to the communication within the network). In total, 1089 lines (edges) represent
statistically significant correlations (P < 0.05) and are colored gray for 779 positive and blue for 310 negative correlations. The full network (a) with edges
showing all the correlations and the four (b–e) largest modules (biologically important elementary units of any biological network), which were separated
from the full network according to the modularity scores. f Partial least square (PLS)-regression loading score plot illustrating the association between host
parameters (dependent variables — Y; blue triangles) and serum PUFA and microbial and metabolite parameters (explanatory variables — X; red dots).
Explanatory variables of interest with variable importance in the projection (VIP) scores >1 were labeled with circles on the red dots. Samples from four
different groups (wild type/FAT-2/FAT-1/FAT-1+2) were observed (green dots) and grouped using circles based on where they clustered on the plot.
Leave-one-out cross-validation (LOO-CV) was applied. Ebac, Enterobacteriacea; Bifido, Bifidobacteriacea; HCC, hepatocellular carcinoma; IP, intestinal
permeability;LPS, lipopolysaccharides; LBP, LPS-binding protein
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along with the flow cell. After cluster formation on the MiSeq instrument, the
amplicons were sequenced for 250 cycles with custom primers designed for paired-
end sequencing. Samples are processed in a Good Laboratory Practices (GLP)
compliant service laboratory running Quality Management Systems for sample and
data tracking. The laboratory implements detailed standard operating procedures
(SOPs), equipment and process validation, training, audits, and document control
measures. Quality control (QC) and assurance (QA) metrics were maintained for
all samples.

Microbiome data analysis. The full data analysis pipeline for Second Genome’s
Microbial Profiling Service incorporates several separate stages: pre-processing,
summarization, normalization, alpha-diversity metrics (within sample diversity),

beta-diversity metrics (sample-to-sample similarity), ordination/clustering, sample
classification, and significance testing. The report was generated using second-
genomeR package: 0.2.4.

For OTU selection, paired-end reads were merged, quality filtered, and de-
replicated with USEARCH58. Resulting unique sequences were then clustered at
97% similarity by UPARSE (de novo OTU clustering) and a representative
consensus sequence per de novo OTU was determined. The clustering algorithm
also performs chimera filtering to discard likely chimeric OTUs. Sequences that
passed quality filtering were then mapped to a set of representative consensus
sequences to generate an OTU abundance table. Representative OTU sequences
were assigned taxonomic classification via mothur’s Bayesian classifier trained
against the Greengenes reference database of 16S rRNA gene sequences clustered at
99%. After taxa were identified for inclusion in the analysis, the values used for
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9 s_TMAO-Serum TMAO

10 s_AC-Seum acetylcarnitine
11 Total PUFA-Total PUFA
12 N-6-Total N-6
13 N-3-Tolal N-3
14 N-6/N-3-N-6/N-3
15 Bifido-f—Bifidobacteriaceae
16 Ebac-f—Enterobacteriaceae
17 Rumino-f—Ruminococcaceae
18 Proteo-p—Proteobacteria
19 s_LPS-Serum LPS (EU/ml)
20 s_LBP-Serum LBP (ng/ml)
21 s_TNF-a-Serum TNF-a
22 s_ IL-6-Serum IL-6 (pg/ml)
23 IP-lntestinal permeablity ((dextran-FITC (mgl/ml))
24 BW-Body weight (g)
25 Glu.m-Glutathone metabolism
26 PPP-Pentose phosphate pathway
27 LA.m-linoleic acid metabolism
28 NAFLD-Nan-alcoholic fatty liver disease
29 AA.m-Arachidonic acid metabolism
30 LPS.bs-Lipopolysaccharide biosynthesis
31 Zeatin.by-Zeatin biosynthesis
32 T2DM- Type II diabetes mellitus
33 Cancer PW-Pathways in cancer
34 BloE-Bacterial invasion of epithelial cells
35 HCC-Hepatocellular carcinoma (liver cancer)
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each taxon-sample intersection were populated with the abundance of reads
assigned to each OTU in an “OTU table”. A corresponding table of OTU
Greengenes classification was generated as well.

