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Abstract

Optical coherence tomography (OCT) is used to produce high resolution depth images of the 

retina and is now the standard of care for in-vivo ophthalmological assessment. In particular, OCT 

is used to study the changes in layer thickness across various pathologies. The automated image 

analysis of these OCT images has primarily been performed with graph based methods. Despite 

the preeminence of graph based methods, deep learning based approaches have begun to appear 

within the literature. Unfortunately, they cannot currently guarantee the strict biological tissue 

order found in human retinas. We propose a cascaded fully convolutional network (FCN) 

framework to segment eight retina layers and preserve the topological relationships between the 

layers. The first FCN serves as a segmentation network which takes retina images as input and 

outputs the segmentation probability maps of the layers. We next perform a topology check on the 

segmentation and those patches that do not satisfy the topology criterion are passed to a second 

FCN for topology correction. The FCNs have been trained on Heidelberg Spectralis images and 

validated on both Heidelberg Spectralis and Zeiss Cirrus images.
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1 Introduction

Optical coherence tomography (OCT) is a widely used modality for imaging the retina as it 

is non-invasive, non-ionizing, and provides three-dimensional data which can be rapidly 

acquired [6]. OCT improves upon traditional 2D fundus photography by providing depth 

information, which enables measurements of layer thicknesses that are known to change 

with certain diseases [9]. Automated methods for measuring layer thicknesses in large-scale 
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studies are critical since manual delineation is time consuming. In recent years, many 

automated methods have been developed for the segmentation of retinal layers [3, 7, 10]. 

The most prominent technique in use for OCT images are graph based methods coming 

from the work of Garvin et al. [5]. Recent developments in deep learning have made deep 

convolutional networks a viable alternative to this status quo and it provides a more flexible 

framework for abnormal retina analysis. Fang et al. [4] used a convolutional neural network 

to predict the central pixel label of a given image patch, and subsequently used the graph 

based approach to finalize the segmentation. However, such patch based pixel-wise labeling 

schemes use overlapped patches which introduces redundancy and a trade-off between 

localization accuracy and patch size.

The more elegant architectures of fully convolutional networks (FCNs) [8] have been 

proposed and applied to various segmentation tasks. In FCNs, the fully connected layer of 

traditional convolutional neural networks is replaced with convolutional layer. The network 

can be trained end-to-end and pixels-to-pixels, and the outputs can have high resolution. 

This architecture avoids patch based pixel labeling and is thus more efficient. Roy et al. [13] 

designed a fully convolutional network to segment retina layers and fluid filled cavities in 

OCT images.

Although FCN based networks have been successful in various segmentation tasks, at its 

core it is providing pixel-wise labeling without using higher-level priors like topological 

relationships between layers or layer shape, and can thus give nonsense segmentations. In 

the case of OCT, or medical imaging in general, there are strict anatomical relationships that 

should be preserved. Approaches proposed to solve this include, Chen et al. [2] using a fully 

connected conditional random field (CRF) as a post-processing method for the segmentation 

map from a deep network; however, the CRF does not utilize the topology or shape prior 

information. Bentaieb et al. [1] proposed a hand-designed loss function to penalize topology 

disorders, but the pixel-wise labeling of FCN still cannot guarantee the topology correctness 

and cannot fix the topology defects. Ravishankar et al. [11] used a FCN to segment kidney 

and cascaded a convolutional auto-encoder to regularize the shape and works well.

We propose to segment the retina layers as well as building a framework to correct 

topological defects that contradict the known anatomy of healthy human retinas. We do this 

by cascading two FCNs. The first FCN segments the retina layers and produce the initial 

segmentation masks. We also proposed an algorithm to check the topology correctness of the 

segmentation. We then iterate the masks with topology defects over the second FCN to fix 

the defects and check the topology until all the segmentation masks have the correct 

topology or an max iteration count is reached. Since the topology fixing net fixes most of the 

topology defects in the first two iterations, only a small number of masks need to iterate 

through the second net multiple times. There are two key differences between our approach 

