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Abstract

Protein allostery is ubiquitous phenomena that are important for cellular signaling processes. 

Despite extensive methodology development, a quantitative model is still needed to accurately 

measure protein allosteric response upon external perturbation. Here, we introduced the relative 

entropy concept from information theory as a quantitative metric to develop a method for 

measurement of the population shift with regard to protein structure during allosteric transition. 

This method is referred to as relative entropy-based dynamical allosteric network (REDAN) 

model. Using this method, protein allostery could be evaluated at three mutually dependent 

structural levels: allosteric residues, allosteric pathways, and allosteric communities. All three 

levels are carried out using rigorous searching algorithms based on relative entropy. Application of 

the REDAN model on the second PDZ domain (PDZ2) in the human PTP1E protein provided 

metric-based insight into its allostery upon peptide binding.
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Introduction

Molecular dynamics (MD) simulations have been widely applied to investigate protein 

structures and functions.[1] Function regulations of many proteins involve external or 

internal perturbations including light stimulation[2], ligand or peptide binding[3], stress 

activation [4], pH activation[5] etc., which are essential for protein regulations. In general, 

the regulations of protein function due to external perturbations are referred to as allostery 

[6], which are ubiquitous molecular processes in biological systems. Recently, a population 

shift model was proposed that different function related protein conformations could coexist 

[7,8]. Upon external perturbation, the free energy landscape of a target system could change 

significantly whereas the populations of different states are shifted. These changes of free 

energy landscape are essential for so-called dynamics-driven allostery.[6,9–13]

Dimensionality reduction methods could be applied to investigate the distribution changes 

using only limited number (usually up to three) of collective variables.[14] Due to 
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unavoidable structural information loss, it is difficult to investigate how the dynamics lead to 

the distribution changes, and how the perturbation information propagates inside protein. To 

address this difficulty, an improved method is needed to accurately compare the distribution 

between the simulations of two allosteric states to offset the structural information loss due 

to dimensionality reduction analysis.

One metric to quantitatively measure the difference between two probability distributions is 

relative entropy[15]. Relative entropy, also known as Kullback–Leibler divergence, is a 

concept in statistics to measure how one probability distribution diverges from the expected 

distribution with broad application in many fields[16–20]. By adapting this metric into MD 

simulation analyses, one would be able to quantitatively describe how one simulation 

diverges from other simulations. This measurement could be applied on many distributions. 

The distribution differences measured by relative entropy are equivalent to the free energy 

changes upon external perturbations, and can be considered as one of the allostery effects.

To analyze protein structure-function relations and quantify the communication among 

residues inside protein, a group of approaches referred to as protein structure network 

methods were developed to identify network of residues to model residue communication 

based on protein structural dynamics. In protein structure network analysis, each amino acid 

residue is considered as a node, and edges are built to connect nodes to obtain different 

network representation of a protein. Specifically, protein contact network (PCN) and residue 

interaction network (RIN) models were developed and applied to reveal the residues crucial 

for protein stability, and identify domains, hubs, and clusters of residues correlated with 

protein functions[21–23]. Elastic network models (ENM) were developed to investigate the 

interactions among residues through approximating inter-residue interactions by harmonic 

elastic restraints [24,25]. The network analysis has also been adapted broadly to analyze MD 

simulations. Dynamics network analysis (DNA) method models the residue interaction in 

the network using the correlation matrix based on MD simulations [26]. These network 

analyses have been widely applied to investigate the communication among residues in 

proteins [27]. However, no method has been developed to utilize simulation distribution 

information, which closely correlates with the functions, and is readily available from the 

MD simulations of macromolecules. In addition, few methods could quantitatively 

characterize the allosteric effects of proteins upon external perturbations. Here, we 

developed a novel quantitative network analysis method utilizing distribution information 

from MD simulations specifically targeting protein allostery. This method is referred to as 

relative entropy-based dynamical allosteric network (REDAN) model, and could be applied 

to compare distribution differences of two allosteric states upon perturbation and build 

quantitative network model.