Alpha-diversity (within sample diversity) metric: “Observed” diversity is the
simply the sum of unique OTUs found in each sample, also known as sample
richness. Chao1 calculates the estimated sample richness (number of OTUs) based
on sequencing depth and taking into account rare taxa that may be present in a
sample. Shannon diversity uses the richness of a sample along with the relative
abundance of the present OTUs to calculate a diversity index.

Beta-diversity (sample-to-sample dissimilarity) metrics: All profiles were inter-
compared in a pairwise fashion to determine a dissimilarity score and store it in a
distance dissimilarity matrix. Distance functions produce low dissimilarity scores
when comparing similar samples. Abundance-weighted sample pairwise
differences were calculated using the Bray–Curtis dissimilarity — the ratio of the
summed absolute differences in counts to the sum of abundances in the two
samples. The binary dissimilarity values were calculated with the Jaccard index.
This metric compares the number of mismatches (OTUs present in one but absent
in the other) in two samples relative to the number of OTUs present in at least one
of the samples.

Ordination, clustering, and classification methods: Two-dimensional ordinations
and hierarchical clustering maps of the samples in the form of dendrograms were
created to graphically summarize the inter-sample relationships. Principal
Coordinate Analysis is a method of two-dimensional ordination plotting that is
used to help visualize complex relationships between samples. Principal Coordinate
Analysis uses the sample-to-sample dissimilarity values to position the points
relative to each other by maximizing the linear correlation between the
dissimilarity values and the plot distances. To create dendrograms, the samples
from the distance matrix are clustered hierarchically using the ward method.

Whole microbiome significance testing: Permutational Analysis of Variance
(PERMANOVA) was used for finding significant differences among discrete
categorical or continuous variables. In this randomization/Monte Carlo
permutation test, the samples are randomly reassigned to the various sample
categories, and the between-category differences are compared to the true between-
category differences. PERMANOVA utilizes the sample-to-sample distance matrix
directly, not a derived ordination or clustering outcome.

Taxon significance testing: Univariate differential abundance of OTUs was
tested using a negative binomial noise model for the overdispersion and Poisson
process intrinsic to this data, as implemented in the DESeq2 package59, and
described for microbiome applications in ref. 60. It takes into account both
technical and biological variability between experimental conditions. DESeq was
run under default settings and q-values were calculated with the
Benjamini–Hochberg procedure to correct P values, controlling for false
discovery rates.

Identification of metagenomic biomarkers. The SIMPER (Similarity Percentage
analysis) method was applied to whole microbiome relative abundance data to
identify the top 10 taxa by abundance. Their contribution to groups (between and
within groups) was analyzed as previously described using the PCA
variance–covariance type ordination (PAST version 3.11 software) method37.
Differential abundance analysis (non-parametric ANOVA with
Benjamini–Hochberg FDR-corrected P values<0.05) was performed on the relative
abundance data at different levels of taxonomy to identify taxa with FDR-corrected
P values <0.05 (XLSTAT software; Addinsoft, USA)37. Their relative abundance
(normalized to percentage) was then shown by heat map with hierarchical clus-
tering analysis61 using GraphPad Prism version 8 (La Jolla, CA)37. Linear Dis-
criminant Analysis (LDA) Effect Size (LEfSe) is a biomarker discovery and
explanation tool for high-dimensional data. It couples statistical significance
with biological consistency and effect size estimation37,62. Microbiome-based
biomarker discovery was performed with LEfSe using the online galaxy server
(https://huttenhower.sph.harvard.edu/galaxy/). LDA scores derived from the LEfSe
analysis were used to show the relationship between taxa using a cladogram
(circular hierarchical tree) of significantly increased or decreased bacterial taxa in