and the work of Ravishankar et al. Firstly, we iterate over the topology correction step with 

successive iterations correcting 98% of defects; secondly our network is structurally similar 

to a segmentation style network with long skip connections and is not a convolutional auto-

encoder.
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2 Method

2.1 Preprocessing

We first identify the Bruch’s membrane and flatten the input images to it, which is a 

standard OCT pre-processing step. We then subdivide the B-scan into 128 × 128 overlapping 

image patches with a fixed step size (determined by the B-scan size), resulting in 10 image 

patches per B-scan. When we reconstruct the B-scan segmentation from those patches we 

average the segmentation probability map if they are overlapped. See the pre-processing 

portion of Fig. 1.

2.2 Segmentation Network Architecture

Our segmentation FCN (S-Net) is based on U-net [12], and consists of a contracting encoder 

and an expansive decoder. The encoder takes a 128 × 128 image patch as input and 

repeatedly uses 3 × 3 convolutions and rectified linear unit (ReLU) activation followed by 

batch normalization. We conduct 2 × 2 max pooling at four different layers in the encoder to 

down sample the image patches. The decoder portion of our FCN concatenates the feature 

map from the corresponding encoder and up-samples it repeatedly. The final output from S-

Net is a 10 × 128 × 128 volume, which corresponds to probability maps for our eight layers 

and backgrounds above and below the retina(vitreous and choroid). Figure 2 shows a 

schematic of the network used, with training outlined in Sect. 2.5.

2.3 Topology Correction Network Architecture

The topology fixing net (T-Net) shares the same structure as S-Net, with the addition of an 

applied dropout of 0.5 after each max pooling and up-sampling layer. T-Net tries to learn the 

shape and correct topology of the true segmentation and use the learnt knowledge to fix the 

topology identified in the output of S-Net. Training for T-Net is outlined in Sect. 2.5.

2.4 Topology Checking

The segmentation masks should have a strict topology relationship, with layers being nested, 

and the k-th layer should only touch the (k − 1)-th and (k + 1)-th layers with no overlaps or 

gaps for k = 1,…, 8 (k = 0 and 9 are the vitreous and choroid respectively). S-Net outputs a 

segmentation mask of size 10 × 128 × 128, which we denote as Mk (x) for k = 0,…, 9, with 

x the A-scan index within the 128 × 128 image patch. We build a new mask, Mt (x), as

Mt(x) = ∑
k = 0

9
k × Mk(x) .

Figure 3 shows an example Mt (x) and the corresponding profile of one A-scan. We perform 

a backward difference within each A-scan, if the topology is correct, there are no negative 

values. However, if there are hierarchical disorders, gaps, or overlaps, there will be negative 

values. We use this analysis to identify segmentation masks with topological defects, and 

such masks are passed to T-Net for correction.
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2.5 Training

S-Net is trained based on 128 × 128 Spectralis image patches, with output 10 × 128 × 128 

based on manual delineation of the OCT data. We train the FCN using back-propagation to 

minimize a loss function based on a modified Dice score between the ground truth and the 

output segmentations. T-Net, which fixes topology errors in the segmentation maps, is 

trained on manual delineations with simulated randomly generated topological defects. 

Examples of our simulated defects and the corresponding ground truth are shown in Fig. 3.

3 Experiments

3.1 Data

We have 7 Spectralis Spectral Domain OCT (SD-OCT) scans (of size 496 × 1024 × 49) and 

each has 8 B-scans manually delineated for training. We flatten and crop each B-scan into 

128 × 1024 size images and extract overlapped 128 × 128 patches by a fixed step and obtain 

69 patches from each B-scan, with 7 × 8 × 69 = 3864 total training patches. For validation, 

we have 10 manually delineated Spectralis scans (totaling 490 manually delineated B-scans) 

and 6 manually delineated Cirrus scans, each has 8 B-scans delineated (totaling 48 B-scans).

