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Abstract

Despite the development of massively parallel computing hardware including inexpensive graphics 

processing units (GPUs), it has remained infeasible to simulate the folding of atomistic proteins at 

room temperature using conventional molecular dynamics (MD) beyond the μs scale. Here we 

report the folding of atomistic, implicitly solvated protein systems with folding times τf ranging 

from ~10 μs to ~100 ms using the weighted ensemble (WE) strategy in combination with GPU 

computing. Starting from an initial structure or set of structures, WE organizes an ensemble of 

GPU-accelerated MD trajectory segments via intermittent pruning and replication events to 

generate statistically unbiased estimates of rate constants for rare events such as folding; no 

biasing forces are used. Although the variance among atomistic WE folding runs is significant, 

multiple independent runs are used to reduce and quantify statistical uncertainty. Folding times are 

estimated directly from WE probability flux and from history-augmented Markov analysis of the 

WE data. Three systems were examined: NTL9 at low solvent viscosity (yielding τf = 0.8 − μs), 

NTL9 at water-like viscosity (τf = 0.2 − 2 ms), and Protein G at low viscosity (τf = 3 − 200 ms). In 

all cases the folding time, uncertainty, and ensemble properties could be estimated from WE 

simulation; for Protein G, this characterization required significantly less overall computing than 

would be required to observe a single folding event with conventional MD simulations. Our results 

suggest that the use and calibration of force fields and solvent models for precise estimation of 

kinetic quantities is becoming feasible.
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Introduction

Elucidating the kinetics and mechanisms of protein folding has been a decades-long focus of 

molecular biophysics, both experimental and theoretical/computational.1–19 Significant 

challenges remain, however, notably whether molecular dynamics (MD) simulations will 

provide the hoped-for reproducible and atomically detailed folding trajectories.
1, 11, 13–14, 20–23 Despite isolated reports of success,24–25 MD simulations generally have not 

produced room temperature atomistic folding trajectories beyond the μs timescale even with 

modern hardware.26 Promising results have been reported using path-sampling 

techniques27–31 but no simulation methodology has emerged as a general-purpose tool for 

folding, especially for timescales beyond the μs range.

Here we report substantial progress in the application of the weighted ensemble (WE) path 

sampling method32–36 to room-temperature folding at the microsecond (μs), millisecond 

(ms) and second (s) scales, exploiting the power of GPU and cluster computing. We study 

three atomistic implicitly solvated systems: NTL9 with low and high-friction solvent, as well 

as Protein G at low friction. These are costly studies, requiring aggregate trajectory totals of 

10s to 100s of μs per system, but they enable fairly precise (order-of-magnitude) estimation 

of folding rate constants. In earlier work, Ensign and Pande26 were able to estimate the WW-

domain folding time of ~100 μs at room temperature using distributed computing with a 

total cost of 400 – 500 μs per system. To our knowledge, there are no other computations of 

room-temperature atomistic protein folding rates at the ms scale and beyond. Prior folding-

rate calculations of NTL9 and Protein G were conducted at high temperature (355 K1/370 

K37, and 350 K1 respectively) because of the prohibitive room-temperature timescales.

In addition to information about protein folding, the ability to quantify rate constants for 

slow-timescale biomolecular behavior is a critical step in model (force field) development. 

Although MD simulation is now a standard tool in structural biology studies,38–41 the 

governing parameters of MD force fields have been determined based on energy 

minima42–46 whereas energy barriers are expected to govern kinetic behavior. Given the 

evident importance of dynamic biomolecular phenomena, it is critical to obtain simulation-

based rate constants to permit further refinement of force fields. Force fields cannot be 

assessed fully without the ability to compute kinetic observables, and we report on 

significant progress in this regard.