the gut microbiota between groups37. Levels of the cladogram (Fig. 2d) represent,
from the inner to outer rings: phylum, class, order, family, and genus. Color codes
indicate the groups, and letters indicate the taxa that contribute to the uniqueness
of the corresponding groups at an LDA of >2.0. Three-dimensional (3D) views of
principal coordinate analysis (PCoA) score plots were prepared using XLSTAT-3D
Plot37. UniFrac is a distance metric used for comparing biological communities. It
differs from dissimilarity measures such as Bray–Curtis dissimilarity in that it
incorporates information on the relative relatedness of community members by
incorporating phylogenetic distances between observed organisms in the compu-
tation. Weighted UniFrac PCoA analysis and LEfSe analysis to obtain LDA scores
were performed on the whole microbiome relative abundance data using Micro-
biomeAnalyst63. Generation of rare faction curves using whole microbiome OTU
data and hierarchical clustering were performed using PAST version 3.11 (ref. 37).
The non-weighted group average (unweighted pair-group with arithmetic means,
UPGMA) was used to perform hierarchical clustering analysis. The diagram based
on the Bray–Curtis distance matrix was obtained using PAST version 3.11 (ref. 37).
Class tree was used to demonstrate similarity between samples, through the clus-
tering tree branch length measure cluster effect. Fecal microbiome data analysis
was also done using PAST version 3.11 software program37 to make two-
dimensional principal coordinate and principal component plots and alpha
diversity indices and to perform corrleation analysis. XLSTAT for Microsoft Excel
(Addinsoft SARL, Paris, France)37 was used to analyze differential expression and
create a heat map (Fig. 2c) showing the relative abundance of representative OTUs
selected for P < 0.05, obtained using a non-parametric differential expression test
with the Benjamini–Hochberg procedure to correct P values between all four
groups and then grouped into families. One representative OTU with the greatest
difference between the group’s means from each family was selected for inclusion
in the heat map diagram37. OTUs are shown as: Phylum and Family. SIMCA 14.1
(Umetrics, Stockholm, Sweden)64 software was used to make two-dimensional
principal component plots and GraphPad Prism version 8 (GraphPad Software, La
Jolla, CA) for other analyses. To determine the key genus profiles distinguishing
genotypes, a Linear Discriminant Analysis Effect Size (LEfSe analysis)37 was per-
formed using the default parameters and the cladogram was generated accordingly.

Microbiome functional analysis. Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) is a well-documented tool
designed to impute metagenomic information based on 16S input data37. PICRUSt
analysis (n= 5 per group) was performed by Second Genome, Inc. The PICRUSt
database was derived from 2590 genomes in v3.5 of IMG, which is 11% and 26%
fewer than the genome numbers in recent Kyoto Encyclopedia of Genes and
Genomes (KEGG 70.1) or BioCyc 18.0, respectively. Thus, an alternate approach
was applied to leverage the most up-to-date genome database to infer metagen-
omes of 16S rRNA sequenced samples (Piphillin65, Second Genome Inc.). Both the
KEGG 70.1 and BioCyc 18.0 databases were used as reference genomes. A genome
was inferred for each 16S rRNA OTU based on the sequence identity between
the OTU’s representative sequence and the nearest neighbor 16S rRNA sequence
from the genome databases restricted to a minimum identity of 97%. OTU
abundance was normalized by 16S rRNA copy numbers, and then multiplied by
the gene contents of each inferred genome to predict each sample’s metagenome.
Abundance of microbial function related genes and KEGG pathways were iden-
tified and non-parametric analysis of differential expression (P < 0.05; Post hoc
corrections: Benjamini–Hochberg) was done using XLSTAT software on all four
groups of data37. Also, pairwise comparisons were also performed between groups
using GraphPad Prism version 8 (multiple T-TESTS; one per row; P values
computed without assuming consistent standard deviation (Welch’s correction);
false discovery rate (FDR) was set to 0.05 and the differences between groups were
considered significant only FDR-corrected P < 0.05).