In REDAN model, each amino acid residue is considered as a node, and connection between 

any node pair is considered as an edge. The change of distance distribution between any 

node pair can be calculated using relative entropy method and used as the weight for the 

corresponding edge. These weights quantitatively measure the response of protein dynamics 

upon perturbation, and could be used to characterize allostery induced by the same 

perturbation. Therefore, this network model could quantitatively describe protein allosteric 

effects from the perspective of structural biology and population shifting. Higher relative 
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entropy indicates significant allosteric effect or larger distribution shift due to perturbations. 

Using this allosteric network model, we can quantitatively compare allosteric effects upon 

perturbation with minimum structural information loss.

Similar with other network models[21,26], the pathway and community analyses could also 

be conducted in this allosteric network model. A typical allosteric pathway consists a series 

of edges connecting two distal residues to exhibit the potential communication between 

residues leading to the allosteric effects. An allosteric community represents a group of 

residues with minimum allosteric effects upon perturbation. The second PDZ domain 

(PDZ2) in the human PTP1E protein[28] is an allosteric protein which could propagate 

signals to other part of molecular complex upon peptide binding[28,29], and is subjected to 

the allosteric pathway and community analysis using REDAN method to reveal potential 

allosteric mechanism and identify allostery-related residues.

Materials and Methods

Molecular Dynamics Simulation

For PDZ2 system, the initial structures were obtained from the Protein Data Bank (PDB)

[30] with the ID as 3LNX (peptide unbound state) and 3LNY (peptide bound state), 

respectively. After adding hydrogen atoms, PDZ2 is solvated using explicit water model 

(TIP3P)[31] and neutralized with sodium cations and chloride anions to maintain 0.1M ionic 

strength. The simulation system was then subjected to the adopted basis Newton-Raphson 

(ABNR) energy minimization, which yielded a total gradient of less than 0.001 kcal/

(mol•Å). After the minimization, 10 nanoseconds (ns) of isothermal-isobaric ensemble 

(NPT) MD simulations followed by 100 ns of canonical ensemble (NVT) Langevin MD 

simulation at 300K were conducted for both PDZ2 domain unbound and bound states. For 

all simulations, SHAKE constraint was applied to constrain all bonds associated with 

hydrogen atoms. Step size of 2 femtosecond (fs) was used and simulation trajectories were 

saved every 100 picosecond (ps). Cubic simulation box and periodic boundary condition 

were applied for all MD simulations. Electrostatic interactions were calculated using particle 

mesh Ewald (PME) method[32]. All simulations were carried out using CHARMM[33] 

simulation package version 41b1 with the support of GPU calculations based on 

OpenMM[34].

Relative Entropy

Relative entropy method was applied to calculate the difference between the distributions of 

the distance between the alpha carbon (Cα) of two residues upon perturbation. The 

probability distributions of the Cα distance before and after allosteric perturbation are 

represented as P and Q, respectively, with p(x) and q(x) as the distribution density at 

distance x. The relative entropy DKL between P and Q is calculated as the following

DKL(P | |Q) =   ʃ p(x)ln p(x)
q(x) dx (Eq. 1)
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Because the above equation is not symmetrical measurement for P and Q, we symmetrize 

the relative entropy between P and Q by taking the average of DKL(P∣∣Q) and DKL(Q∣∣P). 

This averaged relative entropy is referred to as the perturbation relative entropy (PRE) 

between two distributions of the same distance in different allosteric states upon perturbation 

(Eq. 2).

PRE(P | |Q) =
DKL(P | |Q) +  DKL(Q | |P)

2 = 1
2 ʃ (p(x) − q(x))ln p(x)

q(x) dx (Eq. 2)

In any distribution, e.g. P, the free energy at distance x (APx) can be estimated from the 

distribution probability at x as the following

APx =   − kBTlnp(x) (Eq. 3)

where kB is the Boltzmann constant, and T is the temperature. Combining Eq. 2 and Eq.3, 

the PRE between distributions P and Q is a direct measurement of the free energy difference 

for the given order parameter between two states:

PRE(P | |Q) = 1
2 ʃ p(x) − q(x) ln p(x)

q(x) dx = − 1
2   kBT ʃ p(x) − q(x) APx − AQx dx (Eq. 4)