The WE method (Fig. 1A) employed in the present report is one of a number of path 

sampling approaches based on rigorous statistical mechanics33, 47–52 capable of yielding 

unbiased rate constants. Although all these methods are theoretically well-grounded, WE 
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does offer the pragmatic advantage of being fully independent of the dynamics engine 

employed, which has enabled its application with a wide range of both molecular and cell-

scale simulation software.34, 53–59 This versatility facilitated the integration of the WESTPA 

software package60 with the GPU-accelerated version of the AMBER molecular dynamics 

package61–63 as employed here. The WE method yields ensembles of fully continuous 

trajectories from which non-equilibrium observables can be calculated, including kinetic and 

mechanistic properties. Importantly, the continuous WE trajectories spanning from unfolded 

to folded macrostates enable folding rate estimation using the history-augmented Markov 

state model (haMSM) formalism which is unbiased at arbitrary lag times.56, 64

Results

The WE procedure takes advantage of running in parallel multiple simulations with well-

defined probabilities (or weights) in a conformational space that typically is divided based 

on pre-defined progress coordinates (see Fig. 1A).32 The trajectory pruning and replication 

strategy facilitates progress along the coordinates and guarantees a constant total weight of 

all trajectories during the WE simulation (see SI Methods for more details). Fig. 1B shows a 

comparison of a brute-force MD simulation with a typical WE simulation, both starting from 

the same unfolded NTL9 structure. After ~7 μs of aggregate simulation time, the NTL9 Cα-

RMSD in the MD simulation remains > 6 Å, whereas in the WE simulation folded NTL9 

structures with Cα-RMSD < 1 Å are sampled. The probability flux of simulations reaching 

the target state allows estimation of the folding kinetics and the interrogation of continuous 

trajectories can provide information on folding mechanisms.

Estimates for folding rate constants are derived in two ways from WE data – directly from 

observed probability flows and using haMSM analysis. In both approaches, all WE 

simulations were used for a given system. In the direct analysis, Figs. 2–4 show that the 

probability flux into the folded states, which is an estimator for the rate constant,65 

apparently reaches a steady value in all three atomistic folding systems: NTL9 at low 

friction, NTL9 at high friction, and Protein G at low friction. The “molecular time”, tmol, 

shown in Figs. 2–4 represents the time elapsed during individual trajectories. It is 

noteworthy that the flux reaches a plateau rather abruptly for Protein G, and to a value lower 

than the experimental value despite the low friction model, in contrast to the NTL9 data. 

Although the folding flux is dominated by a relatively small fraction of the independent 

runs, the dominating runs switch during the course of the trajectories (Figs. S1–S3). 

Nevertheless, the profiles of flux vs. Cα-RMSD (Figs. S4–S6) indicate the Protein G 

simulations in fact are far from steady state, implying the direct flux value for that system is 

not reliable despite its apparent plateau as a function of tmol. The flux profiles at true steady 

state should be constant at all hypersurfaces (e.g., fixed Cα-RMSD values) separating folded 

from unfolded macrostates.66–67

We also employed haMSM analysis, which is unbiased for steady-state flux estimation at 

arbitrary lag times, and small lag times allow fuller use of the extensive WE data.56, 64, 68 

The approach is of particular interest for Protein G because, in principle, a haMSM can 

estimate steady-state behavior using trajectories generated in the transient period – i.e., in 

the approach to steady state. As noted, the flux profile for Protein G indicates those WE 
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simulations clearly remained in the transient regime. The haMSM results are also shown in 

Figs. 2–4. For the NTL9 systems, the haMSM rate estimates are consistent with estimates 

based on direct WE fluxes. For Protein G, the haMSM folding rate estimate is substantially 

higher than the direct WE estimate, and notably, it slightly exceeds the experimental value as 

expected for the low-friction solvent model.

WE simulation uses an ensemble of trajectories which all require computing resources, and 

aggregate simulation times are given in Table 1 (see SI for WE parameters and computing 

resources). Additional runs for the NTL9 systems were performed with alternative WE 

protocols to confirm the consistent, unbiased nature of the data: Figs. S7 and S8 show 

consistent time evolution of the folding flux based on different WE protocols for both low 

and high-friction systems.

The present study necessarily estimated folding times specific to the chosen force field and 

solvent model, and also conditioned on the starting structures. The novelty of the results is 

their relatively high precision and unbiased nature due to the theoretical foundations of the 

WE and haMSM methods.35, 56, 64 Hence, although comparison to experimental folding 

times are shown in Table 1, readers are cautioned that the present study should be considered 

a first step in assessment of molecular models and initial ensembles. Given these caveats, the 

rough agreement with experimental values is encouraging but also points to the need for 

further investigation of solvent modeling and initial ensembles as discussed below.