Quantitative real-time PCR (qRT-PCR) assessment of fecal microbiota. Tar-
geted fecal microbial profiling was performed as previously described37. Briefly,
qRT-PCR was performed with a PRISM 9000 Light Cycler (Applied Biosystems,
USA) using the iTaq universal SYBR Green Supermix (Bio-Rad, USA) and group-

Fig. 6 A proposed mechanism (developed with integrated multi-omic analysis of transgenic animal models) showing the relationship between tissue
omega-6/omega-3 fatty acid imbalance and the development of chronic disease. a To assemble the overall correlations among our data (n= 6/group), we
performed correlation network analysis (Spearman’s non-parametric rank correlation coefficient). Each node was colored according to the data type and
sized based on the betweenness centrality, which quantifies the influence of a node in connecting other nodes in a network. Edges (lines) represent
statistically significant correlations, and are colored light black for positive and blue for negative correlations. Please refer panel b for abbreviations. b PCA
(correlation type) analysis was performed on selected key parameters (n= 6/group), including the genotypes, gut microbiota, fecal and serum
metabolites, and markers of metabolic disorders. c Diagram illustrating our proposed mechanism of tissue omega-6/omega-3 fatty acid imbalance leading
to the development of chronic disease. Elevated tissue omega-6 PUFA status and an increased tissue n-6/n-3 fatty acid ratio alters gut microbiota and gut
microbial functional pathways, which in turn adversely influence fecal metabolites production and eventually microbiota-derived serum metabolites levels.
These alterations plus adverse changes in the levels of serum non-microbiota-derived metabolites directly influenced by the elevated tissue n-6/n-3 fatty
acid ratio lead to increased intestinal permeability, development of metabolic endotoxemia and chronic low-grade inflammation, resulting in the occurrence
of chronic disease (metabolic syndrome and cancer)

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0521-4

14 COMMUNICATIONS BIOLOGY |           (2019) 2:276 | https://doi.org/10.1038/s42003-019-0521-4 | www.nature.com/commsbio

https://huttenhower.sph.harvard.edu/galaxy/
www.nature.com/commsbio


specific primers (Supplementary Table 5) for total bacteria, family Enterobacter-
iacea, genus Escherichia and genus Bifidobacterium. Samples (n= 9–10 per group)
and controls were run in duplicate in total reaction volumes of 20 μl per well,
containing 500 nM primers and 40 ng genomic DNA. Amplification and data
acquisition was performed according to the protocol provided with SYBR Green
(Bio-Rad, Hercules, CA). By subtracting the cyclic threshold (Ct) values of total
bacteria from the Ct values of each bacterial group, we estimated and compared the
relative quantification of a specific bacterial group.

Global metabolic profiling by Metabolon Inc. Sample collection: At 14 months of
age, fecal materials were collected from wild type, FAT-2, FAT-1, and FAT-1+2
mice (n= 6 per group) using sterile 2 ml tubes, weighed, flash frozen in liquid
nitrogen, and stored at −80°C until shipping. Whole blood was drawn from the
facial vein in 6 h fasted mice, left at room temperature for 25–30 min, clear serum-
separated by centrifugation (6000 RPM for 6 min), flash frozen in liquid nitrogen,
and stored at −80°C until shipping. Consistency in sample handling was main-
tained by minimizing operational variation (collection technique, time of sampling,
time to freezer, etc.). Both feces and serum samples were shipped to Metabolon Inc.
(Durham, NC) where they were extracted and prepared for analysis using a pre-
viously described standard solvent extraction method66.

Sample accessioning: Following receipt by Metabolon Inc., samples were
inventoried and immediately stored at −80°C. Each sample received was
accessioned into the Metabolon Laboratory Information Management System
(LIMS system) and was assigned by the LIMS a unique identifier that was
associated with the original source identifier only. This identifier was used to track
all sample handling, tasks, results, etc. The samples (and all derived aliquots) were
tracked by the LIMS system. All portions of any sample were automatically
assigned their own unique identifiers by the LIMS when a new task was created; the
relationship of these samples was also tracked. All samples were maintained at
−80°C until processed.