Allosteric Pathways

The allosteric networks can be built based on PRE matrix. PRE value measures the 

magnitude of the distribution shifting upon perturbations, and can be considered to indicate 

the significance of the allosteric effects. To identify potential allosteric pathways between 

two distal residues with large PRE, a cutoff value to control the edge length is necessary to 

facilitate the analysis. An edge between any residue pairs will be chosen if the most probable 

distance between the Cα of these two residues is smaller than the given cutoff value. For 

each chosen edge, a weight is defined as 1/PRE. Therefore, the pathway with the smallest 

overall weight implies the propagation channel with the largest allosteric effect. The shortest 

pathway was identified by the Dijkstra’s algorithm [35], which is the most common 

pathway-searching algorithm. Using Dijkstra’s algorithm, the search starts with the starting 

node, and iteratively loops all the available nodes until reaching the destination node to 

identify the shortest path connection two nodes. More details could be obtained by referring 

to the literature [35].

Allosteric Communities

The main objective for community analysis is dividing the residues into different 

communities, so that the total PRE associated with residue pairs within each community is a 

minimum, and the total PRE associated with residue pairs across different communities is a 

maximum. Therefore, the overall allosteric effects upon perturbation could be projected onto 
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the correlation among communities. Both Girvan-Newman[36] and Kernighan-Lin[37] 

algorithms are implemented in this study to construct communities.

Girvan-Newman (GN) algorithm

The GN algorithm is a top-down community detection approach, which removes the “most 

valuable edge” in each iteration, and recalculates the betweenness of all remaining edges 

until no edge remains. This algorithm depends on the graph construction and cutoff values. 

The optimal communities are determined by modularity value[36], which is the 

measurement of the strength of the community separation. Better community structure is 

indicated by larger modularity value. Final communities are selected with the highest 

modularity during iteration.

Kernighan–Lin (KL) algorithm

The KL algorithm[37] is a heuristic algorithm for finding the partition of graphs. The 

algorithm is independent to the graph construction and cutoff value, and only depends on the 

relative entropy matrix. Multiple random initializations are carried out in KL algorithm to 

search for the lowest possible relative entropy value within each community. The KL 

algorithm is outlined as the following.

Assuming n communities labeled as C1 through Cn, the total PRE inside communities are 

defined as

T =  ∑l ∑i, j ⊆ Cl
PREi j, (Eq. 5)

where i, j are the residues in Community Cl, and PREij is the perturbation relative entropy 

between distance distribution of residues i and j upon perturbation.

Assuming that node i belongs to Community Cm, the internal PRE of node i in community 

Cm is defined as Eq. 6, and the external PRE of node i with reference to community Cq is 

defined as Eq. 7:

Ini =  ∑ j ⊆ Cm
PREi j, (Eq. 6)

Exi, Cq
=  ∑ j ⊆ Cq

PREi j . (Eq. 7)

The allosteric communities can be optimized by inserting node i from Cm into Ck or 

swapping node i from Cm with node j from Ck. The benefits of the total PRE inside 

communities are calculated as Eq. 8 and Eq. 9 for inserting and swapping operations, 

respectively:
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Benefit =  Tnew − Told =  Exi, Ck
− Ini . (Eq. 8)

Benefit = Tnew − Told = Exi, Ck
+ Ex j, Cm

− Ini + In j − 2*PREi j (Eq. 9)

Therefore, the optimal KL communities can be computed by selecting maximum benefit 

operation during each iteration until converging to a minimum total PRE value inside 

communities. However, the KL algorithm can only achieve a solution as a local minimum. 

In the current study, we repeat the KL algorithm until the lowest PRE value in communities 

remains unchanged for more than 1,000 times, then the current partition is selected as the 

final community configuration. In addition, the KL algorithm could be applied on the GN 

searching results to further optimize the communities until convergence. This combination 

of GN and KL methods is referred to as a hybrid GN-KL algorithm.

Results

Although PDZ2 exhibits signal propagation upon ligand binding, the structures of the PDZ2 

unbound state (3LNX[38]) and bound state (3LNY[38]) are very similar. It was shown that 

the distributions between the unbound and bound simulations are significantly different[39]. 