A comparison of the force field-specific folding times and the aggregate simulation times as 

given in Table 1 enables assessment of the effectiveness of the WE protocol. In the case 

where WE exhibits least enhancement of sampling, namely NTL9 at low friction (Fig. 2), 

the calculated folding time range of 0.8 – 9.0 μs from Bayesian bootstrapping of haMSM 

estimates employed ~100μs of aggregate simulation. Fig. 2 reveals that much of the 

computation was used to confirm steady behavior and in fact the folding time could have 

been inferred from substantially less computation. In principle, similar results could have 

been obtained via 5–10 independent standard MD runs totaling the same aggregate 

simulation time. However, given the experimental ms folding time, it is unlikely such MD 

runs would have been attempted, and WE provided a reliable estimate in an affordable 

amount of computing effort. The higher-friction NTL9 study, which should be a better 

mimic of aqueous viscosity,69–71 reveals a WE-haMSM folding time range of 0.2 – 1.9 ms 

(Fig. 3) that is essentially prohibitive for harvesting multiple events via conventional MD, 

even on modern GPU platforms. The value of the WE protocol is unambiguous for the 

slower Protein G system, where a folding time range of 3.3 – 200 ms is estimated in much 

less than a ms of aggregate simulation time (Fig. 4). By comparison, the computational cost 

of rate estimation here is substantially less than the previously reported overall cost of ~500 

μs to estimate a ~65 μs room-temperature folding time.26

During the WE process, a variety of folding trajectories are simulated, enabling unbiased 

computation of ensemble properties. The weighted distributions of Cα-RMSD values shown 

in Figs. S9A, S10A for the NTL9 simulations and in Fig. S11A for the Protein G simulation 

serve as effective folding free energy profiles, which indicate that NTL9 folding has an 

energy minimum at Cα-RMSD = ~6 Å and Protein G at Cα-RMSD = ~10 Å. These regions 
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are separated from the folded state by a free energy barrier, suggesting a definition of the 

transition region and thus allowing calculation of the transition times (event durations) of the 

continuous WE folding trajectories. Of growing interest,72–73 the event duration depends on 

the exact event starting point and on the solvent viscosity.74–75 For NTL9, at low viscosity, 

the distributions of event duration have a peak at 1.5 – 2 ns (Fig. S9B), while at the higher 

water-like viscosity the peaks occur at slightly larger values ~4–5 ns (Fig. S10B). For 

Protein G, the event duration peaks are less clearly defined but occur in the range of ~2–7 ns 

(Fig. S11B).

A visual analysis of representative intermediate structures sheds light on the folding 

mechanisms. The NTL9 molecular structures shown in Fig. 5A illustrate that during the 

folding process the α-helix is formed first, followed by the formation of the N-terminal β-

hairpin. A putative rate-limiting step of NTL9 folding is characterized by the association of 

the C-terminal β-strand with the N-terminal β-hairpin through hydrogen bonds. During the 

final steps (1 Å < Cα-RMSD < 4 Å), the protein reduces its solvent-accessible surface area 

by ~5 nm2 when forming the remaining native hydrogen bonds, bending the N-terminal β-

hairpin turn, and aligning the α-helix with the β-sheet. Similarly, Protein G (Fig. 5B) folds 

by first forming the α-helix and both β-hairpins and then bringing them all closer to each 

other, which appears to define the main free energy barrier, before connecting the two 

hairpins with hydrogen bonds and establishing the 4-stranded β-sheet. From the initial 

formation of the secondary structural elements to the fully folded structure (i.e. 1 Å < Cα-

RMSD < 10 Å), Protein G reduces its overall surface area by ~ 8nm2.

Because some prior folding studies have been performed near the melting temperature, Tm, 

to improve sampling,1, 25 it is of interest to investigate the effects of temperature on the 

folding process. After melting temperatures were estimated approximately (Figs. S12), we 

performed an additional set of WE simulations for low-friction NTL9 at T = 325 K ~ Tm. 

Comparison of the two simulation sets shows similar folding kinetics (Fig. S13) which we 

emphasize were obtained in the context of a single starting structure and implicit solvent. In 

future work, it will be of interest to compare folding mechanisms when the folding process 

is modeled more completely and accurately.