Sample preparation: Samples were prepared using the automated MicroLab
STAR® system from Hamilton Company (https://www.hamiltoncompany.com/).
Several recovery standards were added prior to the first step in the extraction process
for QC purposes. To remove protein, dissociate small molecules bound to protein or
trapped in the precipitated protein matrix, and to recover chemically diverse
metabolites, proteins were precipitated with methanol under vigorous shaking for
2min (Glen Mills GenoGrinder 2000) followed by centrifugation. The resulting
extract was divided into five fractions: two for analysis by two separate reverse phase
(RP)/ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-
MS/MS) methods with positive ion mode electrospray ionization, one for analysis by
RP/UPLC-MS/MS with negative ion mode electrospray ionization, one for analysis by
HILIC/UPLC-MS/MS with negative ion mode electrospray ionization, and one
sample was reserved for backup. Samples were placed briefly on a TurboVap®
(Zymark) to remove the organic solvent. The sample extracts were stored overnight
under nitrogen before preparation for analysis.

QA/QC: Several types of controls were analyzed in concert with the experimental
samples: a pooled matrix sample generated by taking a small volume of each
experimental sample (or alternatively, use of a pool of well-characterized human
plasma) served as a technical replicate throughout the data set; extracted water
samples served as process blanks; and a cocktail of QC standards that were carefully
chosen not to interfere with the measurement of endogenous compounds wase spiked
into every analyzed sample, allowed instrument performance monitoring, and aided
chromatographic alignment. Instrument variability was determined by calculating the
median relative standard deviation (RSD) for the standards that were added to each
sample prior to injection into the mass spectrometers. Overall process variability was
determined by calculating the median RSD for all endogenous metabolites (i.e., non-
instrument standards) present in 100% of the pooled matrix samples. Experimental
samples were randomized across the platform run with QC samples spaced evenly
among the injections.

UPLC-MS/MS: All methods used a Waters ACQUITY UPLC and a Thermo
Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a
heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer
operated at 35,000 mass resolution. The sample extract was dried then
reconstituted in solvents compatible to each of the four methods. Each
reconstitution solvent contained a series of standards at fixed concentrations to
ensure injection and chromatographic consistency. One aliquot was analyzed using
acidic positive ion conditions, chromatographically optimized for more hydrophilic
compounds. In this method, the extract was gradient eluted from a C18 column
(Waters UPLC BEH C18–2.1 × 100 mm, 1.7 μm) using water and methanol,
containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid. Another
aliquot was also analyzed using acidic positive ion conditions; however, it was
chromatographically optimized for more hydrophobic compounds. In this method,
the extract was gradient eluted from the same afore mentioned C18 column using
methanol, acetonitrile, water, 0.05% PFPA, and 0.01% formic acid and was
operated at an overall higher organic content. Another aliquot was analyzed using
basic negative ion optimized conditions using a separate dedicated C18 column.
The basic extracts were gradient eluted from the column using methanol and water,
but with 6.5 mM ammonium bicarbonate at pH 8. The fourth aliquot was analyzed
via negative ionization following elution from a hydrophilic interaction liquid
chromatography column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 μm) using

a gradient consisting of water and acetonitrile with 10 mM ammonium formate,
pH 10.8. The mass spectrometry (MS) analysis alternated between MS and data-
dependent MSn scans using dynamic exclusion. The scan range varied slighted
between methods but covered 70–1000m/z. Raw data files were archived and
extracted as described below.

Bioinformatics: The informatics system consisted of four major components:
the Laboratory Information Management System (LIMS); the data extraction and
peak identification software; data processing tools for QC and compound
identification; and a collection of information interpretation and visualization tools
for use by data analysts. The hardware and software foundations for these
informatics components were the LAN backbone and a database server running
Oracle 10.2.0.1 Enterprise Edition.