REDAN model is built based on those differences. Considering each residue as a node, the 

significance of allosteric effects for any node pair is measured as the relative entropy 

divergences between its distributions in two states, and treated as the weight of the edge 

connecting these two nodes. These weights could reflect the allosteric response of the 

corresponding edges upon peptide binding, and are referred to as PRE. It is worth to mention 

that because the free energy can be computed based on probability distribution P as A = 

−kBTlnP, the PRE measures the change of free energy upon peptide binding. Therefore, the 

edges along with their weights can be used to model the direction of free energy propagation 

upon perturbation.

The PRE values of all edges in PDZ2 are calculated and illustrated in Figure S1. For most 

residue pairs, the PRE values upon peptide binding are close to zero, and are significant for 

only part of the residue pairs, making it a sparse matrix. The sparsity of the PRE matrix 

makes it suitable for a sparse protein network as illustrated in Figure S2. Comparing with 

other network methods including protein contact network, residue interaction network, and 

dynamical networks analysis[21,26], the REDAN method could identify key allosteric edges 

between the residues far from each other rather than adjacent residues.

The distributions of edges with the highest and lowest PRE values are illustrated in Figure 1, 

respectively. Clearly, the peptide binding does not equally influence the distance 

distributions of different residue pairs. For the residues pair N14:A74 with the highest PRE, 

the unbound state has the distance around 19Å with the peak density. Upon peptide binding, 

the distribution is broadened with a new peak appearing around 21Å (Figure 1a), leading to 
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the PRE of this edge upon peptide binding as 2.019. As a comparison, for the residue pair 

D56:V64, the peptide binding does not lead to observable distribution changes, which results 

in the PRE of this distribution close to zero (Figure 1c). The probability distribution was 

closely related to the free energy. The free energy profiles with reference to the edge 

distance between residue pairs N14:A74 and D56:V64 are plotted in Figure 1b and 1d, 

respectively. With the large PRE value, the change of the free energy profile upon 

perturbation is more significant for the N14:A74 pair than the D56:V64 pair. Therefore, the 

PRE can be used as an adequate metric to measure the free energy changes upon external 

perturbations. These calculated PRE values are used in REDAN model to identify allostery 

related residues, residue pairs, allosteric pathways, and allosteric communities.

Identification of Allosteric Effects and Allostery Related Residues

The REDAN model provides a tool to easily detect the residues and residue pairs that are 

more responsive to allosteric perturbations. For PDZ2, residue pair N14:A74 has the highest 

PRE upon peptide binding. The top five residue pairs with the highest PRE value are listed 

in Table S1. The residue pairs with the highest PRE are all correlated with β1/β2 loop with 

α3 helix (Figure 1e). Interestingly, the peptide-binding site is formed between β2 strands 

and α3 helix.

For each residue, the PRE associated with all edges which include that specific residue could 

be summed together as residue specific total PRE. This total PRE may reflect the 

significance of allosteric effects between each individual residue and the rest of protein upon 

perturbations. All residues in PDZ2 are sorted using their total PRE with the top 15 residues 

listed in Table 1 and the complete list provided in Table S2. Because the edge can be 

considered as the direction of free energy propagation, the total PRE could reflect the 

magnitude of free energy passing through that residue as a node upon perturbation. The top 

15 residues cover exactly the residues from G68 to V75 and V26 to H32 (Figure S3). 

Comparing with a previous network analysis and an NMR study related to PDZ2 bound with 

the same peptide[29,40,41], 12 out of these 15 residues have been identified as allosterically 

or functionally related residues (Table 1). The residues V26 to H32 form β2/α1 loop and the 

residues G68 to V75 form β5/α3 loop and part of α3 helix. Those regions are highlighted as 

allostery related structures in many studies [28,29,40,41].

Allosteric Pathways

The residue pairs identified above with significant allosteric effects usually are not adjacent 

with each other. For example, the distance between N14:A74 residue pair is around 20Å. 

