Skip to main content
. Author manuscript; available in PMC: 2019 Jul 26.
Published in final edited form as: J Am Stat Assoc. 2018 Jun 28;113(523):955–972. doi: 10.1080/01621459.2017.1409122

Table 3:

Comparison of BNN, GAM, random forest, and BART in variable selection and class prediction for the simulated classification example: “MPM” denotes the median probability model, i.e., selecting the variables with the marginal inclusion probability greater than 0.5; “Fitting” denotes the error rate of fitted class for the training data; “Prediction” denotes the error rate of predicted class for the test data; |si*¯| denotes the average number of variables selected for the 10 datasets; the numbers in parentheses denote the standard deviations of the corresponding values; and p-value is calculated using a paired-t test for BNN versus every other method.

Methods Setting |si*|¯ fsr nsr Fitting(%) Prediction(%) p-value

BNN MPM 4.3 (0.26) 0.093 0.025 3.57 (0.47) 9.70 (0.99)

GAM 13.5 (3.68) 0.73 0.10 12.13 (1.34) 15.57 (1.97) 2.75 × 10−3

5 trees 17.3 (2.23) 0.79 0.075 2.19 (0.41) 18.6 (2.18) 7.45 × 10−4
RF 10 trees 8.2 (0.76) 0.56 0.10 0.67 (0.15) 17.2 (1.80) 2.98 × 10−3
25 trees 5.2 (0.39) 0.31 0.10 0.0 (0.0) 14.3 (1.04) 1.27 × 10−3

20 trees 2.8 (0.33) 0.0 0.30 9.90 (1.04) 17.72 (1.83) 2.01 × 10−4
BART 35 trees 3.0 (0.26) 0.0 0.25 6.83 (0.89) 17.00 (1.34) 3.35 × 10−6
50 trees 3.0 (0.30) 0.0 0.25 5.33 (0.75) 15.57 (1.42) 7.46 × 10−4
75 trees 3.3 (0.33) 0.03 0.20 4.47 (0.55) 16.90 (1.58) 2.22 × 10−4

SIS-SCAD 5.0 (1.45) 0.46 0.325 18.70 (2.91) 21.43 (2.48) 6.87 × 10–4