Data extraction and compound identification: Raw data were extracted, peak-
identified, and QC processed using Metabolon’s hardware and software. These
systems are built on a web-service platform utilizing Microsoft’s.NET technologies,
which run on high-performance application servers and fiber-channel storage
arrays in clusters to provide active failover and load-balancing. Compounds were
identified by comparison to library entries of purified standards or recurrent
unknown entities. Metabolon maintains a library based on authenticated standards
that contains the retention time/index (RI), mass to charge ratio (m/z), and
chromatographic data (including MS/MS spectral data) on all molecules present in
the library. Furthermore, biochemical identifications are based on three criteria:
retention index within a narrow RI window of the proposed identification, accurate
mass match to the library ±10 ppm, and the MS/MS forward and reverse scores
between the experimental data and authentic standards. The MS/MS scores are
based on a comparison of the ions present in the experimental spectrum to the ions
present in the library spectrum. While there may be similarities between these
molecules based on one of these factors, the use of all three data points can be used
to distinguish and differentiate biochemicals. More than 3300 commercially
available purified standard compounds have been acquired and registered into
LIMS for analysis on all platforms for determination of their analytical
characteristics. Additional mass spectral entries have been created for structurally
unnamed biochemicals, which have been identified by virtue of their recurrent
nature (both chromatographic and mass spectral). These compounds have the
potential to be identified by future acquisition of a matching purified standard or
by classical structural analysis.

Curation: A variety of curation procedures were carried out to ensure that a
high quality data set was made available for statistical analysis and data
interpretation. The QC and curation processes were designed to ensure accurate
and consistent identification of true chemical entities, and to remove those
representing system artifacts, mis-assignments, and background noise. Metabolon
data analysts use proprietary visualization and interpretation software to confirm
the consistency of peak identification among the various samples. Library matches
for each compound were checked for each sample and corrected if necessary.

Metabolite quantification and data normalization: Peaks were quantified using
area under the curve. For studies spanning multiple days, a data normalization step
was performed to correct variation resulting from instrument inter-day tuning
differences. Essentially, each compound was corrected in run-day blocks by
registering the medians to equal one (1.00) and normalizing each data point
proportionately. For studies that did not require more than one day of analysis, no
normalization was necessary other than for purposes of data visualization. In
certain instances, biochemical data may have been normalized to an additional
factor (e.g. cell counts, total protein as determined by Bradford assay, osmolality,
etc.) to account for differences in metabolite levels due to differences in the amount
of material present in each sample. The analysis yielded a dataset comprising
compounds of known identity (referred to as biochemicals) with 557 named
biochemicals in serum and 553 named biochemicals in feces. Metabolic pathways
were visualized using the Cytoscape plugin in the Metabolync Portal (https://portal.
metabolon.com). We used XLSTAT for Microsoft Excel (Addinsoft SARL, Paris,
France)37 and SIMCA 14.1 (Umetrics, Stockholm, Sweden)64 softwares to build the
PCA and the partial least squares-discriminant analysis (PLS-DA) models. The
primary advantage of PCA and PLS-DA models is that the leading sources of
variability in the data are modeled by new variables that explain most of the
variance in the data and, consequently, in their associated scores and loadings,
allowing the visualization and understanding of different patterns and relations in
the data. PCA is able to find low-dimensional embedding of multivariate data in a
manner that optimally preserves the structure of the data. PCA transforms
variables in a data set into a smaller number of new latent variables called principal
components (PCs), which are uncorrelated to each other and which account for
decreasing proportions of the total variance of the original variables. Each new PC
is a linear combination of the original variation such that a compact description of
the variation within the data set is generated. Observations are assigned scores
according to the variation measured by the PC with those having similar scores
being clustered together.

PLS-DA is a classification technique that encompasses the properties of partial
leastsquares regression with the power of discriminant analysis67. From a
mathematical point of view, PLS-DA is a supervised extension of PCA used to
distinguish two or more classes by searching for variables (X matrix) that are
correlated to class membership (Y matrix). In this approach, the axes are calculated
to maximize class separation and can be used to examine separation that would
otherwise be across three or more principal components. PLS-DA model quality
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was validated using Q² cum, R²Y cum and R²X cum values and CV-ANOVA was
used to test the significance of the models (P < 0.05). Four groups and pairwise
comparisons were clearly discriminated the groups from each other by the primary
component t (1) or the secondary component t (2) based on the model quality
parameters we used67. In addition, the PLS-DA models were validated by a
permutation test. R intercept and Q intercept values were checked to see whether
the models were not over fitted67. The “variable importance in project” (VIP) plots
were generated to identify metabolites contributing significantly to the separation
of the four genotypes. A cutoff value of 0.7–0.8 for the VIP is generally acceptable.
In this study, the cutoff value was set at 1.0 (ref. 67).