3.2 Comparison to Manual Segmentation

Spectralis.—We compared the cascaded network (S-Net + T-Net) with the single 

segmentation network (S-Net) and a state-of-art random forest and graph cut based method 

(RF+Graph) [7]. The Dice coefficients between the segmentation results and manual 

delineation of eight retina layers are shown in Table 1. RF + Graph is still better than the 

deep network as the graph have been designed and refined for retina segmentation. However, 

the deep network (S-Net) has reached similar performance to the RF + Graph and the 

topology fixing (S-Net + T-Net) gives the deep network the correct anatomical structure. See 

Fig. 4 for example results.

Cirrus.—The network was trained only on Spectralis images, but was also evaluated on 

Cirrus images, with results shown in Table 2. In this case, we used the version of RF + 

Graph that had been trained on Cirrus data, with graph parameters specifically chosen to 

optimize performance on Cirrus data. It is observed that S-Net + T-Net has reached 

comparable performance to that of RF + Graph, which is rather striking given that the deep 

network had been trained only on Spectralis data. See Fig. 4 for example results.

3.3 Evaluation of Topology Correction

From Tables 1 and 2 we see only small improvements in the Dice coefficients after the T-Net 

because the topology disorders only affect a small number of pixels, but the topology 

disorders are greatly decreased. Figure 5 shows the relation between the percentage of 

patches with topology disorders and the iteration through the T-Net. After eight iterations 

most segmentation masks converge to the correct topology. Figure 6 shows some examples 

of T-Net.
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4 Conclusions

In the paper, we propose a cascaded FCN framework to segment both Spectralis and Cirrus 

retina SD-OCT images while addressing the topology relations between layers. The 

topology fixing net is learning the shape and topology priors of the segmentation and uses 

the learnt priors to fix the topology disorders. It fixes 98% of them within eight iterations. 

The topology errors that are not corrected are usually single wrongly labeled pixels around 

layer boundaries as they are not represented in the simulated training data. We expect that 

better topology correction can be achieved by simulating more representative topology 

defects and include manually selected real topology defects and original image intensities as 

extra information. We plan to modify the framework to incorporate the prior topological 

knowledge for segmenting abnormal retinas.
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Fig. 1. 
Our proposed cascaded FCNs, made up of a Segmentation FCN and Topology fixing FCN 

that we iterate over to resolve topology errors.
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Fig. 2. 
A schematic of the network structure of S-Net and T-Net.
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Fig. 3. 
Shown is an example of (a) Mt(x), the segmentation groundtruth without any topology 

defects. While a single (b) middle A-scan of (a), shows that we expect Mt(x) to be a strictly 

increasing function when there are no topological defects. (c) is the image with simulated 

topology defects added on (a) and the (d) middle A-scan of (c), showing the effects of 

topology errors.
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Fig. 4. 
The top row shows Cirrus and Spectralis B-scans, respectively. The second row shows the 

segmentation after S-Net, and the bottom row shows the effect of topology correction with 

the output from T-Net.
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Fig. 5. 
Percentage of patches with topology disorder and the iterations into the topology fixing net.
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Fig. 6. 
From left to right: original patch, initial segmentation mask by S-Net, first iteration through 

T-Net, and fourth iteration through T-Net.
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Table 1.

Dice coefficients of eight layers evaluated against 490 manually delineated Spectralis B-scans.

Layer RNFL GCL+IPL INL OPL ONL IS OS RPE

S-Net 0.898 0.917 0.829 0.776 0.933 0.832 0.839 0.874

S-Net + T-Net 0.904 0.922 0.830 0.776 0.935 0.835 0.839 0.873

RF + Graph 0.914 0.926 0.831 0.787 0.939 0.833 0.844 0.873
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Table 2.

Dice coefficients of eight layers evaluated against 48 manually delineated Cirrus B-scans.

Layer RNFL GCL+IPL INL OPL ONL IS OS RPE

S-Net 0.846 0.927 0.897 0.773 0.948 0.792 0.818 0.901

S-Net + T-Net 0.860 0.939 0.899 0.776 0.951 0.800 0.820 0.844

RF + Graph 0.909 0.950 0.919 0.815 0.958 0.915 0.916 0.927
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