The significant allosteric effect between these two residues could not be fully accounted for 

by non-bonded interactions between them, because the non-bonded interactions are too 

small at this distance to exert any significant impact. Alternatively, significant distribution 

changes correlated with large allosteric effect could stem from the accumulation of shorter-

range allosteric effects. In REDAN model, the decomposition analysis of the long-range 

allosteric effect into sequential short-range and smaller allosteric effects is carried out using 

the shortest pathway searching algorithm. For example, in the PDZ2 protein, the large 

allostery effect displayed by N14:A74 residue pair (Figure 1a) is decomposed into a series of 

sequential residue pairs with short-range allosteric effect using a cutoff value as 12 Å: 
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N14:R79, R79:S17, S17:V75, V75:S21 and S21:A74 (Figure 1g). Comparing distributions 

in Figure 1f and 1a, it is clear that the decomposed residue pairs have smaller shift of 

distribution upon peptide binding but all in the same direction to the larger allosteric effect 

displayed by N14:A74 residue pair. This series of short-range edges with significant PRE 
values may contribute to the large allosteric effect between N14:A74 as one important 

pathway consisting of N14, S17, S21, V75 and R79. It should be noted that the potential 

allosteric communication between residues N14 and A74 does not necessarily propagate 

only though this identified pathway. However, all five residue-pairs as part of this pathway 

have increasing distance distribution upon peptide binding, which is consistent with the 

target N14:A74 edge, making it likely that this pathway correlates with the overall allosteric 

effect.

The PRE values of the short-range residue pairs listed above are 1.385 (N14:R79), 0.660 

(R79:S17), 1.337 (S17:V75), 0.815 (V75:S21), and 1.045 (S21:A74) as shown in Figure 1f 

and individually in Figure S4. Residues N14 and S17 belong to β1/β2 loop (covering 

residues 13 through 19), and residue S21 belongs to β2 strand. Residues A74, V75, and R79 

belongs to α3 helix. N14:R79 pair has the highest PRE along this pathway. Comparing with 

the β1/β2 loop region, the α3 helix as a stable secondary structure could be more stable. 

Therefore, this pathway decomposition may reveal that the large PRE between N14:A74 

may stem from the fluctuation of β1/β2 loop. Among A74, V75, and R79 residues, R79 is 

the closest residue in α3 helix structure with regard to the β1/β2 loop. Therefore, to further 

evaluate allosteric response from the β1/β2 loop, the distribution of residue pair distances 

and corresponding PRE values between R79 and all β1/β2 loop residues (10 through 21) are 

plotted in Figure S5. Among these residue pairs, the PRE values increase from the lowest 

one between E10:R79 with 0.020 to the highest one between N14:R79 with 1.385, and 

sequentially decrease to 0.182 as the one between S21:R79. Central three residues N14, 

D15, and N16 have PRE values higher than 1, suggesting that this loop region significantly 

changes the conformation upon peptide binding.

It has been suggested that allostery was a complex biological function, and multiple 

pathways could co-exist and lead to the allosteric effects, ranging from long-range global 

pathways to short-range local pathways[42]. Although some pathways may be more 

dominant than other pathways for propagation purpose, the allosteric effect should be 

considered as the result of cooperation among multiple pathways[42]. To identify potential 

multiple pathways, a cutoff value was applied to differentiate allosteric pathways with 

different interaction ranges. This cutoff value is used as the upper bound to search for the 

shortest allosteric pathway connecting the target residue pair. This gives flexibility of this 

model to survey important allosteric pathways at any distance range. To evaluate the impact 

of different cutoff values on allosteric pathways, sixteen different cutoff values ranging from 

5 Å to 20 Å are used for allosteric pathway identification (Table 2). Cutoff values shorter 

than 5 Å do not lead to any allosteric pathways. Different cutoff values do lead to different 

allosteric pathways. But for each specific cutoff value, unique allosteric pathway could be 

determined. For the cutoff value of 5Å, the adjacent residues as N14-K13-A12 and residues 

from 83 through 74 are identified as the shortest allosteric pathway (Figure 1h), highlighting 

the importance of the local interaction for the allosteric effect. The allosteric pathway 

identified using the cutoff value as 12Å is illustrated in Figure 1g, because this value was 
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used in another allosteric pathway analysis [26] and also used as the cutoff value for non-

bonded interaction in the MD simulations. Overall, different cutoff values leading to 

different allosteric pathways provide the flexibility to identify pathways targeting the 

interactions within different ranges, and could provide insights into allosteric effects from 

different aspects.