Measurement of LPS concentration. Serum LPS concentrations were measured
with a ToxinSensor Chromogenic Limulus Amebocyte Lysate (LAL) Endotoxin
Assay Kit (GenScript), following the manufacturer’s instructions37. Briefly, to
minimize inhibition or enhancement by contaminating proteins, the samples (n=
9–10 per group) were diluted 10- to 50-fold with endotoxin-free water, adjusted to
the recommended pH, and heated for 10 min at 70°C. To obtain an endotoxin
stock solution, the lyophilized endotoxin standard was dissolved by adding 2 ml of
LAL reagent water and mixed thoroughly for 15 min with a vortexer. LAL reagents
were added to serum and incubated at 37°C for 45 min, and the absorbance was
read at 545 nm. A spiked control at 0.45 EU per ml was included for each sample to
check that no significant inhibition or activation occurred. The lower limit of
detection (LLOD) was 0.01 EU per ml. The coefficient of variation equals 100 times
the standard deviation of a group of values divided by the mean and is expressed as
a percent. The coefficient of variation absorbance was less than 10%.

Measurement of cytokine levels and other circulating factors. Serum samples
(n= 9–10 per group) were analyzed for levels of TNF-α (LLOD:1.4 pg ml−1), IL-1β
(LLOD: 9.4 pg ml−1), IL-6 (LLOD: 0.2 pg ml−1) and MCP-1 (LLOD: 3.7 pg ml−1)
by Bio-Plex immunoassays (assay range: 2–3000 pg ml−1; intra-assay coefficient of
variation: <10%; inter-assay coefficient of variation: <30%) formatted on magnetic
beads (Bio-Rad Laboratories Inc, CA, USA), following the manufacturer’s
instructions37. Xponent software (Luminex, Austin, TX) was used for data acqui-
sition and analysis. ELISA kits were used to analyze serum levels of sCD14 (LLOD:
0.06 ng ml−1; inter- and intra-assay coefficients of variation were <12 and <8%,
respectively) (MyBioSource, San Diego, CA) and LBP (LLOD: 0.4 ng ml−1; coef-
ficient of variation %: <6) (NeoBioLab, Cambridge, MA), according to the man-
ufacturers’ instructions. For all the assays mentioned previously, 5–6 standards
including blank (negative control) were used.

Determination of fatty acid composition of mouse tissues and diets. Fatty acid
profiles of mouse diets and tail tissues (n= 9–10 per group) were analyzed by GC
as described previously16,55. Briefly, tissue or food samples were ground to powder
under liquid nitrogen and subjected to total lipid extraction and fatty acid
methylation by 14% boron trifluoride (BF3)-methanol reagent (Sigma-Aldrich) at
100°C for 1 h. Fatty acid methyl esters were analyzed using a fully automated
HP5890 GC system equipped with a flame-ionization detector (Agilent Technol-
ogies, Palo Alto, CA). The fatty acid peaks were identified by comparing their
relative retention times with the commercial mixed standards (NuChek Prep,
Elysian, MN), and area percentage for all resolved peaks was analyzed by using a
Perkin-Elmer M1 integrator.

Measurement of intestinal permeability. An intestinal permeability assay was
performed as previously described37. Briefly, 6 h fasted mice (n= 9–10 per group)
were gavaged with a phosphate buffer saline (PBS, pH 7.2) containing fluorescein
isothiocyanate (FITC)-dextran (4 kDa; Sigma-Aldrich, St. Louis, MO) at a dose of
600 mg kg−1 body weight. Blood samples (120 μl) were collected after 90 min from
the facial vein. Serum was diluted with an equal volume of PBS, and fluorescence
intensity was measured using a fluorospectrophotometer (Perkin-Elmer) with an
excitation wavelength of 480 nm and an emission wavelength of 520 nm. Serum
FITC-dextran concentration was calculated from a standard curve generated by
serial dilution of FITC-dextran in PBS.

