Skip to main content
. Author manuscript; available in PMC: 2019 Jul 26.
Published in final edited form as: J Am Stat Assoc. 2018 Jun 28;113(523):955–972. doi: 10.1080/01621459.2017.1409122

Table 1:

Comparison of BNN, GAM, random forest, and BART in variable selection and nonlinear prediction for the simulated nonlinear regression example: “MPM” denotes the median probability model, i.e., selecting only the variables with the marginal inclusion probability greater than 0.5; “MSFE” denotes the mean squared fitting error; “MSPE” denotes the mean squared prediction error for the mean response; |si*|¯ denotes the average number of variables selected for the 10 datasets; the numbers in parentheses denote the standard deviations of the corresponding values;

Methods Setting |si*|¯ fsr nsr MSFE MSPE

BNN MPM 5.2 (0.13) 0.038 0 1.53(0.09) 2.03(0.20)

BRNN 195.9+ (0.09) 0.667 0.60 0.013(9.9×10−4) 19.51(0.82)

GAM 41.3 (6.77) 0.898 0.16 3.78 (0.37) 6.09 (0.29)

RF 7.1 (0.43) 0.76 0.66 1.83 (0.05) 9.71 (0.34)

20 trees 5.9 (2.87) 0.64 0.58 2.79 (0.17) 8.45 (0.34)
BART 35 trees 8.0 (4.34) 0.75 0.60 1.54 (0.09) 8.57 (0.42)
50 trees 4.3 (2.53) 0.56 0.62 0.82 (0.07) 8.34 (0.38)

SIS-SCAD 12.4 (5.37) 0.83 0.58 5.79 (0.81) 9.32 (0.91)
+

BRNN reports the effective number of parameters instead of the number of selected variables.