Allosteric Communities

The allostery could be referred to as the distribution changes related to protein conformation 

upon perturbations. The influence of perturbation is not equally exerted on each residue. 

Some residue pairs could be affected more than others upon perturbations as demonstrated 

in Figure 1. Using the PRE values of the different residue pairs, the residues can be divided 

into different groups, with which the total PRE value within each group is minimized, and 

the total PRE values across different groups are maximized. These groups are named as 

“allosteric communities” as domains that are less affected by the perturbations.

To construct communities through the minimization of total PRE value within each 

community, both GN and KL algorithms as well as the hybrid GN-KL algorithm are 

implemented in this study. GN algorithm[36,43] has been widely applied in biological and 

social network community analyses. As described in the methodology section, GN algorithm 

iteratively removes the most valuable edge in the network to identify the community without 

minimizing the PRE inside the community. As comparison, the KL algorithm[37] is a 

minimization algorithm which iteratively reaches local minimum. The total PRE values 

inside communities using these algorithms are plotted in Figure 2b. Apparently, the KL 

algorithm is much better than the GN algorithm to identify communities with the minimum 

PRE values. However, the computational cost of KL algorithm is much higher than the GN 

algorithm. Overall, the hybrid GN-KL algorithm could produce comparable results to the 

KL algorithm with much lower computational cost.

As one of its advantages, the GN algorithm is parameter-free, and could be used to 

determine the optimal number of allosteric communities with maximum modularity of the 

network[36]. Applying GN algorithm, it was determined that five communities are the most 

suitable for PDZ2. Community analysis using GN, KL, and the hybrid GN-KL algorithms 

are illustrated in Figure 2c, 2d and 2e, respectively. Usually, the allosteric effects induced by 

external perturbations alter the protein conformation without changing the secondary 

structure. Therefore, stable secondary structures including α-helices and β-strands likely 

belong to same community. Overall, most α-helix and β-strand secondary structures are 

conserved in the community analyses.

For five communities in PDZ2 domain using KL algorithm (Figure 2a), the percentage of 

total PRE values of all residues pairs within each community are only 0.8%, 1.2%, 0.9%, 

1.0% and 1.3% of the overall total PRE values of PDZ2 upon peptide binding as allosteric 

perturbation, respectively. Therefore, the PRE values among these communities account for 

94.8% of total PRE values related to protein allostery. The total PRE value between 

communities 2 and 4 accounting for 19.0% and the one between communities 4 and 5 

accounting for 18.0%. Actual total PRE value for each community pair is listed in Table S3, 

and the residues in each community are listed in Table S4. The community 4 (residues 66–
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80) is potentially the most important, and contains β5/α3 loop (66–70) and entire α3 helix 

(71–79).

The community analysis is further evaluated through comparison with the principal 

component analysis (PCA). First, the simulations of the PDZ2 unbound and bound states are 

projected onto the two main components (PC1 and PC2) from PCA (Figure 3a). Clustering 

analysis reveals that two states of PDZ2 are significantly different in the PC1/PC2 space. 

Consequently, all community pairs (including self pair) from different states are also 

projected onto the principal component space (Figure 3b-3p). It should be noted that for 

each community pair including self-pairs, PCA was carried out separately to construct 

PC1/PC2 surface for projection specifically for that community pair. All community self-

pairs do not show significant distribution changes between two states (Figures 3b, 3g, 3k, 3n 

and 3p). Other community pairs generally show significant differences between two states 

with the most significant changes coming from pairs including 1:3, 2:3, 2:4, 3:5, and 4:5.

Through this community analysis, the distribution shifting upon peptide binding as PDZ2 

allostery can be quantified as the correlation among the allosteric communities. This 

community analysis provides a quantitative tool with statistical significance to quantify the 

distribution changes induced by allosteric perturbation from different regions in the protein.

Discussion

The REDAN model approaches protein allostery based on the population shift concept 

through relative entropy measurement, and can quantitatively measure difference between 

two probability distributions[15]. Based on MD simulations, a distribution could be obtained 

for many collective variables to represent their free energy profile. Relative entropy could be 

calculated to measure the response of any collective variables with regard to allosteric 

perturbations. Higher relative entropy indicates larger change of distributions upon 

perturbations, and could be closely related to allostery. Therefore, the relative entropy could 

be considered as the amplitude of allosteric effect.