Immunofluorescent staining. Formalin fixed ileum, liver and epididymal white
adipose tissue samples (n= 3 per group) and primary antibodies for ZO-1 (1:100;
GTX108592) and TLR4 (1:100; GTX125909) from GeneTex (San Antonio, TX,
USA) were given to experienced research technicians at the Massachusetts General
Hospital (MGH) Core, Boston, MA. Briefly, deparaffinize slides, citrate antigen
retrieval solution in pressure cooker, dual endogenous enzyme Block (5 min),
normal goat serum (20 min), incubation with primary antibody overnight at 4 C
and then rabbit polymer HRP (30 min) followed by DAB+ (5–10 min). All samples
were photographed using an immunofluorescence microscope (LSM710; Zeiss) and
analyzed for ZO-1 and TLR4 expression with the help of a pathologist fellow at
MGH Core37.

Liver histopathology and hepatic steatosis scoring. Frozen liver samples were
stained with Oil Red O and Masson’s trichrome (MGH Core, Boston, MA) and
subcutaneous white adipose and inter-scapular brown adipose tissues were stained

with hematoxylin & eosin (MGH Core, Boston, MA). Oil Red O-stained liver slides
were examined by an independent experienced pathologist blinded to group
assignment. Hepatic steatosis was graded based on the number and size of stained
fat droplets37: 0 (none); 1+ (<5%); 2+ (6–33%); 3+ (34–66%); 4+ (>66%); 5+
(>66% plus very large fat globules).

Glucose tolerance test. Glucose tolerance test (GTT) was performed in non-
anesthetized mice as described37. Briefly, mice (n= 9–10 per group) were fasted for
overnight, fasting blood sugar was measured, and glucose [1.0 g kg−1 body weight,
20% (wt/vol) glucose solution] was administered by oral gavage. Blood samples
(microliters) were drawn from the tip of the incised tail at 15, 30, 60, 90, and
120 min to measure blood glucose levels. Glucose tolerance was assessed by cal-
culating the incremental area under the curve of each GTT.

Statistics and reproducibility. Data were expressed as mean ± standard error of
mean (SEM). Box-plots (box showing the median, and the 25th and 75th percentiles,
and the whiskers of the graph show the largest and smallest values) were also used to
express the data. Multivariate analyses (PCA/PCoA/Taxon significance testing/PLS-
DA/PERMANOVA/non-parametric differential expression) of omics data were per-
formed using the Secondgenome R package: 0.2.4, DESeq2 package59, PAST version
3.11 (ref. 37), XLSTAT (2017.6) for MS Excel (Addinsoft SARL, Paris, France)37 and
SIMCA 14.1 (Umetrics, Stockholm, Sweden)64 as explained in the Methods section.
Gephi Graph Visualization and Manipulation software version 0.9.2 (ref. 37) was used
to visualize the network. ImageJ software was utilized to draw scale bars on histo-
pathological pictures. Univariate analyses (t-tests, ANOVA and correlation analysis)
were performed using Prism 8.0 (GraphPad Software, Inc.) and PAST version 3.11
and SIMCA 14.1. Heat maps were generated using XLSTAT software version 2017.6
and Prism 8.0 (GraphPad Software, Inc.). Statistical differences among four groups in
other data were evaluated by ordinary one-way analysis of variance (ANOVA) with
Tukey’s or non-parametric Kruskal–Wallis test with Dunn’s multiple comparison
post-tests (GraphPad Prism 8). Data were checked for heterogeneous variance with
the Bartlett’s and Brown-Forsythe tests or the F test. If unequal variance was detected,
data were analyzed using non-parametric tests. If parametric and non-parametric
analyses did not show statistical differences, actual data were used for analysis without
transformation and parametric analysis results were presented. The significance was
considered to be at P < 0.05.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Source data of figures, OTU tables, raw data, taxonomy, FASTA files, KEGG and KO
pathways and abundance data, metadata for 16S rRNA gene sequence analysis as well as
metabolomics data generated in this study have been made publicly available in
Figshare68 (https://figshare.com/s/89bd8826c65b96c7e197; https://doi.org/10.6084/m9.
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