Skip to main content
. Author manuscript; available in PMC: 2019 Jul 26.
Published in final edited form as: J Am Stat Assoc. 2018 Jun 28;113(523):955–972. doi: 10.1080/01621459.2017.1409122

Table 4:

Comparison of BNN with SIS-SCAD, GAM, RF, BART, and BRNN in gene selection for 24 drugs: “Training error” denotes the average mean squared fitting error, “Prediction error” denotes the average mean squared prediction error, and #gene denotes the average number of selected genes, where the averages are over 24 drugs; the numbers in parentheses denote the standard deviations of the corresponding averages;

Method Training error Prediction error #gene

SIS-SCAD 0.0248(0.0020) 0.1757(0.0132) 62.92(0.97)
BRNN 0.0587(0.0059) 0.1420(0.0151) 84.06*(7.64)
GAM 0.0719(0.0063) 0.1253(0.0091) 41.75(2.76)
RF 0.0137(0.0010) 0.1176(0.0087) 30.54(1.75)
BART 0.0366(0.0031) 0.1249(0.0092) 7.92(0.47)
BNN 0.0855(0.0061) 0.1201(0.0089) 2.38(0.40)
*

BRNN reports the effective number of parameters of the neural network instead of the number of selected genes.