The REDAN method could be used to identify the most affected residues and residue pairs 

upon allosteric perturbations. In PDZ2 domain, the Cα pair distance with the highest PRE 
reveals that the distance distribution between β1/β2 loop and α3 helix is significantly 

affected by the peptide binding. The significance of β1/β2 loop has been identified in many 

studies related to PDZ2 allostery [28,41]. In a dynamical interaction correlation analysis 

conducted by Karplus and coworker [28], the loop β1/β2 is referred to as a key part in the 

allosteric pathway. Another study also emphasized the importance of β1/β2 loop through 

structural network and elastic network analysis [41]. For each individual residue, the 

summation of all PRE values between this particular residue and all other residues can be 

considered as a metric to measure the total amount of information passing through this 

residue upon perturbation. The residues with the highest total PRE values also have 

significant agreement with those network or experimental studies [28,29,40,41].

Comparing with individual residues, potential allosteric pathways are more informative to 

demonstrate the allosteric mechanisms. The shortest pathway algorithms were applied to 
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identify the pathways between two distal residues with significant PRE. Through pathway 

decomposition analysis, the large allosteric effect between two distal residues could be 

decomposed into several short-range residue pairs with smaller PRE values. These short-

range residue pairs may provide structural information important for allostery. This is also 

supported by other studies, which indicate that multiple pathways may coexist and be 

responsible for the allostery effect between two distal residues [42]. Using cutoff value for 

pathway searching, the REDAN model provides flexibility to explore the allosteric pathways 

at different scales.

The distribution shift upon allosteric perturbation can be represented as the allosteric 

communities in the REDAN model. The allosteric communities are constructed through the 

minimization of total PRE values within each community. As shown in Figure 3, the 

distribution changes within each community are insignificant, and the majority of 

distribution differences come from across communities. Therefore, the amount of 

distribution changes upon allosteric perturbation is quantified as the interactions among 

different communities.

The construction of allosteric communities is not a trivial task since searching communities 

with minimum total relative entropy is known as an NP-Hard problem. In this study, widely 

applied GN and KL algorithms are shown to be suitable for the purpose of allosteric 

community analysis. The GN algorithm[36] can determine the optimal number of 

communities based on the modularity of remaining network after decomposition, without 

explicitly minimizing the total PRE in each community. As comparison, the KL algorithm is 

an explicit minimization algorithm, which can obtain a local minimum value of the total 

relative entropy within each community. But the computational cost of the KL algorithm is 

significantly higher than the one of the GN algorithm, and the number of communities needs 

to be pre-determined. The hybrid GN-KL algorithm was developed to take advantage of both 

algorithms by applying GN algorithm to select communities as an initial guess, and KL 

algorithm to optimize the partitions. The detailed comparison of these three algorithms is 

provided in Table S5. Among five allosteric communities identified for PDZ2, the 

community 4 has a total PRE correlated to the rest of protein as more than 50%, indicating 

that the peptide binding can significantly alter the interaction of the residues in community 4 

(L66 to N80) with the rest of protein. Community 4 also includes all the residues in β5/α3 

loop and α3 helix, which consists of the binding pocket of peptide. This highlights the 

importance of the peptide binding pocket in the allosteric processes. In general, allosteric 

community analysis could be utilized to divide the protein residues into different allosteric 

communities to investigate the allosteric mechanism from a global point of view.

Conclusion

The current study introduced a new method named related entropy-based dynamical 

allosteric network (REDAN) model to quantitatively characterize protein allosteric effects 

upon external perturbations. Relative entropy was applied to quantify the allosteric effects 

for pair-wised residues based on the distribution differences. Because the population 

distribution is directly linked to the free energy, any changes of population distributions 

essentially reflect the changes of free energy surface due to external perturbations. Adapting 

Zhou and Tao Page 11

Mol Phys. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the shortest pathway searching algorithms, multiple potential allosteric pathways connecting 

two distal allosteric residues could be identified. The flexibility of using different cutoff 

values and identifying multiple allosteric pathways could provide deep insight into protein 

allostery. The allosteric community analysis could further identify the communities, which 

hold significant contribution to overall relative entropy among them but have minimum 

relative entropy within each community. Both GN and KL algorithms, and the hybrid GN-

