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To the Editor:

Recently, there has been growing interest in statistical algorithms designed for tackling intra-

sample cellular heterogeneity (ISCH) in Epigenome-Wide Association Studies (EWAS) 1. 

Such algorithms can be broadly classified as either reference-based (if they use reference 

DNA methylation (DNAm) profiles of representative cell types) 2, or reference-free (if they 

don’t require such reference profiles) 3–6. Reference-free methods can be further subdivided 

into those that use the phenotype of interest in the inference process (this includes 

algorithms such as Surrogate Variable Analysis (SVA) 4, 7 and RefFreeEWAS 3), and those 

that do not (e.g. EWASher 5 and RUV 6). Comparisons between these different inference-

paradigms is of paramount interest in order to inform the EWAS community on how best to 

approach the ISCH problem.

A recent study by Rahmani et al 8 presented a reference-free algorithm called ReFACTor, 

and suggested that it leads to improved estimates of cell type composition and power when 

compared to other competing algorithms. However, the approach on which ReFACTor is 

based could incorrectly remove the biological signal of interest if the latter is stronger than 

the variation associated with cell-type composition. We confirmed this by applying 

ReFACTor to additional datasets. Below we discuss key issues which any future 

methodological comparative study should pay particular attention to, to ensure robust and 

meaningful conclusions, which can then be used to guide the EWAS community.

In principle, an advantage of a reference-free method like ReFACTor is that it is applicable 

to any tissue type. It is important therefore to assess performance in tissue types other than 

blood, because assumptions valid in one tissue type may not be valid in others. For instance, 

ReFACTor relies on the assumption that the top components of variation are associated with 

changes in cell-type composition, effectively using these components to construct variables 

that account for variations in cell-type. While this assumption may be valid for EWAS 

conducted in whole blood 9, the generality of it to other tissue types remains to be shown. In 

essence, ReFACTor is similar in concept to Remove Unwanted Variation (RUV) 6 in that 

both select control genes that capture confounding variation. However, blind application of 

ReFACTor could lead to a substantial loss of power if control genes are misidentified as 

those carrying biological signal. Although these problems represent an intrinsic limitation of 

any reference-free method, it will be particularly acute for methods like ReFACTor or 

EWASher 5, which do not use phenotype information from the outset. We used normal 

mammary epithelial and breast cancer cell-line data to define a gold-standard set of true 

positive features and a breast cancer tissue EWAS for the evaluation of several methods. 

SVA 4 had a much better control of power,outperforming ReFACTor by as much as 70% 

(Table-1, Supplementary Data 1-2, Supplementary Software 1-2). While specificity is harder 

to estimate, the improved power of SVA over ReFACTor was at the expense of only a 10–

20% lower specificity (Table 1). ReFACTor’s loss of power in our cancer-tissue EWAS was 

due to the top components of variation correlating more strongly with disease status than 

with cell-type composition (Supplementary figure 1). Only lower-ranked components 

correlated with adipose cell content, which is the major source of cell-type variation in 

breast tissue (Supplementary figure 1). This problem could in principle be circumvented by 

applying ReFACTor to the normal samples only, as suggested by Rahmani et al., but it 
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remains to be tested on more datasets. Hence, application of a method like ReFACTor 

demands that one must carefully consider the tissue and biological context.

A second key issue concerns the evaluation of a reference-free method in terms of modelling 

cell-type composition. In the case of ReFACTor, estimated components were added 

successively to a linear model, leading to an improvement in the fraction of variance 

explained (summarized with R2 values). To avoid the problem of overfitting we used a 

nested models likelihood ratio test (LRT) (or adjusted R2 values). We found little 

justification for the successive addition of components (Supplementary Methods, 

Supplementary Software 1-4, Supplementary Data 3, Supplementary figure 2). Alternatively, 

one could attempt to estimate the number of significant components of variation. In our 

hands entering such estimates into ReFACTor leads to a drop of as much as 20% in R2 

values, resulting in reduced modeling performance, when compared to reference-based 

methods (Supplementary figures 3-4). This indicates that application of ReFACTor with all 

estimated components could lead to overfitting. We confirmed this further using training/test 

set partitions (Supplementary figure 5).

Another issue is the use of a single or limited number of datasets with matched FACS data to 

benchmark a novel method against existing algorithms. In our experience, the complexity 

and unknown nature of the sources of variation in EWAS data requires many datasets to 

reach unbiased conclusions. To demonstrate this, we performed cell composition analysis for 

an independent whole blood dataset, as well as an extensive analysis encompassing five 

different in-silico mixture experiments, drawing on 1573 purified blood cell-types from over 

6 different studies (Supplementary table 1). These analyses demonstrate the strength of 

Houseman’s reference-based method compared to ReFACTor (Supplementary figure 2, 

Supplementary figures 6-9). Further issues, including inappropriate choice of gold-standards 

in real data are discussed in Supplementary Methods.

In summary, we suggest that future studies proposing novel methods ought to (i) provide 

comprehensive comparisons to existing algorithms, (ii) use biological scenarios and datasets 

that allow objective comparisons, and (iii) when applicable, include tissues other than blood. 

We provide some recommendations in the accompanying Supplementary Information and 

Supplementary table 2. Briefly, we recommend reference-based methods for scenarios 

where the composition of tissues is relatively well known, and reference-free methods like 

SVA or RefFreeEWAS when reference DNAm profiles are not available. We point out that 

our recommendations are based on currently available data sets and approaches, which may 

change as the field continues to evolve.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table-1:

Table comparing the relative sensitivity (SE) and specificity (SP) of ReFACTor (for 4 different choices of k 

and ncp parameters: ncp=15, estimated using RMT 7 as described in Supplemental Methods), to SVA and to 

an unadjusted analysis. Sensitivities and Specificites were estimated using a set of n=23258 true positives and 

34078 true negatives, respectively, and are shown at an unadjusted P < 0.05 and FDR corrected < 0.05.

Unadj. SVA ReFACTor
(k=6,ncp=6)

ReFACTor
(k=6,ncp=15)

ReFACTor
(k=10,ncp=10)

ReFACTor
(k=10,ncp=15)

SE
(P < 0.05)

0.90
(n=20876)

0.83
(n=19356)

0.09
(n=2066)

0.02
(n=412)

0.02
(n=410)

0.02
(n=410)

SE
(FDR < 0.05)

0.89
(n=20667)

0.81
(n=18743)

0.04
(n=835)

≈0
(n=23)

≈0
(n=13)

≈0
(n=13)

SP
(P < 0.05)

0.53
(n=16057)

0.70
(n=10274)

0.62
(n=12793)

0.92
(n=2603)

0.95
(n=1582)

0.95
(n=1582)

SP
(FDR < 0.05)

0.58
(n=14146)

0.75
(n=8436)

0.84
(n=5571)

0.99
(n=115)

≈1
(n=11)

≈1
(n=11)
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