Discussion

The data reported here suggest that molecular dynamics calculations may soon be able to 

measure precisely and regularly a broad array of experimentally relevant timescales 

characterizing functional motions of biomolecules. Such measurements are necessarily 

limited by the accuracy of the underlying model equations (i.e., the force field) but 

understanding and correcting force field mis-calibrations is essential for progress in 

computational structural biology. These corrections will not be possible without reliable 

kinetics measurements, and the present data yields roughly order-of-magnitude precision 

(Table 1). Current force fields can suffer inaccuracies exceeding 1 kcal/mol for free energy 

minima76–78 and errors at least as large are expected for the barriers which govern kinetics, 

which have not been part of force field parametrization.21, 42–43, 79–82 Note for reference that 

an order-of-magnitude change in an Arrhenius factor exp(−ΔG/RT) corresponds to a shift in 

ΔG of 1.4 kcal/mol; hence uncertainty of only 0.7 kcal/mol corresponds to a tenfold range.
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Accuracy in kinetics also depends on the solvent model. Implicit solvation was employed in 

the present study, i.e., water molecules were not explicitly modeled. Because such models 

are in common use,25, 37, 83–87 it is important to assess their kinetic accuracy. Although the 

overall computational cost for WE-based rate estimation is approximately double at water-

like viscosity (γ = 80 ps −1) compared to low viscosity (gamma=5pŝ-1), the estimated 

folding time is longer by a factor exceeding 10. This difference in folding times is consistent 

with physical expectations but somewhat at variance with a prior report.26 Going forward, 

additional comparison to explicit-solvent folding rate constants will be an important goal.

Another limitation of the present study is also intrinsic to protein folding generally – namely, 

ambiguity regarding the unfolded state ensemble. Experimentally, proteins are denatured 

chemically or with temperature,88–91 each of which should yield a different unfolded 

ensemble, and the sensitivity of refolding to the denaturing process is an under-explored 

topic.92 Given that some folding times are ms-scale or less, measurements may be sensitive 

to experimental protocols (e.g., mixing, cooling) occurring on the same timescales. Because 

of these ambiguities, we chose to keep our study as controlled as possible and focused 

specifically on folding from a single initial structure, recognizing the importance of future 

study of ensemble-initialized folding. Our mechanistic discussion above must be seen as 

restricted to this condition.

Quantification of statistical uncertainty was a central part of this study, and numerous 

repeated WE simulations were required to overcome the large variance of the present folding 

protocol (see Figs. S1–S3). Although a large variance is generally and rightly a cause for 

concern in data analysis, our ability to perform tens of truly independent simulations 

distinguishes this work from typical molecular simulation studies. As described elsewhere, 

neither traditional standard-error analysis nor bootstrapping properly quantify uncertainty in 

small-size data sets with large log-variance.93 We therefore employed a Bayesian 

bootstrapping approach both for direct WE and haMSM flux estimates, which is superior at 

characterizing precision in such data.93–94 Nevertheless, no analysis method can correct for 

insufficient sampling of an unknown distribution, and we estimate that the nominal 95% 

Bayesian credibility regions reported here empirically correspond to ~60% probability of 

bracketing the true mean – and such uncertainty in the error analysis is intrinsic to the 

modest sample sizes.93 This point is borne out by the apparent ‘false plateau’ of the Protein 

G direct flux. Future studies will clearly benefit from variance-reduction strategies, which 

have been proposed.95–96

The weighted ensemble method was chosen over other rigorous path sampling 

approaches10, 27–31, 47–52 and standard (history-independent) Markov state models (MSMs).
97–98 Compared to other path sampling methods, WE offers fully scalable parallelization and 

does not require hard-coding within the dynamics engine in order to “catch” trajectories as 

they cross interfaces.34 When compared to standard MSMs, WE not only avoids any 

approximation but also offers continuous trajectories and the fine temporal resolution needed 

to infer mechanistic details occurring on 5–10 ns timescales (Figs. S9–S11). By contrast, 

modern well-validated MSMs often require lag times >100 ns.97–98 The continuous 

trajectories generated by WE allow application of the history-augmented MSMs at arbitrary 
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lag times, which are unbiased for estimation of steady-state fluxes.56, 64 Using short lag-

times for haMSMs in turn allows use of all data generated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The WE procedure and comparison to regular MD simulation. (A) A schematic of the WE 

simulation procedure is shown with two-dimensional binning for protein folding. Three 

iterations (red, then blue, then green) are shown based on a target number of 4 trajectories 