KL algorithm were implemented for community identification. The application of the 

REDAN model on allosteric PDZ2 protein demonstrates its effectiveness and efficiency for 

protein allostery analysis. Overall, this method could be applied on any two different protein 

states upon perturbations, and quantify the impacts from the perturbation on the internal 

dynamics and function related residues.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The significance of distribution changes and free energy surface changes quantified by 

perturbation relative entropy (PRE). (a) Residue pair (N14:A74) with the highest PRE in the 

protein; (b) The free energy surface of the N14:A74 distance distribution; (c) The residue 

pair (D56:V64) with the lowest PRE; (d) The free energy surface of the D56:V64 distance 

distribution; (c) Residues N14 and A74 illustrated in PDZ2; (d) Pathway decomposition: the 

distributions for decomposed residue pairs; (e) Pathway decomposition analysis of N14:A74 

pair with cutoff value as 12Å; (f) Pathway decomposition analysis of N14:A74 pair with 

cutoff value as 5Å. These results demonstrate that the PRE is an effective measurement to 

quantify allosteric effect as residue pair level.
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Figure 2: 
Comparison of different community detection algorithms. (a) Total PRE within and between 

communities using Kernighan-Lin (KL) algorithm; (b) Minimization of total PRE within 

allosteric communities using different algorithms; (c) Communities constructed using KL 

algorithm (residues in different community are colored differently, same as for d and e.); (d) 

Communities constructed using Girvan-Newman (GN) algorithm; (e) Communities 

constructed using the hybrid GN-KL algorithm. The GN algorithm is effective to determine 

the suitable number of communities, but could be trapped in local minimum. The KL 

algorithm could optimize the communities significantly with high computational cost. The 

hybrid GN-KL algorithm is both computationally efficient and rigorous with the results 

similar to the KL algorithm.
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Figure 3: 
Projection of PDZ2 unbound and bound states and communities using principal component 

analysis (PCA). (a) Projection of unbound and bond states onto PC1 and PC2 surface; (b-q) 

Projections of different community pairs onto pair-specific PC1/PC2 surfaces. The unbound 

and bound states are well separated on PC1/PC2 surface. None of community self-pairs is 

well separated using PCA. Most different community pairs are well separated using PCA, 

indicating that the community analysis projects the major part of allosteric effect among 

different communities.
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Table 1:

Top 15 residues with the highest residue specific PRE

Rank Residue Total PRE Rank Residue Total PRE Rank Residue Total PRE

1
T70

b 54.99 6
Q73

b 46.70 11
V75

b 37.07

2
V26

a,b 54.86 7
A69

a,b 46.67 12 K72 35.88

3
N27

a,b 52.62 8
R31

a 45.32 13 H32 34.75

4
H71

a,b 50.49 9
T28

a,b 43.28 14
V30

a,b 32.03

5
A74

b 46.76 10
S29

b 38.14 15 G68 30.76

[a]
Residues identified through an NMR study[40]

[b]
Residues identified through two network analyses[29,41]
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Table 2:

Different pathways with different cutoff values

Cutoff value (Å) Shortest allosteric pathway Cutoff value (Å) Shortest allosteric pathway

5 N14, K13, A12, Q83, G82, T81, N80, R79, L78, T77, E76, V75, 
A74

13 N14, R79, N16, V75, S21, A74

6 N14, N16, K13, Q83, G82, T81, N80, T77, A74 14 N14, R79, S17, A74

7 N14, A45, K13, Q83, N16, R79, T81, L78, A74 15 N14, R79, S17, A74

8 N14, A45, K13, G44, S17, R79, T81, T77, Q73, T70, G25, A74 16 N14, L78, K13, A74

9 N14, G44, I20, V22, H71, G25, A74 17 N14, L78, K13, A74

10 N14, G44, S17, V75, G25, A74 18 N14, L78, K13, A74

11 N14, G44, S21, H71, V22, A74 19 N14, L78, K13, A74

12 N14, R79, S17, V75, S21, A74 20 N14, A74
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