per bin, illustrating the “statistical ratcheting” effect which is possible without applying 

biasing forces. Note that a set of new trajectories is shown only for those parent trajectories 

that reached a new bin. (B) A brute-force MD simulation of NTL9 leads to the “MD-partly 

folded” structure (black structure) with a Cα-RMSD of 6.5 Å with respect to the folded 

crystal structure (blue structures at right) after 7 μs of simulation time. By contrast, a WE 

simulation starting from the same initial structure (blue structure at left) samples the “WE-

folded” NTL9 structure with Cα-RMSD < 1 Å (red structure on the right panel). The WE 

simulation time is the aggregate time including all trajectory segments, representing a fair 

comparison using roughly the same amount of computational resources.
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Figure 2: 
Rate constant estimations for NTL9 folding using 2D WE method with solvent viscosity (γ) 

set to 5 ps−1. The red lines show the nominal 95% Credibility Region (CR) as a function of 

molecular time from Bayesian bootstrapping based on direct WE rate constant estimates, 

which were windowed averages of the previous 1 ns of molecular time for each of the 10 

independent simulations (see Figure S1). The green lines show the 95% CR for rate 

constants obtained by the haMSM method. The experimental rate constant is shown in gold, 

but note that the low viscosity used in these simulations is expected to yield overly fast 

kinetics.
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Figure 3: 
Rate constant estimations for NTL9 folding using 1D WE method with solvent viscosity (γ) 

set to 80 ps−1. The red lines show the nominal 95% Credibility Region (CR) as a function of 

molecular time from Bayesian bootstrapping based on direct WE rate constant estimates, 

which were windowed averages of the previous 1 ns of molecular time for each of the 30 

independent simulations (see Figure S2). The green lines show the 95% CR for rate 

constants obtained by the haMSM method. The experimental rate constant is shown in gold.
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Figure 4: 
Rate constant estimations for Protein G folding using 2D WE method with solvent viscosity 

(γ) set to 5 ps−1. The red lines show the nominal 95% Credibility Region (CR) as a function 

of molecular time from Bayesian bootstrapping based on direct WE rate constant estimates, 

which were windowed averages of the previous 1 ns of molecular time for each of the 15 

independent simulations (see Figure S3). The green lines show the 95% CR for rate 

constants obtained by the haMSM method. The experimental rate constant is shown in gold, 

but note that the low viscosity used in these simulations is expected to yield overly fast 

kinetics.
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Figure 5: 
A set of example NTL9 (A) and Protein G (B) structures with decreasing Cα-RMSDs from 

left to right obtained from a continuous trajectory along with the folded crystal structure. 

Residues are colored based on their native secondary structures in violet (α-helix), green (β-

sheet), and cyan (loops). Native backbone hydrogen bonds are indicated as dashed lines, if 

they emerge in the structure shown.
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Table 1:

Computational cost and folding rate constants for the three systems studied here (AMBER FF14SB force 

field).

System Number of 
indep. WE 
simulations

Molec. time (ns) Aggregate 
simulation 
time (μs)

Wall-clock 
time* 
(days /

simulation)

WE-Direct folding time** WE-haMSM folding time*** Expt’l folding time

NTL9,
γ = 5 
ps−1

10 12 115 22 0.6 – 8 μs 0.8 – 9.0 μs ~ 1 ms

NTL9,
γ = 80 

ps−1

30 45 252 20 0.01 – 0.8 ms 0.2 – 2 ms ~ 1 ms

Protein 
G,

γ = 5 
ps−1

15 15 225 31 4 – 200 sec 3 – 200 ms ~ 1 sec

*
Based on 1 GPU card or ~48 CPU cores.

**
Averaged from molecular times 10–12 ns (NTL9, γ = 5 ps−1), 30–45 ns (NTL9, γ = 80 ps−1), and 10–15 ns (Protein G), respectively. Given 

range is the nominal 95% Bayesian Credibility Region, which corresponds to a ~60% range of uncertainty: see Ref. 92 and SI.

***
From haMSMs with 10,000 microstates trained from molecular time 10 –12 ns (NTL9, γ = 5 ps−1), 30–45 ns (NTL9, γ = 80 ps−1), and 10–15 

ns (Protein G), respectively. The uncertainty range is the nominal 95% Bayesian Credibility Region.
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